

Model Checking is Refinement—

Computational Temporal Logic is Equivalent to Failure Trace

Testing

by

Zhiyu ZHANG

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s Unversity

Sherbrooke, Quebec, Canada

December 2008

Copyright @ Zhiyu ZHANG, 2008

 i

Abstract

 The two major systems of formal verification are model checking and algebraic

model-based testing. Model checking is based on some form of temporal logic such as

linear temporal logic (LTL) or computational temporal logic (CTL). The most powerful

and realistic logic being used is CTL, which is capable of expressing most interesting

properties of processes such as liveness and safety. Model-based testing is based on some

operational semantics of processes (such as traces, failures, or both) and their associated

preoders. The most fine-grained preorder beside bisimulation (of theoretical importance

only) is the one based on failure traces. We show that these two most powerful variants

are equivalent. That is to say, we show that for any failure trace test, there exists a CTL

formula equivalent to it (meaning that a system passes the test if and only if the system

satisfies the formula and the other way around). When we specify the system, we can use

temporal logic formulas such as CTL formulas to express the properties of it. We can also

use algebraic method such as labelled transition system or finite state automaton to

describe the system’s desired behaviour. If parts of a larger system are specified by these

two means at the same time, combining the result of doing model checking and the result

of applying model-based testing won’t be ideal, satisfactory and even correct. In this case,

we can convert one specification to the form of the other. We then do a formal verification

for the whole system. The result will be more convincing and correct.

 ii

Key Words

 Model checking, model-based testing, stable failure, failure trace, failure trace preorder,

temporal logic, computational tree logic, labelled transition system, Kripke structure.

 iii

Acknowledgements

 I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I want to thank the members of the thesis committee Marc Frappier,

Lin Jensen and Dimitri Vouliouris for useful advice in preparing the final manuscript.

 I am deeply indebted to my supervisor Professor Dr. Stefan D. Bruda whose help,

stimulating suggestions and encouragement helped me in all the time of the research and

the writing of this thesis. Many thanks again for his support and advice.

 Finally, I would like to give me special thanks to my parents whose patient love

enabled me to complete this thesis.

 iv

Table of Contents

1. Introduction 1

2. Preliminaries 5

 2.1 Model Checking…………….…………………………………………….5

2.2 Model-based Testing………………..…………………………………….13

 2.3 Preorder Testing…………………………………………………………..15

 2.4 Failure Trace Testing……………………………………………………..19

 2.5 Previous Work…………………………………………………………….23

3. The Equivalence between CTL and Failure Trace Testing 26

 3.1 The Equivalence between LTS and Kripke Structure………………….…26

 3.2 From Failure Trace Tests to CTL Formulas……………….…..….………31

 3.3 From CTL Formulas to Failure Trace Tests………...…….………………33

4. Conclusions and Open Problems 42

References 45

 v

List of Figures and Illustrations

2.1 The construction of Model Checking……………………………………….5

2.2 Until and Release operators………. ……………………………………….8

2.3 The graphs for CTL formulas……………………………………………....10

2.4 The construction of Model-based Testing………………………………….13

2.5 Processes equivalent under testing preorder, trace preorder

 and not equivalent under stable failure preorder…………………..............19

3.1 The conversion from LTS to its equivalent Kripke structure……………...28

3.2 Test suite for CTL formula EXf...36

3.3 Test suite for CTL formula AXf…………………………………………...36

3.4 Test suite for CTL formula EFf…………………………………………....37

3.5 Test suite for CTL formula AGf…………………………………………...39

 vi

Chapter 1

Introduction

Computing systems are becoming more and more important in our daily life. Our cell

phones, cars and planes are all embedded with computing systems. Security protocols for

communication enable electronic commerce, internet and telephone networks. Highway

and air traffic control systems are also using hardware and software systems. Not only

critical systems (whose failure causes death or loss of property or both) but also family

equipment is nowadays digital. The assurance of correctness for hardware and software

systems is therefore very important and often no failure is acceptable. As a matter of fact,

we are becoming more and more reliant on computing devices than ever before. The

importance of developing methods of checking and ensuring correctness is critical.

 Verification is the process of proving or disproving the correctness of a system with

respect to a certain specification or property. There are three kinds of methods of

verification [4, 6]: simulation (or testing) [21, 22], formal testing [11, 13, 14, 20, 23] and

 2

model checking [5, 9, 10, 16, 17, 19, 27, 28, 29, 33]. Simulation is a traditional,

non-formal method of verification and it is still the main method. The idea of simulation

is to inject signals into the system, compute and then observe the resulting signals. We

judge whether the results are the same as expected. The disadvantage of simulation is that

it cannot check all the possible situations, which means it can disprove but cannot prove.

Ergo, simulation is suitable for finding a lot of errors in the beginning stages of the

verification of processes. Testing is a method in which test cases are derived

systematically from the specification. We run all the test cases against the system under

test and observe the final results of the run. Model checking is a method for formally

verifying finite-state systems. In model checking, the specifications of the system are

described by temporal logic formulas. We then construct a model of the system. We label

all the states in the model where the formulas hold to see whether the initial states (the

states in the model with no actions leading to them) of the model satisfy the formulas or

not.

 Model checking is a complete verification technique. The disadvantage of model

checking is that it needs to model the whole system first and then prove the correctness of

the design. Simulation performs an imperfect verification on the original system because

it cannot check all the possible situations, while model checking performs a formal

verification on a potentially imperfect model of the system. Model checking is complete

but not compositional. So a concurrent system will have a huge amount of states.

Model-based testing is compositional but not necessarily complete as some tests could

Chapter 1. INTRODUCTION

3

take infinite time to run and also tests are derived from an incomplete model of the

system. The logical nature of specification for model checking allows us to only specify

the properties of interest while the algebraic nature of specification for model-based

testing is restrictive. In model-based testing, the specification is represented as a labeled

transition system or a finite state automaton. So one has to more or less present the whole

specification. Both model checking and model-based testing are formal verification

methods, that is, they allow the formal and automated verification of software.

 The thesis we advance is that: CTL model checking and failure trace testing are

equivalent.

 In defence of our thesis, we show in this work that for each computational temporal

logic formula, there is an equivalent test suite and the other way around.

 Why all of these are important? We can have a mixed specification in terms of both

model checking and model-based testing. Such a specification could be given by

somebody else, but most often an algebraic specification is just more convenient for some

components while logic specifications are more suitable for others. Indeed, considering a

system where a part is specified by temporal logic formulas, it could be model checked to

show the correctness of that part. Let the other part of the same system be specified

algebraically, which could be verified using model-based testing. We cannot be convinced

by just combining the results together that the whole system will be correct. However, we

now can convert CTL formulas to failure trace tests or the other way around, and then

apply on the whole system either of the two methods of formal verification. The result

Chapter 1. INTRODUCTION

4

will be convincing and correct.

 The paper continues as follows: we introduce model checking, model-based testing,

preorder testing and failure trace testing in Chapter 2 along with the foundation work that

has been done. Our work is presented in Chapter 3, where we build the equivalence

between labeled transition systems and Kripke structures, the conversion from failure

trace tests to CTL formulas and the conversion from CTL formulas to tests. We conclude

in Chapter 4.

Chapter 2

Preliminaries

2.1 Model Checking

Figure 2.1: The construction of Model Checking

Finite-state System

Temporal Logic Formulas Modeling the system:

Kripke Structure

Specifications about the System

Efficient Algorithms

 6

 A system specification [12] can be described by a temporal logic formula f [1, 3, 4, 7, 8,

10, 34]. We then need to construct a formal model for the system. The model should have

the same properties as the system. We use a Kripke structure [1, 2] K = (S, S0, R, L) to

represent a finite-state system. Our goal will then be to find the set of all states in S that

satisfy f: {s∈S│K, s╞ f}. Some states of the system are designated as initial states. The

system then satisfies the specification provided that all the initial states are in the set

defined above. Figure 2.1 shows the idea of model checking.

The verification is automatic. In practice, we can check the results of the verification. If

there is an error trace (that is, an explanation of the error), then we can

track down where the error occurred. We can then fix the problem caused by incorrect

implementation.

Here we describe a logic which is called temporal logic for specifying the properties of

the labeled transition systems. Temporal logic has found extensive applications in the area

of automatic specification and verification of programs, especially for those concurrent

programs in which the computation is performed by two or more processors that run in

parallel. In order to ensure correct behavior of such a program, it is necessary to specify

the way in which the actions of the various processors are interrelated. Temporal logic is

the formalism for describing sequences of transitions between the states of a system. The

logic has the advantage of not always requiring to specify the full behavior of a system,

but to concentrate on specifying particular properties of a system, such as safety,

fairness, etc. that are of interest [28]. Safety properties can be stated like “bad things do

Chapter2. PRELIMINARIES

7

not happen”; i.e. the automobile should not start the engine without the gear being placed

in park. Fairness properties can be stated like “something should happen infinitely often”;

i.e. for a communication protocol, the formula ii receivesend ∨¬ means either a message

is not sent or a message is received. The logic that uses time to describe sequences of

states is called temporal logic. In temporal logic time is however not mentioned explicitly;

however, we can notice that certain actions are executed or will be executed eventually by

the definitions and notations of the logic. The logic uses atomic propositions and Boolean

operators, such as conjunction, disjunction and negation to build up complicated and

sophisticated expressions to describe the properties of the systems. These operators can

also be combined by nesting them arbitrarily. A proposition such as “It is snowing.” can

be true at some time and can turn out to be false at another time. The value of the

proposition varies with the time, but it cannot be both true and false at the same time. In

temporal logic, the values of the propositions vary with the passing of time. On the

opposite, we have non-temporal logics, where the values of propositions are constant with

time.

