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Abstract

This study presents a novel approach for classifying visual stimuli from single-
trial Event-Related Spectral Perturbation (ERSP) responses derived from electroen-
cephalographic (EEG) recordings. To improve the reliability and interpretability
of visual Brain-Computer Interfaces (BCIs), we propose a classification approach
that systematically evaluates neural responses across five key dimensions: sub-
ject variability, frequency bands, trial-level differences, stimulus categories, and
post-stimulus time windows.

To address the multi-dimensional nature of ERSP data, both deep learning and
classical machine learning approaches were applied to EEG recordings from thirty-
one neurologically and psychiatrically healthy participants. Deep learning mod-
els—including convolutional neural networks (CNNs) and recurrent architectures
such as bidirectional long short-term memory (LSTM) and gated recurrent units
(GRUs)—were trained on spectrogram representations of ERSPs. A CNN architec-
ture incorporating dropout and batch normalization achieved validation accuracies
of up to 85.57% in binary classification tasks involving high-contrast stimuli and
participants with strong gamma-band responses. However, performance declined
in multiclass tasks involving all stimuli and participants, with validation accuracy
plateauing around 30%, primarily due to substantial inter-subject variability and
limited training data.

In parallel, classical machine learning approaches were applied in a subject-
and frequency-specific manner. Random Forest classifiers delivered strong and
interpretable results, particularly in the gamma frequency range (20–40 Hz), early
post-stimulus intervals, and among participants with pronounced gamma activ-
ity. Ensemble-based models consistently outperformed support vector machines,
logistic regression, and gradient boosting, underscoring the effectiveness of indi-
vidualized modeling in data-constrained settings.

This study is among the first to systematically investigate ERSP classification
across multiple predictive dimensions using both deep spectrogram-based models
and subject- and frequency-aware classical approaches. The findings emphasize
the complementary strengths of these methods: deep learning performs well with
structured, high-resolution inputs when sufficient data are available, while classical
approaches offer robustness and interpretability in subject-specific contexts. Future
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research should explore hybrid strategies, subject-informed training methods, and
the application of self-supervised or transfer learning approaches fine-tuned for
task-relevant scenarios to compare and investigate the possibility of improving
generalizability across participants and experimental conditions.
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Chapter 1

Introduction

Electroencephalography (EEG) is a widely used, noninvasive neuroimaging tech-
nique that captures the brain’s electrical activity through electrodes placed on the
scalp. These signals reflect the synchronized activity of large neuronal populations
and are particularly useful in visual neuroscience, where EEG helps decode brain re-
sponses to structured visual stimuli such as contrast, luminance, spatial frequency,
and object orientation. These visual properties modulate cortical oscillations across
distinct frequency bands—especially within the gamma band (30–100 Hz)—and at
specific latencies, providing high-resolution temporal insight into perceptual and
cognitive processes [56, 115, 140].

Unlike functional MRI, PET, or MEG, EEG offers millisecond-level temporal
resolution, is portable, and remains more affordable, making it suitable for real-
time applications such as Brain-Computer Interfaces (BCIs) [38, 41]. Despite these
strengths, EEG data are often noisy, high-dimensional, and subject-specific, making
manual analysis labor-intensive and prone to bias [33]. These challenges necessitate
machine learning approaches for automated and scalable interpretation.

Recent advances in machine learning (ML) and deep learning (DL) have rev-
olutionized EEG decoding by capturing complex spatial, temporal, and spectral
patterns. While unsupervised and self-supervised methods—such as autoencoders
and contrastive learning—are popular for representation learning in low-resource
contexts, their efficacy in EEG-based visual classification remains limited. These
methods tend to underperform in tasks requiring precise stimulus-response align-
ment and suffer from reduced interpretability, limiting their clinical and cognitive
neuroscience applicability [126, 137].