CTL* [3, 7, 35], CTL [26, 34] (computation tree logic) and LTL [18, 24，25]

(linear-time temporal logic) are all temporal logics. CTL* is the most general. Both LTL

and CTL are strict subsets of CTL*.

CTL* formulas are used to describe the properties of computation trees. Such a tree is

shaped by designating a state in some Kripke structure (a Kripke structure is used to

model a system. We mentioned Kripke structure earlier in the paper and we will give the

Chapter2. PRELIMINARIES

8

formal definition later) as the initial state and afterwards unwinding the structure into an

infinite tree with the designated state as root.

CTL* formulas consist of path quantifiers and temporal operators. There are two path

quantifiers: “A” and “E”. Path quantifiers are used to describe the branching structure of

the computation tree as the nodes or states in the computation tree develop several

successive states which then generate multiple paths starting from the same state. “A”

then refers to all (for all the computation paths) and “E” refers to exist (for some of the

computation paths). There are five basic temporal operators:

--X “next”: requires that a property holds in the second state of the path.

--F “eventually”: requires that a property will hold at some state of the path. That is, Ff =

⊤Uf. U refers to “until”, see the definition below.

--G “always or globally” requires that a property holds at every state on the path.

Gf= ¬ F ¬ f.

--U “until”: It holds if there is a state on the path where the second property holds and it

must hold forever afterwards. At every preceding state on the path, the first property holds.

The second property needs to be true as soon as the first property becomes false in order

for the whole formula to hold. That is to say, the second property will be verified in the

future.

--R “release”: It requires that the second property hold along the path up to where the first

property holds. But the first property is not required to hold eventually and it can only

hold once. In other words, it means if the first statement is true, then the second statement

Chapter2. PRELIMINARIES

9

won’t be taken into consideration or there is no guarantee the second property will be

verified in the future.

Figure 2.2 illustrates graphically the two dual logic “Until” and “Release” operators.

Figure 2.2: Until and Release operators

We have two kinds of formulas in CTL*: state formulas and path formulas. State

formulas hold in a specific state and use temporal operators, while path formulas hold

along the specific path and use path quantifiers.

2.1.1 The Syntax of CTL Formulas

There are two sub-logics of CTL*: CTL and LTL. LTL uses the linear time approach

which considers time to be a linear sequence which does not branch. The temporal logic

CTL was introduced by Clarke and Emerson [8]. CTL uses the branching time approach,

which adopts a tree structured time, allowing some states to have more than a single

successor. In CTL, the temporal operators X, F, G, U, R must be immediately preceded by

a path quantifier A or E. CTL expresses the properties along a tree-like time flow. We use

AP to denote the set of atomic properties ranged over by a, a1, a2,… ai.

The set of CTL state formulas is the smallest set of formulas such that:

Property 1

Property 2

true

false

true

false

Property 1

Property 2

U until R release

Chapter2. PRELIMINARIES

10

1. ⊤, ⊥, atomic propositions a, negation of atomic propositions ¬ a are CTL state

formulas.

2. If f, g are CTL state formulas, then (f ∧ g) and (f ∨ g) are state formulas.

3. If f is a path formula, then Ef and Af are CTL state formulas.

The set of CTL path formulas is the smallest set of formulas such that:

If f, g are CTL path formulas, then X f, F f, G f, f U g, f R g are path formulas. These path

formulas must be preceded by a path quantifier A or E to form CTL formulas and thus

become state formulas. The syntax of CTL can be defined as follows:

 Φ:: = ⊤│⊥│a│ ¬ f│f1 ∧ f2│f1 ∨ f2│AXf│AFf│AGf│A f1 U f2│A f1 R f2│EXf│EFf│EGf│

E f1 U f2│E f1 R f2│

Each of the ten path formulas beginning with path quantifier A and E can be expressed in

terms of three operators EX, EG, EU. This is useful for model checking.

AXf = ¬ EX(¬ f) EFf = E[⊤ U f] (because Ff = ⊤ U f)

AGf = ¬ EF(¬ f) = ¬ E(⊤ U (¬ f)) AFf = A(⊤ U f) = ¬ EG(¬ f)

A f1 U f2 = ¬ E[¬ f2 U (¬ f1 ∧ ¬ f2)] ∧ ¬ EG(¬ f2)

A f1 R f2 = ¬ E[¬ f1 U ¬ f2]

E f1 R f2 = ¬ A[¬ f1 U ¬ f2]

 Figure 2.3 shows graphically the systems in which the various CTL formulas hold.

Chapter2. PRELIMINARIES

11

Figure 2.3: The graphs for CTL formulas

2.1.2 The Semantics of CTL Formulas

Definition 2.1 Kripke Structure. A Kripke structure K for AP is a tuple (S, S0, R, L)

where:

1. S is the set of states.

2. S0 is the set of initial states.

3. R ⊆ S×S is the transition relation; an element (s, t)∈R, where s, t∈S is usually written

Chapter2. PRELIMINARIES

12

as s R t or s → t. We require that R be total, so for ∀ s∈S, ∃ t∈S, such that

(s, t)∈R.

4. L: S →2AP is the valuation that checks which atomic propositions are true. It is a

function that labels each state with a set of atomic propositions that are true in that state.□

Definition 2.2 Path in a Kripke Structure.

A path π in a Kripke structure is a nonempty finite or infinite sequence s0 → s1

→ s2…∈S, such that (si, si+1)∈R for all i ≥ 0. The path starts from state s0. For any Kripke

structure K and states S in the Kripke structure, we can build a computation tree with root

labeled s0, such that s → t is an edge in the tree iff (s, t)∈R, where s, t∈S.□

The truth value of CTL formulas is then defined in terms of the Kripke structure. The

notation K, s╞ f means that in a Kripke structure K, formula f is true in state s. The

notation K, π ╞ f means that in a Kripke structure K, formula f, is true along the path π .

Definition 2.3 We define the meaning of ╞ recursively. f and g here are state formulas

unless stated otherwise. State formulas are defined as follows:

1. K, s╞ ⊤ is true for any state s in any Kripke structure K.

K, s╞ ⊥is false for any state s in any Kripke structure K.

2. K, s╞ a ⇔ a∈L(s), a∈AP is an atomic proposition.

3. K, s⊭ f ⇔ ¬ (K, s╞ f).

4. K, s╞ f ∧ g ⇔ K, s╞ f and K, s╞ g.

5. K, s╞ f ∨ g ⇔ K, s╞ f or K, s╞ g.

6. K, s╞ Ef ⇔ there is a path π = s → s1 → s2 → … → si with an initial state s, K,

Chapter2. PRELIMINARIES

13

π ╞ f holds, where f is a path formula.

7. K, s╞ Af ⇔ for all the paths π = s → s1 → s2 → … → si with an initial state s,

K, π ╞ f holds, where f is a path formula.

 We use π i to denote the ith state of π . Path formulas are defined as follows:

8. K, π ╞ Xf ⇔ K, π 1╞ f. Here π 1 refers to the state s1 (there exists a state s, a path

π = sπ 1 and (s, s1) ∈R) and the formula f holds at that state.

9. K, π ╞ f U g ⇔ there exists j ≥ 0 such that K, π j╞ g and π k╞ g for all k ≥ j,

meaning g holds at the state sj and the later states, and for all i<j, K, π i╞ f, meaning f

holds from the initial state of π up to the state si (including si).

10. K, π ╞ f R g ⇔ for all j ≥ 0, and every i<j such that K, π i
⊭ f, meaning f does not

hold from the initial state of π up to the state si (including si), then K, π j╞ g and

π k╞ g for all 0 ≤ k ≤ j, meaning g holds at the state sj and the previous states.□

CTL semantics is defined over Kripke structures, where each state is labeled with

atomic propositions. By contrast, the common model used for system specifications in

model-based testing is the finite state machine (FSM) model, or equivalently the state

transition system or the labeled transition system (LTS), where the labels or formulas are

associated not with the states but with the transitions. There are generally less numbers of

states in labeled transition systems compared to those in Kripke structures.

2.2 Model-based Testing

System under test Specifications: system under test’s desired behavior

run against

Chapter2. PRELIMINARIES

14

Figure 2.4: The construction of Model-based Testing

Figure 2.4 shows the idea of model-based testing. Model-based testing [11, 13, 14, 20,

23] is a kind of testing in which test cases (a set of conditions and variables) are derived

from a model that describes some functional aspects of the system under test. Tests are

derived systematically and formally from the model, such that they are sound and

complete. The system under test is the system or process we need to check for correctness.

The model is usually a partial or abstract representation of the system under test’s desired

behaviours. The model is translated into a finite state automaton [2, 5, 31]or a labeled

transition system [20, 30, 31].

Definition 2.4 Finite State Automaton (FSA).

A FSA is a quintuple F = (K, ∑ , δ , s, F), where K is a finite set of states, ∑ is an

alphabet, s ∈ K is the initial state, F ⊆ K is the set of final states, δ ⊆ K × ∑ ×

K is the transition function.□

Definition 2.5 Labeled Transition Systems (LTS). An LTS is a tuple M = (S, A, → , S0),

where S is a countable, non empty set of states. S0 ∈ S is the initial state. A is a countable

set of labels denoting observable events. Observable events or actions are those that can

be observed by the external environment. → ⊆ S × (A ∪ {τ }) × S is the transition

relation, where τ is the internal action that cannot be observed by the external

Model: FSA or LTS Test Cases

Test case generation

Chapter2. PRELIMINARIES

15

environment. We often use p
a

→ q instead of (p, a, q) ∈ → .□

 An LTS has a countable set of states, while an FSA has only a finite number of states.

That’s to say, there are many more available states in an LTS than those in an FSA, since

a countable set could be either an infinitely countable set or a finite set.

In general, we can think of a set of processes or systems under test (represented as an

LTS) and a set of relevant tests. Tests run parallel with the process or system under test

and synchronize with it over visible or observable actions. Now we define a set T of tests

and a set P of processes. A run of a test t and a process p represents a possible sequence of

states and actions of t and p running synchronously. There exists a set of runs Obs(t, p),

where t∈T, p∈P. If we have r∈Obs(t, p) then the result of t testing p may be the run r. We

take the outcomes of the particular runs of a test as being success or failure. We represent

the outcomes as elements of the two-point lattice:

 ⊤

⊙ =│

⊥

 The outcome of t testing p is ⊤ if there exists r∈Obs(t, p) such that r is successful.

 The outcome of t testing p is ⊥ if there exists r∈Obs(t, p) such that r is unsuccessful,

or r contains a state q such that q↑ and q is not preceded by a successful state. We say that

such a state q diverges or is divergent in the sense that its properties are undefined: q↑ iff

∃ q1, q2, …qk,…, such that q
τ

→q1

τ
→ q2

τ
→…

τ
→ qk

τ
→…. That is to say, there is an

infinite path of τ actions starting from the state q. When a state is convergent or

Chapter2. PRELIMINARIES

16

converges, such a state is well defined.

Since some tests are nondeterministic, there may be many different runs of a given test

on a process under test; therefore, a set of outcomes is required to give the results of

possible runs.

There are three standard powerdomain constructions.

 {⊤} ≈ {⊤, ⊥}

Pmay = │

 {⊥}

The may powerdomain Pmay incorporates may information; it identifies that a process may

pass a test in order to be regarded as successful.

 {⊤}

Pmust = │

 {⊥} ≈ {⊤, ⊥}

The must powerdomain Pmust incorporates must information; it identifies tests that must

be successful.

 {⊤}

 │

Pp = {⊤, ⊥}

 │

 {⊥}

The Plotkin powerdomain Pp combines both may and must information.

Chapter2. PRELIMINARIES

17

2.3 Preorder Testing

To analyze processes, it is necessary to consider those sequences of events that can be

observed as the interface of the processes. A trace [5, 15] is simply a record of events in

the order that they occur. The set of traces of a process is the set of all sequences that

might possibly be recorded. The set of all possible traces of a process P is denoted by

traces(P).

Traces are simply a particular class of finite or infinite sequences of events that are

drawn form A√ = A ∪ {√}, which are all the executions available from the process. A

represents the set of actions of the process. The √ (tick) represents termination. No event

of the process can happen after the termination happens. In other words, the termination

event occurring in a trace must appear at the end. A path π starting from state p’∈P is a

sequence (〈pi-1, ai, pi〉), where 0<i ≤ k, and k∈N, such that k = 0, or p0 = p’ and pi-1

ia
→ pi

for all i, where 0<i ≤ k. We use |π |to refer to k, the length of π . If |π |< ∞ . Then we say

that π is finite. The visible trace trace(π) of π is denoted as the sequence

(ai)i∈ I π ∈A*, where Iπ = def {0<i ≤ |π | and ai ≠ τ }.

In the above definition of trace, we ignore the intermediate states (which involve

internal actions) and internal transitions (which are not observable by the external

environment), and consider only visible transitions. The intermediate states are those

states that have internal outgoing actions, in other words, they are not stable states. Here,

a trace becomes a record of the visible events of an execution. We denote the sequence of

actions of a process by W, thus W ⊆ A*, which means W is a sequence of actions

Chapter2. PRELIMINARIES

18

whose elements are the combination of ai ∈ A*.

The notation p
w

⇒ p’ states that there exists a sequence of transitions whose initial

state is p and whose final state is p’. The visible transitions form the sequence w. Since

the termination can only occur at the end of an execution, the tick √ may happen in w

only at the end. In other words, p’ has no transition. ∃ p’: p
w

⇒ p’ can be shortened as p

w

⇒ .Formally, q
ε
⇒q’ iff q = q’ or q

τ
→q’ or ∃ q1: q

τ
→q1

ε
⇒q’. q

a

⇒q’ and a∈A iff ∃ q1,q2:

q
ε
⇒q1

a

→q2

ε
⇒q’; q

21ww
⇒ q’ iff ∃ q1: q

1w
⇒q1

2w
⇒q’. The traces of a process P then can be

defined as traces(P) = {w│p
w

⇒ }.

Definition 2.6 Finite Trace of Processes (Fin(P)).

The finite traces of a process P can be defined as Fin(P) = {tr∈traces(P)│δ (tr) ⊆ A√ ∧

|tr|∈N ∧ √∉ δ (init(tr))}, where init(P) = {a∈A|P
a

⇒ } and δ (tr) refers to the set of all

the elements in the trace tr. It is a subset of the set of actions of the process. |tr| refers to

the length of the trace tr. The third condition tells us that the tick cannot happen at the

beginning of a trace, which means in effect that the tick can only appear as the last

element of a trace.□

A process P which can make no internal progress which means it has no intermediate

states or outgoing internal actions is said to be stable [36], defined as P↓ = ¬ (P
τ

→). We

say such a state is stable in the sense that it cannot perform any internal action. More

generally, a stable process P can always respond in some way to the offer of a set of event

X ⊆ A√, if there is at least one a ∈ X that P can execute. If there is no such a ∈ X, then

P will refuse the entire set X.

Chapter2. PRELIMINARIES

19

A refusal [36] can be thought of as an experiment on the process P. The environment

will offer the set X, and wait as long as necessary to observe if any events in the set X are

performed. If no events are performed, then X is considered to be a refusal of P, denoted

by P ref X. It is defined as: P ref X ≡∃ p’: p
ε
⇒p’ ∧ p’↓ ∧ ∀ a∈X: ¬ (p’

a

→).

The refusal of an offer set X might happen during an execution of the process P. The

refusal thus will be recorded together with the finite sequence w (the sequence of events

of how the process proceeds) in order to indicate at which step, or state the refusal

happens.

Definition 2.7 Stable Failure of Processes (SFp).

 The observation (w, X) is called a stable failure [36] of P.

 SFp = {(w, X)│ ∃ pw : p
w

⇒ pw ∧ pw↓∧ pw ref X}.□

The process P performs the events in w, then reaches a stable state where it refuses all

the events in the set X. In other words, if the process P reaches a state after the

performance of w where only events in the set X are provided, then no further execution

can be done.

Definition 2.8 Stable Failure Preorder (⊑⊑⊑⊑SF).

Let P and Q be two processes. Then:

P⊑SFQ if and only if Fin(P) ⊆ Fin(Q) and SFp ⊆ SFq.□

P implements Q if and only if the set of finite traces of process P is included in the set of

finite traces of process Q. In addition, the set of stable failure of process P is also included

in the set of stable failure of process Q. Given the preorder [30, 31], one can easily define

Chapter2. PRELIMINARIES

20

the stable failure testing equivalence ≃SF: P≃SFQ iff P⊑SFQ and Q⊑SFP. Other preorders

can be defined. For instance, in trace preorder ⊑T, we record all the traces of a process. In

testing preorder ⊑, we only distinguish between success and failure of tests. In general,

⊑SF is one of the finest preorders.

 Figure 2.5 illustrates two processes that are equivalent under testing preorder, trace

preorder and are not equivalent under stable failure preorder. (as process P refuses the set

{a} or the set {b}, while process P’ refuses the set {a, b} or the set {b}).