Supervised learning, on the other hand, excels in scenarios where labeled data
are available, offering superior accuracy and model interpretability. By directly
learning mappings between stimuli and evoked brain activity, supervised models
better capture the neural signatures of visual features such as contrast and spatial
layout. Our study adopts a supervised learning approach to decode gamma-band
visual responses, demonstrating improved classification and neurophysiological
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CHAPTER 1. INTRODUCTION 2

relevance over unsupervised alternatives [72, 140].
Furthermore, BCIs that rely on EEG for decoding user intent have shown sig-

nificantly improved performance when powered by supervised ML models. These
systems leverage labeled neural data to optimize decoding of visual evoked poten-
tials (VEPs), facilitating adaptive neurotechnologies tailored to individual cognitive
and perceptual profiles [5, 11, 45, 83, 125].

EEG-based BCIs have garnered significant attention in healthcare and assistive
technology due to their noninvasive nature and real-time capabilities. These sys-
tems have been successfully implemented in a range of clinical applications, from
neurorehabilitation for stroke patients to communication aids for individuals with
severe motor impairments, such as those with amyotrophic lateral sclerosis (ALS)
or locked-in syndrome. The ability to capture neural signals and translate them
into control signals for assistive devices—such as robotic arms or communication
boards—holds immense potential for improving the quality of life and indepen-
dence of individuals with disabilities. As machine learning and deep learning
techniques continue to evolve, the accuracy and adaptability of EEG-based BCIs are
expected to improve, allowing for more personalized and efficient interventions.

Recent studies have expanded the scope of EEG-based BCIs in healthcare. For
instance, a comprehensive review highlighted their applications across eight critical
areas: rehabilitation, daily communication, epilepsy, cerebral resuscitation, sleep,
neurodegenerative diseases, anesthesiology, and emotion recognition [136]. This
broad applicability underscores the versatility of EEG-based BCIs in addressing
diverse medical needs.

Innovations in BCI technology have also led to the development of hybrid
systems that integrate EEG with other modalities. A notable example is the hy-
brid brain-machine interface that combines steady-state visually evoked potential
(SSVEP)-based EEG with facial electromyography (EMG). This integration allows
for reduced physical demand and improved user experience in assistive applica-
tions such as virtual navigation tasks [119].

Furthermore, advancements in wearable BCI devices are making EEG-based
systems more accessible and practical for everyday use. Recent progress in wearable
EEG-based BCI devices for medical applications has focused on improving signal
acquisition methods and enhancing user comfort. These developments aim to
make EEG-based BCIs more suitable for continuous monitoring and long-term use
in various medical settings [133].

1.1 Problem Statement

While the majority of Brain-Computer Interface (BCI) research has focused on mo-
tor imagery tasks, decoding EEG signals elicited by visual stimuli remains a com-
paratively underexplored domain—despite its increasing relevance for developing
non-motor-based BCIs, particularly for individuals with severe motor impairments
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[58, 87]. This gap is especially significant given the potential of visually driven BCIs
as low-effort, cognitively intuitive alternatives for user interaction.

Recent studies have demonstrated the feasibility of decoding visual content
from EEG signals using both classical and deep learning models [14, 130]. How-
ever, several challenges persist, including high inter-subject variability, susceptibil-
ity to physiological artifacts, and limited generalizability across diverse stimulus
types [36, 71]. Moreover, most existing research focuses on isolated feature do-
mains—spectral, spatial, or temporal—without fully exploring their interactions or
the impact of subject-specific variability [8, 40].

Visual EEG decoding continues to lag behind motor-based BCIs in both develop-
ment and application. This discrepancy stems in part from the inherent complexity
of visual processing, which involves multi-dimensional spatial and temporal dy-
namics that are more difficult to capture and model than motor-related signals
[66, 105]. Additionally, motor imagery tasks benefit from clearer and more consis-
tent neural signatures, whereas visual tasks are confounded by considerable noise
and variability, making it challenging to extract reliable patterns from EEG data
[50, 54].

To address these limitations, this study systematically investigates how the brain
responds to structured visual stimuli—ranging from contrast-based patterns to ran-
domized designs—and evaluates the extent to which these responses can be reliably
classified using both classical machine learning (ML) and deep learning (DL) tech-
niques. Specifically, we aim to identify the most discriminative combinations of
features across four analytical axes: spectral (e.g., frequency bands), temporal (e.g.,
task-locked windows), repetition-based (e.g., trial averaging), and individual-level
(e.g., subject-specific variability).