Figure 2.5: Processes equivalent under testing preorder, trace preorder and not equivalent

under stable failure preorder (p≃p’; p≃Tp’; p≄SFp’)

2.4 Failure Trace Testing

Definition 2.9 Failure Trace [15].

A failure trace f is a string of the form:

f = {A0}a1{A1}a2……an{An}, n ≥ 0, with

-- ai ∈ A*, 1 ≤ i ≤ n

-- Ai ⊆ A or Ai = Ø, 0 ≤ i ≤ n, it is the set of refusals.□

 Let P be a process and let w = a1a2……an be a trace of P. Then,

∃ P0P1…Pn: P
ε
⇒P0

1a
⇒P1

2a
⇒ ……Pn-1

na
⇒Pn.

Chapter2. PRELIMINARIES

21

Let f be a failure trace:

--if Pi

τ
→ , then Ai = Ø, (0 ≤ i ≤ n), which means that Pi is not a stable state, thus that state

refuses an empty set of events.

--if ¬ (Pi

τ
→), then Ai = Ø or Ai ⊆ (A\init(Pi))(0 ≤ i ≤ n), where init(Pi) = {g∈A│p

g

→},

which means that at some states of process P, if those states are stable with no internal

actions accepted, then the failure trace refuses nothing, or it refuses any events that are

not possibly available to those states.□

In all, we get a failure trace of P by taking a trace of P and then put in the trace after the

stable states refusal sets of those states.

Definition 2.10 The Testing Language TLOTOS [32].

A is the countable set of observable actions as we defined in the definition of labeled

transition systems. T is the set of processes or tests. T1 and T2 are processes or tests.

The syntax of TLOTOS is defined as follows:

stop │ a; T1 (a∈A) │ i; T1 │ θ; T1 │ pass │ T1 [] T2 │∑ T │

The semantics of TLOTOS is defined as follows:

1. inaction: no rules.

2. action prefix: a; T1

a

→ T1.

 i; T1

τ
→ T1.

3. deadlock detection: θ; T1

θ
→ T1.

4. successful termination: pass
γ

→ stop.

5. choice: g∈A ∪ {γ ,θ, τ }:

Chapter2. PRELIMINARIES

22

T1

g

→T1’

T1 [] T2

g

→T1’

T2

g

→T2’

T1 [] T2

g

→T2’

6. generalized choice: g∈A ∪ {γ ,θ, τ }:

 T1

g

→ T1’

∑ {T1} ∪ T
g

→T1’

In addition, we define the deadlock detection label θ which has the lowest priority as

follows:

P ||θT

1. P
τ

→P’

P ||θT
τ

→P’ ||θT

2. T
τ

→T’

P ||θT
τ

→P ||θT’

3. T
γ

→Stop

P ||θT
γ

→Stop

4. P
a

→P’,

T
a

→T’ (where a∈A)

P ||θT
a

→P’ ||θT’

Chapter2. PRELIMINARIES

23

5. ¬ (∃ P∈A ∪ {τ , γ }: P ||θT
p

→)

T
θ

→T’

P ||θT
θ

→P ||θT’ □

Definition 2.11 Sequential Tests [15].

 We shorten sequential tests to SeTests in the following. We define the set of sequential

tests as follows:

1. Succ∈SeTests.

2. Fail∈SeTests.

3. If T∈SeTests, then for a∈A, a; T∈SeTests.

4. If T∈SeTests, then for A ⊆ A, ∑{a; stop│a∈A} []θ; T∈SeTests.□

 We can make a bijection between failure traces and sequential tests.

Let T be a sequential test, then we can recursively define the failure trace f = ftr(T).

T: Succ f: Ø

 Fail X, X ⊆ A

 a; T’ a ftr(T’)

 ∑{a; stop│a∈A} [] θ ; T’ A ftr(T’)

 Let f be a failure trace, then we can recursively define the sequential test T=st(f).

f: Ø T: Succ

 X, X ⊆ A Fail

af a; st(f)

 Af ∑{a; stop│a∈A} [] θ ; st(f).

Chapter2. PRELIMINARIES

24

 Thus, we say that for all failure traces f, ftr(st(f)) = f, and for all tests T, st(ftr(T)) = T.

So we can convert sequential tests to failure traces and the other way around.

 We can thus convert a process-oriented testing equivalence to a testing-based testing

equivalence.

Theorem 2.1

 Let P be a process, T be a sequential test and f a failure trace, then (P may T)

⇔ (f∈ftr(P)), where f = ftr(T).

 More simply expressed, if P runs parallel with the test T, then there is a successful run

iff f is a failure trace of T and it represents T. f should be a possible existent failure trace

in P. In the testing theory we have the theorem that (P⊑Q) ⇔ (for every T∈Test, P may T

implies Q may T). Here, we find an analogy to the definition P⊑SFQ if and only if Fin(P)

⊆ Fin(Q) and SFp ⊆ SFq, which is as follows: Let P and Q be two processes, we

define P⊑FTQ if and only if ftr(P) ⊆ ftr(Q). A process-based testing equivalence on both

stable failures and failure traces expresses exactly the same idea.

Proof of Theorem 2.1. (P may T) ⇔ (f∈ftr(P)).

1. f = Ø and T = PASS, for all processes P , P may PASS and Ø∈ftr(P).

2. f = af ’ and T = a;T’, and f ’ = ftr(T’): P may a;T’ ⇔ ∃ P0, P1: P
ε
⇒P0

a

⇒P1 ∧ P1

may T’ ⇔ ∃ P0, P1: P
ε
⇒P0

a

⇒P1 ∧ f’∈ftr(P1) ⇔ af ’∈ ftr(P).

3. f = Af ’ and T = ∑ {a; stop│a∈A} [] θ ; T’, and f ’ = ftr(T’):

P may ∑ {a; stop│a∈A} [] θ ; T’ ⇔ ∃ P0: P
ε
⇒P0 ∧ A ⊆ (A\init(P0)) ∧ ¬ P0

τ
→

Chapter2. PRELIMINARIES

25

∧ P0 may T’ ⇔ ∃ P0: P
ε
⇒P0 ∧ A ⊆ (A\init(P0)) ∧ ¬ P0

τ
→ ∧ f ’∈ftr(P0) ⇔

Af ’ ∈ftr(P) and init(P) = {g∈A│p
g

→}. □

2.5 Foundation Work

 We close here our survey of the existing work in the area of system verification. We

note that model checking is well studied. In model checking, we specify the system by

temporal logic formulas. Temporal logic comes in three varieties: CTL*, CTL and LTL.

In this paper, we concentrate on CTL. A finite-state system can be viewed as a Kripke

Structure (see Definition 3.1) and it can be specified using temporal logic. To verify the

correctness of the program, one has only to check the Kripke structure of the system to

see if the initial states of the system satisfy the given temporal logic formulas. Pioneering

work in model checking is done by Edmund M. Clarke Jr., Orna Grumberg and Doron A.

Peled [10] and by Rance Cleaveland and Gerald Lüttgen [5]. Formal testing is another

common method of system verification. In model-based testing, finite state automata or

labeled transition systems are used to model the system’s desired properties. We generate

test cases from those models and run the test cases against systems under test to see the

results. We introduced a testing preorder which takes both trace preorder and stable

failures of a system into consideration. It enhances the strength of distinguishing systems.

Failure trace testing is introduced by Rom Langerak [15]. In his paper, he also introduced

the set of SeTests that is sufficient to assess the failure trace relation. Let T be a test.

There exists a set of SeTests, such that for all processes P: P may T ⇔ ∃ T’∈ SeTests:

P may T’. Both model checking and formal testing have advantages and disadvantages.

Chapter2. PRELIMINARIES

26

Model checking does the whole verification on a potentially imperfect model, Kripke

structure, of the system. Formal testing does the imperfect verification on the original

system. In addition, when designing a system, some properties may be specified using

temporal logic that are more suitable for model checking. Other desired properties of the

system may be specified using finite-state automata or labeled transition systems that are

more suitable for testing. A combined method which can convert the two would have

obvious benefits. Consider some properties that are expressed as CTL formulas and hold

for some part A of a larger system. They could be model checked. We know then that part

A is correct. We have a second part B of the same system, where our specification is

algebraic. We can do model-based testing on it and once more be sure that part B is

correct. Now we put them together. Is the result correct? It is not always so. We need to

check it formally. However, we do not have a global formal specification: part of it is

logic, and other part is algebraic. Ergo, before checking the whole system, we need to

convert one specification to the form of the other. Thus, we can just verify the system

once.

 We shall therefore introduce a new, practical and meaningful method of verification in

Chapter 3.

 27

Chapter 3

The Equivalence between CTL and Failure Trace

Testing

 We present in this chapter the major contribution of this thesis. Indeed, we analyze the

equivalence between labeled transition systems and Kripke structures and then we

establish the equivalence between failure trace tests and CTL formulas. We establish such

equivalence by constructing two functions that convert failure trace tests to CTL formulas

and the other way around.

3.1 The Equivalence between LTS and Kripke Structure

Definition 3.1 We say a process P satisfies a (written P╞ a) iff P
a

→ . Also, any process

satisfies ⊤ and no process satisfies ⊥. Then, a process P (i.e. LTS) is equivalent to a

Kripke Structure K and a state s in K, written P ≃ (K, s) iff

1. P╞ ⊤ iff K, s╞ ⊤. P⊭ ⊥ iff K, s⊭ ⊥.

2. P╞ a iff K, s╞ a, where a∈L(s) and a∈AP.

3. P⊭ f iff K, s⊭ f.

4. P╞ f ∧ g iff K, s╞ f ∧ g.

5. P╞ f ∨ g iff K, s╞ f ∨ g.

6. P╞ Ef iff K,s╞ Ef.

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

28

7. P╞ Af iff K, s╞ Af.

8. P╞ Xf iff K, π ╞ Xf.

9. P╞ f U g iff K, π ╞ f U g.

10. P╞ f R g iff K, π ╞ f R g.

We say a process P satisfies formula φ if P╞ φ holds.□

Theorem 3.1

 There exists an algorithmic function ξ which converts a labeled transition system M

(or a process P) into a Kripke structure K and a state s such that M ≃ (K, s) or P ≃ (K, s).

 For any labeled transition system M = (S, A, → , S0), its equivalent Kripke structure

K’ is defined as K’ = (S’, S0’, R’, L’) where:

1. S’ = {<s, x>|s∈S, x ⊆ init(s): init(s) = {a∈A|s
a

⇒ }. x = Ø iff init(s) = Ø }.

2. S0’ = {<s0, x>∈S’| s0 ∈ S0}.

3. R’ = (<s, N>, <t, O>)|<s, N>, <t, O>∈S’ and

a) for any n∈N: s
n

⇒ t.

b) for some q∈S and for any o∈O: t
o

⇒q.

4. L’: S’ →2AP, with L’(s, x) = x, where AP ⊆ A. □

 Figure 3.1 illustrates graphically how we convert a labeled transition system to its

equivalent Kripke structure.

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

29

Figure 3.1: The conversion from LTS to its equivalent Kripke structure

 As illustrated in the figure, we combine each state in the labeled transition system with

its actions provided as properties to form new states in the equivalent Kripke structure.

The transition relation of the Kripke structure is formed by the new states and the

corresponding transition relation in the original labeled transition system. The labeling

function in the equivalent Kripke structure links the actions to their relevant states.

 Thus we can define the semantics of CTL formulas with respect to a process rather than

Kripke structure.

Proof of Theorem 3.1. The proof relies on the properties of the syntax and semantics of

CTL* formulas. The syntax and semantics of CTL is then restricted as usual.

Basis:

--s╞⊤ is true for any state s in any process P and for any state in any Kripke structure K

⇔ ξ s╞⊤ ⇔ K’, <s, x>╞⊤. It is immediate.

--s⊭⊥ is true for any state s in any process P and for any state in any Kripke structure K

⇔ ξ s⊭⊥ ⇔ K’, <s, x>⊭⊥. It is immediate.

--s╞ a ⇔ ξ s╞ a ⇔ K’, <s, x>╞ a, where x∈init(s) and a∈L’(s) for some a; a∈AP is

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

30

an action. It is immediate from the definition of the function ξ .

Inductive steps:

--s⊭ f

Because (s╞ f) ⇔ (ξ s╞ f) ⇔ (K’, <s, x>╞ f) by inductive hypothesis, thus (s╞ ¬ f)

⇔ (ξ s╞ ¬ f) ⇔ (K’, <s, x>╞ ¬ f). So we get (s⊭ f) ⇔ (ξ s⊭ f) ⇔ (K’, <s,

x>⊭ f).

--s╞ f ∧ g ⇔ s╞ f and s╞ g ⇔ K’, <s, x>╞ f and K’, <s, x>╞ g ⇔ K’, <s, x>╞ f ∧ g.

--s╞ f ∨ g ⇔ s╞ f or s╞ g ⇔ K’, <s, x>╞ f or K’, <s, x>╞ g ⇔ K’, <s, x>╞ f ∨ g.

--s╞ Ef ⇔ there is a path π , where π = s → s1 → s2 → … → si such that s, π ╞ f. s,

s1, s2… si ∈ S, we regard them as the processes, or they are simply the states in the

process. Thus, s╞ f ⇔ ξ s╞ f by inductive hypothesis. The conversion from a process to

its equivalent Kripke structure does not change the states themselves but add to the states

their corresponding actions. ⇔ there is a pathπ ’ in K’, where π ’ = s’ → s1’ → s2’

→ … → si’ such that K’, π ’╞ f. s’, s1’, s2’… si’ ∈ S. ⇔ K’, <s, x>╞ Ef.

--s╞ Af ⇔ for every path π , where π = s → s1 → s2 → … → si such that s, π ╞ f. s,

s1, s2… si ∈ S, we regard them as the processes, or they are simply the states in the

process. Thus, s╞ f ⇔ ξ s╞ f by inductive hypothesis. The conversion from a process to

its equivalent Kripke structure does not change the states themselves but add to the states

their corresponding actions. ⇔ for every pathπ ’ in K’, where π ’ = s’ → s1’ → s2’

→ … → si’ such that K’, π ’╞ f. s’, s1’, s2’… si’ ∈ S. ⇔ K’, <s, x>╞ Af.

 f and g are path formulas.

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

31

 We use π i to denote the ith state of π . A path π in a Process P is a nonempty finite

or infinite sequence s0 → s1 → s2…∈S, such that (si, si+1)∈ → in P for all i ≥ 0. The

path starts from state s0.

--P, π ╞ Xf ⇔ P, π 1╞ f. Here π 1 refers to the state s1 and the formula holds at that

state. ⇔ s1╞ f ⇔ ξ s1╞ f by inductive hypothesis ⇔ K’, <s1, x>╞ f ⇔

K’, π 1╞ f ⇔ K’, <s, x>╞ Xf.

--P, π ╞ f U g ⇔ there exists j ≥ 0, P, π j╞ g and P, π k╞ g for all k ≥ j, meaning g

holds at the state sj and the later states and for all i<j, P, π i╞ f, meaning f holds from the

initial state of π up to the state si (including si). The conversion from a process to its

equivalent Kripke structure does not change the states themselves but add to the states

their corresponding actions. Here π j, π k, π i in process P correspond to π j, π k, π i
 in

Kripke structure K’. ⇔ there exists j ≥ 0, K’, π j╞ g and K’, π k╞ g and for all k ≥ j, K’,

π i╞ f. ⇔ K’, <s, x>╞f U g.

--P, π ╞ f R g ⇔ for all j ≥ 0, and every i<j, P, π i
⊭ f, meaning f does not hold from

the initial state of π up to the state si (including si); P, π j╞ g and P, π k╞ g for all

0 ≤ k ≤ j, meaning g holds at the state sj and the previous states. The conversion from a

process to its equivalent Kripke structure does not change the states themselves but add to

the states their corresponding actions. Here π j, π k, π i in process P correspond to π j,

π k, π i
 in Kripke structure K’. ⇔ for all j ≥ 0, and every i<j, K’, π i

⊭ f, then K’, π j╞

g and K’, π k╞ g for all 0 ≤ k ≤ j ⇔ K’, <s, x>╞f R g. □

3.2 From Failure Trace Tests to CTL Formulas

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

32

 P is any process; T is the set of test cases and φ is a set of temporal logic formulas. ψ is

a function which links the sequential tests to the correspondent CTL formulas. ψ(T) = φ.

 ξ is a function which converts a process P to an equivalent Kripke structure K as

described in Theorem 3.1. We presume that f1, f2….fi ∈φ with 0<i ≤ n are temporal

logic formulas and t1, t2…ti ∈T with 0<i ≤ n are sequential tests.

Theorem 3.2

There exists a function ψ such that P may T iff ξ P╞ φ where φ = ψ(T). We then have

P may t1 iff ξ P╞ f1 where f1 = ψ(t1).

Proof of Theorem 3.2. The proof is done by induction on tests as follows:

Basis:

---Succ/Pass

We put ψ(Succ) = ⊤. Any process passes Succ and any Kripke structure satisfies ⊤, thus

it is immediate that P may Succ ⇔ ξ P╞⊤ = ψ(Succ).

---Fail/Stop

We put ψ(Fail) = ⊥. No process passes Fail and no Kripke structure satisfies ⊥, thus it is

immediate that P may Fail ⇔ ξ P⊭⊥ = ψ(Fail).

---a

We put ψ(a) = a. It is immediate from the definition of the function ξ that P may a ⇔

ξ P╞ a = ψ (a).

Inductive steps:

---a; T

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

33

We put ψ(a; T) = a ∧ EX(ψ (T)).