This multi-dimensional analytical framework leverages the complementary
strengths of classical ML and spectrogram-based DL models. Unlike conventional
approaches that assume uniform neural responses across individuals or employ
static frequency band definitions, our method dynamically adapts to both individ-
ual neural profiles and stimulus-specific characteristics. This adaptability enhances
model interpretability, generalizability, and classification performance.

By identifying the most predictive and robust feature combinations, our study
establishes a foundational basis for the development of adaptive and personalized
BCIs. The implications are twofold: advancing theoretical understanding of how
visual stimuli modulate neural dynamics, and informing the design of practical
neurotechnological solutions that utilize EEG as a scalable, non-invasive, and real-
time tool for assistive and rehabilitative applications.

Although EEG-based BCIs have made substantial progress in motor con-
trol—particularly in applications such as prosthetics and rehabilitation—the decod-
ing of visual perception from EEG signals remains comparatively underdeveloped.
This shortfall is primarily due to the challenges of capturing the neural signatures
associated with visual attributes like contrast, luminance, and spatial orientation
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amid noisy and variable EEG data. Moreover, the spatial and temporal dynam-
ics of visual processing present greater modeling complexity than those of motor
activity. Nevertheless, the potential for EEG-based visual decoding in cognitive
neuroscience and assistive technology is substantial, especially when paired with
advanced ML and DL approaches. These models can deepen our understanding
of visual processing in the brain and support the development of new applications
for individuals with visual impairments or cognitive disabilities.

1.2 Thesis Objectives

This thesis aims to advance EEG-based Brain-Computer Interface (BCI) classifica-
tion by systematically analyzing visual stimulus responses in single-trial Event-
Related Spectral Perturbation (ERSP) data across five key dimensions: Subjects,
Frequencies, Stimuli, Trials, and Timepoints. Furthermore, it compares the per-
formance of deep learning (DL) models with traditional machine learning (ML)
approaches. The specific objectives are as follows:

i. To evaluate and optimize baseline deep learning models for spectrogram-
based EEG classification, with a focus on hyperparameter tuning, overfitting
prevention, and the influence of temporal feature selection on model perfor-
mance.

ii. To compare the effectiveness of classical machine learning techniques across
frequency bands and individual subjects, examining how different combi-
nations of frequency ranges, participant groups, stimulus types, and time
segments affect classification accuracy.

iii. To systematically assess the contribution of key features—including subjects,
frequency bands, time windows, stimulus properties, and trial repetitions—to
overall classification performance, with the goal of identifying the most pre-
dictive and generalizable feature sets.



Chapter 2

Literature Review

2.1 Impact of Visual Stimuli on Neural Dynamics and Pre-
dictability

Visual stimuli modulate oscillatory EEG dynamics across multiple frequency bands,
including gamma (30–100 Hz), alpha (8–13 Hz), theta (4–8 Hz), and delta (1–4 Hz).
These frequency-specific responses are closely linked to key visual attributes—such
as contrast, spatial frequency, structure (e.g., coherent vs. randomized patterns),
motion, and spatial positioning—which shape perceptual encoding and influence
the performance of EEG classification pipelines.

High-contrast stimuli reliably enhance gamma-band activity in occipital and
parietal cortices, indicating increased neural synchronization and sensory gain
[1, 48, 64, 80, 114]. Alpha-band modulation is more complex: while some studies as-
sociate increased alpha power with cortical disengagement and inhibitory processes
[57, 68], others link it to attentional allocation and perceptual binding. Conversely,
randomized or unpredictable stimuli often reduce phase-locked responses while
increasing activity in lower frequency bands such as theta and delta—oscillations
associated with novelty detection, working memory, and cognitive load [29, 35].

The structural regularity of visual input also plays a critical role. Coherent,
repetitive patterns evoke stronger gamma and theta oscillations than incoherent
stimuli, suggesting that neural predictability and stimulus regularity enhance
cortical entrainment. Similarly, motion stimuli and those with low spatial fre-
quency preferentially elicit gamma-band responses due to the activation of motion-
sensitive visual areas, thereby improving signal discriminability for classification
tasks [20, 46].