P may (a; T) ⇔ P may a and P’ may T for some P
a

→P’. P may a if and only if ξ P╞ a.

P’ may T if and only if ξ P’╞ ψ(T) by induction hypothesis, where P
a

→P’. ⇔ ξ P╞ a

∧ EX(ψ (T)) ⇔ ξ P╞ ψ (a; T). From theorem 3.1 we know that when we convert a

labeled transition system to an equivalent Kripke structure, the news states are the

original states together with their outgoing actions. As in the figure 3.1, the initial state p

becomes two initial states (p, a) and (p, b). With the state satisfying the property a, the

next state to that state of the Kripke structure is only q in this particular example. So

ξ P╞ a ∧ EX(ψ (T)) means that the next state to P satisfies the formula ψ (T); in

addition, P satisfies the property a.

---∑{a; stop|a∈A} []θ; T

We put ψ(∑{a; stop|a∈A} []θ; T) = (a1 ∨ a2 ∨ …… ∨ an) ∨ ((¬ (a1 ∧ a2 ∧ …… ∧ an))

∧ (ψ(T)), where A = {a1,a2,……,an}.

Base case:

For any a∈A: P may a; stop []θ; T ⇔ P may a or (P may a and P may T) ⇔ ξ P╞ a

∨ ((ξ P⊭ a) ∧ (ξ P╞ ψ(T))). Proven.

Inductive hypothesis:

P may ∑{a; stop|a∈A} []θ; T ⇔ P may ∑{a; stop|a∈A} or (P may ∑{a; stop|a∈A} and

P may T) ⇔ P may (a1 ∨ a2 ∨ …… ∨ an) or (P may (a1 ∨ a2 ∨ …… ∨ an) and P may T)

⇔ ξ P╞ (a1 ∨ a2 ∨ …… ∨ an) ∨ ((ξ P⊭ (a1 ∨ a2 ∨ …… ∨ an)) ∧ ξ P╞ ψ(T)) ⇔

ξ P╞ (a1 ∨ a2 ∨ …… ∨ an) ∨ ((ξ P╞ (¬ a1 ∨ ¬ a2 ∨ …… ∨ ¬ an)) ∧ ξ P╞ ψ(T)) ⇔

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

34

ξ P╞ (a1 ∨ a2 ∨ …… ∨ an) ∨ ((ξ P╞ ¬ (a1 ∧ a2 ∧ …… ∧ an)) ∧ ξ P╞ ψ(T)) ⇔

ξ P╞ ψ(∑{a; stop|a∈A} []θ; T).

Inductive step:

We then add a b with b∉A, P may ({∑{a; stop|a∈A} [](b; stop)} []θ; T) ⇔ P may ∑{a;

stop|a∈A} [](b; stop) or (P may ∑{a; stop|a∈A} [](b; stop) and P may T) ⇔ P may ((a1

∨ a2 ∨ …… ∨ an) ∨ b) or (P may ((a1 ∨ a2 ∨ …… ∨ an) ∨ b) and P may T) ⇔ ξ P╞

((a1 ∨ a2 ∨ …… ∨ an) ∨ b) ∨ ((ξ P⊭ ((a1 ∨ a2 ∨ …… ∨ an) ∨ b)) ∧ ξ P╞ ψ(T))

⇔ ξ P╞ ((a1 ∨ a2 ∨ …… ∨ an) ∨ b) ∨ ((ξ P╞ (¬ a1 ∨ ¬ a2 ∨ …… ∨ ¬ an) ∨

(¬ b)) ∧ ξ P╞ ψ(T)) ⇔ ξ P╞ (a1 ∨ a2 ∨ …… ∨ an ∨ b) ∨ ((ξ P╞ ¬ (a1 ∧ a2

∧ …… ∧ an ∧ b)) ∧ ξ P╞ ψ(T)) ⇔ ξ P╞ ψ({∑{a; stop|a∈A} [](b; stop)} []θ; T).

□

3.3 From CTL Formulas to Failure Trace Tests

 We assume that P is any process, T is a test suite and φ is a set of temporal logic

formulas. ω is a function which links the CTL formulas to the corresponding test cases.

ω (φ) = T.

 We presume that f1, f2….fi range over φ with 0<i ≤ n, which are temporal logic formulas

and t1, t2…ti with 0<i ≤ n are test cases.

Theorem 3.3

 There exists a function ω such that ξ P╞ φ iff P may T, where T = ω (φ). We then

have ξ P╞ f1 iff P may ω (f1).

Proof of Therom 3.3. The proof is done by induction on computational temporal logic

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

35

formulas as follows:

Basis:

---⊤

We put ω (⊤) = {Succ}. Any Kripke structure satisfies ⊤ and any process passes Succ,

thus it is immediate that ξ P╞ ⊤ ⇔ P may Succ.

---⊥

We put ω (⊥) = {Fail}. No Kripke structure satisfies ⊥ and no process passes Fail, thus

it is immediate that ξ P⊭ ⊥ ⇔ P may Fail.

---a

We put ω (a) = {a; stop}. It is immediate from the definition of the function ξ that

ξ P╞ a ⇔ P may a; stop = ω (a).

If the Kripke structure ξ P satisfies the formula a, the process P itself should pass the

sequential test a and the other way around.

Inductive steps:

--- ¬ f

ξ P╞ ¬ f ⇔ P may t’, and t’ = ω (¬ f).

If ω (f) = t, then ω (¬ f) = t’ where t’ is generated like this:

Change all the states that have the verdict Succ to Fail: in terms of labeled transition

system, when the system ends up at a designated Succ state, as in the definition for

semantics for TLOTOS, it will perform a γ transition and lead to a stop state. However,

in this construction we assign the verdict Fail to those originally designated Succ states.

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

36

When the tests end in the states with verdict Fail, they end with deadlock. Therefore, the

process does not pass the tests.

 Add to the rest of the states an action θ followed by an action γ , which will lead to

stop: in terms of labeled transition system, at the states when the tests are not provided

with the actions that could be performed, they will perform θ; γ automatically and end

by stop. That means the process finally passes the tests.

 ξ P╞ f ⇔ P may t = ω (f) by induction hypothesis, thus it is obvious by the

construction above that ξ P╞ ¬ f ⇔ P may t’, where t’ is generated by the rules above.

--- f1 ∧ f2

We put ω (f1 ∧ f2) = {ω (f1) ∪ ω (f2)}.

ξ P╞ f1 ∧ f2 ⇔ ξ P╞ f1 and ξ P╞ f2 ⇔ P may ω (f1) and P may ω (f2) by induction

hypothesis ⇔ P may ω (f1) ∪ ω (f2). The ∪ here shows that the process P needs

to pass both of the test suites ω (f1) and ω (f2) ⇔ P may ω (f1 ∧ f2).

If the Kripke structure ξ P satisfies the formula f1 ∧ f2, the process P should pass all of the

tests in ω (f1) andω (f2) and the other way around.

--- f1 ∨ f2

We put ω (f1 ∨ f2) = {t[]t’: t∈ ω (f1) and t’∈ ω (f2)}.

ξ P╞ f1 ∨ f2 ⇔ ξ P╞ f1 or ξ P╞ f2 ⇔ P may {t[]t’: t∈ ω (f1) and t’∈ ω (f2)} The []

here shows that the process P needs to pass either the tests in ω (f1) or ω (f2) ⇔ P

may ω (f1 ∨ f2).

If the Kripke structure ξ P satisfies the formula f1 ∨ f2, the process P should pass either

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

37

the tests in ω (f1) or ω (f2) and the other way around.

---EXf

We put ω (EXf) = {∑ (a; t|a∈A): t∈ ω (f)}.

Figure 3.2: Test suite for CTL formula EXf

As shown in figure 3.2, the test suite is generated by combining a choice of action from

the actions and the tests generated from ω (f). P may ω (EXf) iff P passes each of the test

cases above. P satisfies the formula EXf iff P can perform at least one action from the set

A, and at the next states it passes the tests in ω (f).

ξ P╞ EXf ⇔ P may {∑ (a; t|a∈A): t∈ ω (f)} ⇔ P may ω (EXf).

---AXf

We put ω (AXf) = {a; t[]θ;pass|a∈A: t∈ ω (f)}.

Figure 3.3: Test suite for CTL formula AXf

As shown in figure 3.3, the test suite is generated by combining a choice of action from

the actions and the tests generated from ω (f). When the action is not provided at states, a

deadlock detection transition will be taken place and lead to a pass state. The test suite is

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

38

generated by providing all the actions from the set of actions. However, the system under

test does not necessarily have to perform all the actions in the set of actions before going

to the point where the tests are from ω (f). When the system under test runs in parallel

with the test case, if one action is not provided, it encounters a deadlock but leads to a

pass state. It then continues to check the results of the other runs with other test cases. P

may ω (AXf) iff P passes each of the test cases above. P satisfies the formula AXf iff P

can perform some of the actions in A, and if it does, then at the next state it passes the

tests in ω (f).