Spatial positioning further modulates EEG dynamics. Stimuli presented in
the lower visual field consistently evoke stronger alpha and gamma responses in
occipital-parietal regions [35, 68, 114]. Spatial lateralization effects have also been
observed: stimuli appearing in distinct visual hemifields or quadrants engage dif-
ferent cortical regions. For example, linguistic and symbolic stimuli predominantly
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activate left-lateralized networks, whereas spatial or emotionally salient stimuli
elicit stronger right-hemispheric responses [139]. These findings underscore the
importance of integrating spatial topography into EEG decoding frameworks.

Collectively, these observations highlight the critical role of stimulus-dependent,
frequency-specific, and spatially localized oscillatory dynamics in shaping visual
EEG responses. Accounting for these multidimensional neural signatures can sub-
stantially enhance the sensitivity, specificity, and generalizability of EEG-based
classification models.

2.2 Single-Trial ERSPs and Spectrogram-Based Time-
Frequency Analysis

Single-trial analysis of visual evoked EEG responses has garnered increasing in-
terest due to its relevance for brain-computer interface (BCI) applications and in-
dividualized neural decoding. Among the most informative approaches for char-
acterizing neural dynamics in this context are event-related spectral perturbations
(ERSPs) and spectrogram-based time-frequency representations (TFRs), which cap-
ture stimulus-induced changes in oscillatory activity across time and frequency
domains.

Traditionally, ERSPs are computed by averaging spectral responses across trials,
effectively revealing phase-locked activity patterns consistent across repetitions.
While this enhances signal-to-noise ratios, it also attenuates transient, non-phase-
locked dynamics and masks inter-trial variability—features often critical for under-
standing cognitive variability and enabling single-trial classification [52, 74, 142].

In contrast, spectrogram-based TFRs preserve trial-specific temporal and spec-
tral details, enabling the analysis of both evoked (phase-locked) and induced (non-
phase-locked) components of the EEG signal [3, 59, 110, 138]. These representations
are particularly advantageous for decoding visual responses at the single-trial level,
where individual neural variability encodes task-relevant information [63, 117].

Recent advances in adaptive time-frequency analysis—such as wavelet trans-
forms, chirplet decompositions, and empirical mode decomposition (EMD)—have
further enhanced the sensitivity of single-trial analyses. These methods effectively
capture transient and localized spectral features, especially in non-stationary fre-
quency bands associated with visual attention and perception, including alpha and
gamma [24, 34, 62, 134, 143].

Beyond temporal and spectral domains, multi-channel spectrogram analysis
facilitates the exploration of spatial dynamics in visual EEG data. This includes
identifying lateralized cortical activations and region-specific frequency responses,
thus supporting more interpretable and spatially informed decoding models [13,
106, 108].

The integration of machine learning techniques with spectrogram-based and
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ERSP analyses has further improved decoding performance by leveraging the high-
dimensional, time-frequency structure of EEG signals. These approaches contribute
to more robust and generalizable classification across subjects and stimulus types
[75, 90].

2.3 Single-Trial ERSPs and Spectrogram-Based EEG Classi-
fication Using Machine Learning and Deep Learning

Classifying single-trial EEG responses to visual stimuli remains a major chal-
lenge in neuroscience and brain-computer interface (BCI) research, primarily due
to high trial-to-trial variability and low signal-to-noise ratios. To address these
challenges, researchers increasingly employ time-frequency representations—such
as event-related spectral perturbations (ERSPs) and spectrograms—alongside ma-
chine learning (ML) and deep learning (DL) methods to extract discriminative
features from EEG data.

ERSPs capture transient oscillatory activity across frequency bands following
visual stimuli, preserving both temporal and spectral dynamics at the single-trial
level. Feature extraction commonly involves time-frequency decomposition tech-
niques, including wavelet transforms and short-time Fourier transforms (STFT),
yielding high-dimensional ERSP maps. These are often vectorized or reduced us-
ing dimensionality reduction methods such as principal component analysis (PCA)
or t-distributed stochastic neighbor embedding (t-SNE), which help retain informa-
tive variance while mitigating redundancy [73, 121].