ξ P╞ AXf ⇔ P may {a; t[]θ;pass|a∈A: t∈ ω (f)} ⇔ P may ω (AXf).

---EFf

We put ω (EFf) = {t’ = t[]θ;(∑ (a;t’|a∈A)): t∈ ω (f)}.

Figure 3.4: Test suite for CTL formula EFf

As we can see from figure 3.4, the test suite is generated by combining a choice of action

from the actions and the tests in ω (f). Then, we combine a choice of action followed by

another choice of action with the tests in ω (f) and so on till the last layer of the tree of

Kripke structure. P may ω (EFf) iff P passes either of the test cases above. Thus we have

internal actions leading to every test case. The resulting test suite is nondeterministic. P

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

39

satisfies the formula EFf iff P passes the tests in ω (f), or P can perform at least one

action from the set A and at the next states it passes the tests in ω (f), or P can perform at

least one action from the set A, at the next states it can perform at least another action,

and then it passes the tests in ω (f) and so on. It is exact the idea shown in figure 3.4. P

satisfies the formula EFf iff P passes either of the test cases illustrated in figure 3.4.

ξ P╞ EFf ⇔ P may {t’ = t[]θ;(∑ (a;t’|a∈A): t∈ ω (f)} ⇔ P may ω (EFf).

---AFf

We put ω (AFf) = {ω (f) [] ω (AXf ’), where f ’ = f ∨ AXf ’}.

Here f ’ is a recursive definition. When we unfold the formula, it looks like f or AX(f ∨

AXf ’) or AX(f ∨ AX(f ∨ AXf ’)) and so on. It shows that the process should satisfy

any of the recursive unfolded formulas in order to let the process satisfy the original

formula AFf. As in a Kripke structure, the states in the first layer need to satisfy the

formula f or the states in the second layer need to satisfy the formula f and so on. In terms

of labeled transition system, the process need to pass the tests in ω (f) or it performs

some actions to the second layer states and then the process need to pass the tests in ω (f)

and so on. The process P satisfies the formula AFf iff it passes one of the test cases

generated from the recursively unfolded formulas.

ξ P╞ AFf ⇔ ξ P╞ f ’, where f ’ = f ∨ AXf ’ ⇔ P may ω (f ’) ⇔ P may ω (f) []

ω (AXf ’) ⇔ P may ω (AFf).

---EGf

We put ω (EGf) = {ω (f) ∪ ω (EXf ’), where f ’ = f ∧ EXf ’}.

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

40

The idea of the form EGf is more complicated. Since it is a globally defined property, if

we have a system P, it is intuitive that we should delete the states from ξ P that do not

satisfy f. Thus, we get a new ξ P’ = (S’, R’, L’), where S’∈S\ {the states do not satisfy

the property}. R’ = R∣S’×S’ and L’ = L∣S’ → 2
AP. The new transition relation in the

Kripke structure is that only for the new states. The labeling function only applies to the

new states too.

Here f ’ is a recursive definition. When we unfold the formula, it looks like f and EX(f ∧

EXf ’) and EX(f ∧ EX(f ∧ EXf ’)) and so on. It shows that the process should satisfy

all of the recursive unfolded formulas in order to let the process satisfy the original

formula EGf. As in a Kripke structure, the states in the first layer need to satisfy the

formula f and some successive states in the second layer need to satisfy the formula f and

so on. In terms of labeled transition system, the process need to pass the tests in ω (f) and

it performs some actions to the second layer states and then the process need to pass the

tests in ω (f) and so on. The process satisfies the formula iff it passes all the test cases

generated from the recursively unfolded formulas.

ξ P╞ EGf ⇔ ξ P╞ f ’, where f ’ = f ∧ EXf ’ ⇔ P may ω (f ’) ⇔ P may ω (f) ∪

ω (EXf ’) ⇔ P may ω (EGf).

---AGf

We put ω (AGf) = {ω (f) ∪ ω (AXf ’), where f ’ = f ∧ AXf ’}.

Here f ’ is a recursive definition. When we unfold the formula, it looks like f and AX(f ∧

AXf ’) and AX(f ∧ AX(f ∧ AXf ’)) and so on.

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

41

Figure 3.5: Test suite for CTL formula AGf

Figure 3.5 illustrates that the test suite is generated by combining a choice of action from

the actions and the tests in ω (f). Then, combine a choice of action followed by another

choice of action with the tests in ω (f) and so on till the last layer of the tree of the Kripke

structure. P may ω (AGf) iff P passes each of the test cases above. P satisfies the formula

AGf iff P passes the tests in ω (f), or P can perform the actions from the set A and at the

next states it passes the tests in ω (f), or P can perform the actions from the set A, at the

next states it can perform the actions from the set A, and then it passes the tests from ω (f)

and so on. P satisfies the formula EFf iff P passes all of the test cases illustrated in figure

3.5.

ξ P╞ AGf ⇔ ξ P╞ f ’, where f ’ = f ∧ AXf ’ ⇔ P may ω (f ’) ⇔ P may ω (f) ∪

ω (AXf ’) ⇔ P may ω (AGf).

---E f1 U f2

We put ω (E f1 U f2) = {(ω (f1) ∪ ω (EXf ’)) []i; (ω (f2) ∪ ω (EXf ’’)), where f ’ = f1

∧ EXf ’ and f ’’ = f2 ∧ EXf ’’}.

The idea of the form E f1 U f2 is very similar to EGf. Since it is a globally defined

property, if we have a system P, it is intuitive that we should delete the states from ξ P

that do not satisfy f1 or f2. Thus, we get a new ξ P’ = (S’, R’, L’), where S’∈S\{the states

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

42

do not satisfy the two properties}. R’ = R∣S’×S’ and L’ = L∣S’ → 2
AP.

Here f ’and f ’’ are recursive definitions. When we unfold the formula, it looks like f1 and

EX(f1 ∧ EXf ’) or EX(f1 ∧ EX(f1 ∧ EXf ’)) and so on or with an nondeterministic

internal action i then change to be f2 and EX(f2 ∧ EXf ’’) or EX(f2 ∧ EX(f2 ∧ EXf ’’)).

It shows that the process should satisfy any of the recursive unfolded formulas in order to

let the process satisfy the original formula E f1 U f2. As in a Kripke structure, the formula

f1 means that the states in the first layer need to satisfy the formula f1 and then the formula

EX(f1 ∧ EXf ’) means some successive states in the second layer need to satisfy the

formula f1 and so on. At some point, some states need to satisfy the formula f2 and from

then on some successive states need to satisfy f2 along the path later. In terms of labeled

transition system, the process need to pass the tests in ω (f1) and it performs some

actions to the second layer states and then the process need to pass the tests from ω (f1)

and so on. At some point and at some states, the process need to pass the tests in ω (f2)

and it performs some actions to the successive states and then the process should pass the

tests in ω (f2) all the time later. The tests are thus nondeterministic. The process satisfies

the property iff it passes either of one of the test cases generated from the recursively

unfolded formulas.

ξ P╞ E f1 U f2 ⇔ ξ P’╞ f ’ ∨ f ’’, where f ’ = f1 ∧ EXf ’ and f ’’ = f2 ∧ EXf ’’ ⇔ P

may ω (f ’) [] i; ω (f ’’) ⇔ P may {ω (f1) ∪ ω (EXf ’)} [] i; {ω (f2) ∪ ω (EXf ’’)}

⇔ P may ω (E f1 U f2). □

Thus we complete the proof and the conversion between CTL formulas and sequential

Chapter 3. THE EQUVIVALENCE BETWEEN CTL AND FAILURE TRACE TESTING

43

tests.

Chapter 4

Conclusion and Open Problems

 Classical methods of verifications are well studied. In this paper, we have shown the

equivalence between CTL formulas and failure trace tests. Our results can be summarized

as follows. According to theorem 2.1 (P may T) ⇔ (f∈ftr(P)), where T refers to all the

test cases and f = ftr(T); it shows that a process P passes a test T if and only if the set

failure trace of the test is contained in the set of failure trace of the process. We defined

the equivalence between a process or a labeled transition system and a Kripke structure in

definition 3.1. In theorem 3.1, we built a function ξ that converts labeled transition

system M or a process P to an equivalent Kripke structure K. As a result, we can define

the semantics of CTL formulas with respect to a process rather than a Kripke structure. In

theorem 3.2 we defined ψ as a function which links the sequential tests to the

correspondent CTL formulas and stated that P may T iff ξ P╞ φ where φ = ψ(T). This

shows that a process P passes a test T if and only if the process satisfies the formulas that

 43

are derived from the test. We showed in theorem 3.3 that there exists a function ω

which links the CTL formulas to the corresponding test

cases and stated that ξ P╞ φ iff P may T, where T = ω (φ). In other words, a process P

satisfies the formula if and only if the process passes the tests that are derived from the

formula.

 We have thus developed a combined method of system verification. Using model

checking and model-based testing as starting points, we approach this method by

interpreting failure trace tests into CTL temporal logic formulas and CTL temporal logic

formulas into failure trace tests. We strongly believe, and hope we have convinced the

reader, that a combined approach as we have described in Chapter 3 is extremely helpful.

It has a number of advantages over traditional approaches. Model-based testing is

incomplete but has the advantage of incremental application. By contrast, model checking

is complete but must be applied all at once. It has the state explosion problem [10]. CTL

formulas representing loose specifications as we only specify the properties of interest,

whereas algebraic models for model-based testing represent the specification quite strictly.

Whether one specification is better than the other depends on the particular system under

test. In our work, we convert CTL temporal logic formulas to tests and the other ways

around. As a result, no matter how the system is specified (one part logically and the other

algebraically), we can just apply either model checking or testing once. This is extremely

important for large systems with components at different level of maturity. The canonic

example is a communication protocol: the end points are algorithms that are likely to be

Chapter 4. CONCLUSIONS AND OPEN PROBLEMS

44

amenable to algebraic specification, while the communication medium is something we

don’t know much about. It could be a direct link, a local network or something else.

However, its properties are expressible in temporal logic formulas. The conversion

therefore is very useful. Such a conversion can also allow the use of the fastest, most

convenient and suitable method of verification.

 The results of this paper are important first steps towards a more ambitious goal. We

believe that this thesis opens several direction of future research. The main challenge in

the method we introduced is dealing with the infinite state test cases. This problem occurs

when we interpret CTL temporal logic formulas to test cases. In such a case, the test cases

can have an infinite set of states. In theory, it is easy to deal with infinite state test suite,

while in real practice, it is worthy of future work to eliminate infinite state or to obtain

usable algorithms to run the test suite with the system under test. The tests developed here

can be combined with partial application so that another interesting research direction is

to find a partial application that yields total correctness at the limit and has some

correctness insurance milestones along the way. Another obvious open question is

whether there is an equivalence between a category of tests and the full temporal logic

CTL*.

References:

[1] G. E. Hughes and M. J. Greswell. An Introduction to Modal Logic. Methuen Co.,

 46

1968.

[2] V. Gupta. Concurrent Kripke Structures. Proceedings of the North American Process

Algebra Workshop, Cornell CS-TR-93-1369. 1993.

[3] P. Bellini, R. Mattolini and P. Nesi. Temporal Logics for Real-time System

Specification. ACM Computing Surveys (CSUR), Volume 32 Issue 1. ACM. Pages 12-42.

March 2000.

[4] R. Gerth, D. Peled, M.Y. Vardi and P. Wolper. Simple On-the fly Automatic

Verification of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1

International Symposium on Protocol Specification, Testing and Verification XV.

Chapman Ltd. Pages 3-18. 1996.

[5] Rance Cleaveland and Gerald Lüttgen. Model Checking is Refinement—Relating

Büchi Testing and Linear-time Temporal Logic. ICASE Report No. 2000-14. March 2000.

[6] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to Automatic

Program Verification. In Proceedings, Symposium on Logic in Computer Science. IEEE

Computer Society. Pages 332-344. 1986.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state

concurrent systems using temporal logic specification. ACM Transactions on

Programming Languages and Systems, Volume 8. Pages 244-263. 1986.

[8] E.M. Clark and E.A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Logic of Programs, Workshop, Springer-Verlag.

Pages 52-71. 1982.

 47

[9] Stephan Merz. Model Checking—A Tutorial Overview. Institut für Informatik,

Universität, München.

[10] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking. The

MIT Press. 1999.

[11] R. DE NICOLA and M.C.B. HENNESSY. Testing Equivalences for Processes.

Theoretical Computer Science, Volume 34. Pages 83-133. 1984.

[12] Leslie Lamport, John Matthews, Mark Tuttle and Yuan Yu. Specifying and verifying

systems with TLA+. EW10: Proceedings of the 10th workshop on ACM SIGOPS

European workshop. ACM. Pages 45-48. July 2002.

[13] Ed Brinksma, Arend Rensink and Walter Vogler. Fair Testing. In Insup Lee and Scott

A. Smolka(Eds.), “CONCUR ’95: Concurrency Theory”, LNCS 962, Springer. Pages

313-327. 1995.

[14] Iain PHILLIPS. Refusal Testing. Lecture Notes on Computer Science, Automata,

Languages and Programming. Springer. Pages 241-284. July 1986.

[15] Rom Langerak. A testing theory for LOTOS using deadlock detection.

North-Holland. Pages 87-98. 1989.

[16] PH. SCHNOEBELEN. The Complexity of Temporal Logic Model Checking. World

Scientific Publishing Co. Ltd. Pages 393-436. 2002.

[17] Kenneth L. McMillan. Symbolic Model Checking—an approach to the state

explosion problem. CMU-CS-92-131. May 1992.

[18] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logic.

 48

Journal of the ACM, 32: Pages 733-749, 1985.

[19] Rajeev Alur and Mihalis Yannakakis. Model Checking of Hierarchical State

Machines. ACM Transactions on Programming Languages and Systems (TOPLAS),

Volume 23 Issue 3. ACM. Pages 175-188. May 2001.

[20] Jan Tretmans. Conformance Testing with labeled Transition System: Implementation

Relations and Test Generation. Computer Network and ISDN Systems. Pages 49-79. 1996.

[21] Thomas J. Schriber, Jerry Banks, Andrew F. Seila, Ingolf Ståhl, Averill M. Law,

Richard G. Born. Simulation textbooks. WSC '03: Proceedings of the 35th conference on

Winter simulation: driving innovation. Winter Simulation Conference. ACM. Pages

1952-1963. December 2003.

[22] Krzysztof Pawlikowski. Steady-state simulation of queueing processes: survey of

problems and solutions. ACM computing Surveys (CSUR), Volume 22 Issue 2. ACM.

Pages 123-170. June 1990.

[23] Jan Tretmans. A Formal Approach to Conformance Testing. University of Twente.

1992.

[24] Guang Yuan LI and Zhi Song TANG. Linear temporal logic with clocks and real-time.

Journal of software Vol 13, No. 1. Pages 193-202. 2002.

[25] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science

Volume 13. Pages 45-60. 1981.

[26] Michael Huth and Mark Ryan. Logic in Computer Science (Second Edition).

Cambridge University Press. 2004.

 49

[27] Duminda Wijesekera, Paul Ammann, Lingya Sun, Gordon Fraser. Relating

counterexamples to test cases in CTL model checking specifications. A-MOST '07:

Proceedings of the 3rd international workshop on Advances in model-based testing. ACM.

Pages 75-84. July 2007.

[28] P. Ammann, W. Ding and D. Xu. Using a Model Checker to Test Safety Properties.

In Proceedings of the 7
th

 International Conference on Engineering of Complex Computer

Science (ICECCS 2001). IEEE. Pages 212-221, Skovde, Sweden. 2001.

[29] P. E. Ammann, P. E. Black and W. Majurski. Using Model Checking to Generate

Tests from Specifications. In Proceedings of the Second IEEE International Conference

on Formal Engineering Methods (ICFEM’ 98). Pages 46-54, IEEE Computer Society,

1998.

[30] Stefan D. Bruda. Preorder Relations. In Manfred Broy, Bengt Jonsson, Joost-Pieter

Katoen, et al., eds., Model-Based Testing of Reactive Systems: Advanced Lectures,

Springer Lecture Notes in Computer Science 3472. Pages 117-150. 2005.

[31] Valery Tschaen. Test Generation Algorithms based on Preorder Relations. In Manfred

Broy, Bengt Jonsson, Joost-Pieter Katoen, et al., eds., Model-Based Testing of Reactive

Systems: Advanced Lectures, Springer Lecture Notes in Computer Science 3472. Pages

151-171. 2005.

[32] E. Brinksma, G. Scollo and C. Steenbergen. LOTOS Specifications, their

implementations and their tests. In G. v. Bochmann, B. Sarikaya, Proc. IFIP 6.1 Sixth St.

Jovite. Pages: 349-360. 1987.

 50

[33] Batsayan Das, Dipankar Sarkar and Santanu Chattopadhyay. Model Checking on

State Transition Diagram. ASP-DAC’ 04. Proceedings of the 2004 conference on Asia

South Pacific design automation: electronic design and solution fair. IEEE Press. Pages

412-417. January 2004.

[34] Mordechai Ben-Ari, Zohar Manna and Amir Pnueli. The temporal logic of branching

time. POPL’ 81. Proceedings of the 8
th

 ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, Volume 20. ACM. Pages 207-226. January 1981.

[35] Rocco De Nicola and Frits Vaandrager. Three logics for branching bisimulation.

Journal of the ACM (JACM), Volume 42, Issue 2. ACM. Pages 438-487. March 1995.

[36] Tiejun GAO. An Analytic Semantics of CSP. Fundam. Inform. Number 2, Volume 15.

1991.