Classical ML algorithms—including support vector machines (SVM), random
forests (RF), and ensemble classifiers—have been widely applied to these ERSP-
derived features [61, 123, 132]. These models support subject-specific classifica-
tion and enable the identification of frequency bands most predictive of visual
perception. Random forests, in particular, offer interpretability through feature
importance scores, facilitating per-frequency and per-subject performance analysis.

Deep learning models, particularly convolutional neural networks (CNNs), are
well-suited for learning hierarchical spatial and temporal features directly from
spectrograms or ERSP heatmaps. These models obviate the need for manual feature
engineering and have demonstrated strong performance in decoding visual stimuli
from raw or minimally processed EEG inputs [49, 53, 96]. When augmented with
attention mechanisms or transformer architectures, CNNs can localize salient time-
frequency regions and improve interpretability and generalization [127, 128].

Hybrid deep learning architectures—such as EEG-ConvTransformers and
attention-augmented CNNs—further enhance accuracy by combining local feature
extraction with global context modeling. These models are particularly effective in
capturing stimulus-specific temporal dynamics and are adaptable across subjects
via fine-tuning or domain adaptation strategies [16, 65, 101].
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While supervised learning remains the dominant paradigm in single-trial EEG
classification, recent advancements in self-supervised learning (SSL) offer promis-
ing alternatives for scenarios with limited labeled data. SSL approaches, such as
contrastive learning and autoencoders, aim to learn robust EEG representations
without requiring explicit stimulus labels [4, 122]. Nonetheless, supervised mod-
els continue to outperform SSL in visual classification tasks due to their superior
capacity for learning task-specific discriminative features [131, 141, 146].

Interpretability remains a critical issue in deploying ML and DL models to
EEG data. Techniques such as class activation mapping (CAM), saliency maps,
and layer-wise relevance propagation (LRP) are increasingly employed to visualize
which time-frequency regions contribute most to classification decisions [51, 90].
These tools enhance transparency and support the translation of model predictions
into neuroscientific insights.



Chapter 3

Materials and Methods

This chapter provides a comprehensive overview of the EEG recordings used for
analysis, including the design and presentation of visual stimuli, participant demo-
graphics, trial structure, and data acquisition protocols. It describes the preprocess-
ing steps applied to the raw EEG data, outlines the overall dataset structure, and
details the classification models employed. Both classical machine learning and
deep learning models are presented, along with the rationale for their selection,
training configurations, and hyperparameter settings. The software frameworks
and analytical tools used throughout the pipeline are also specified.

To facilitate interpretation of the data, representative plots of averaged event-
related spectral perturbations (ERSPs) across subjects and stimulus types are
provided. Single-trial classification of ERSP responses presents a complex,
high-dimensional challenge that requires careful consideration of multiple fac-
tors—including inter-subject physiological variability, frequency band interactions,
stimulus characteristics, trial-to-trial fluctuations, and the temporal alignment of
EEG signals with stimulus onset. These complexities necessitate the use of diverse
modeling approaches, including both classical machine learning and deep learning
methods, and the incorporation of multiple input representations. Such strate-
gies aim to capture both shared and subject-specific neural dynamics over time in
response to various visual stimuli.

3.1 Participants, Stimuli, EEG Acquisition, and Preprocess-
ing

This study utilized EEG recordings collected in accordance with the ethical guide-
lines of the Centre Hospitalier Universitaire de Sherbrooke’s Internal Review Board.
Participants had normal or corrected-to-normal vision and no history of neurologi-
cal or psychiatric disorders. Visual stimuli were generated using the Psychophysics
Toolbox [9] and presented on a uniform gray background with luminance matched
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to the mean stimulus luminance. A baseline grating drifted horizontally within a
7° circular aperture at a spatial frequency of 3 cycles per degree and a temporal fre-
quency of 6 cycles per second. Michelson contrast was varied at three levels—100%,
33%, and 5%—by adjusting brightness ranges while maintaining consistent mean
luminance. Spatial randomization was introduced by randomly exchanging 0.15° ×
0.15° patches until contrast levels of 10% and 60% were achieved, without altering
overall contrast [111, 144].

Stimuli were displayed on a CRT monitor with a resolution of 800 × 600 pixels
and a refresh rate of 85 Hz. Participants were seated comfortably in a dimly lit
room. The session comprised nine blocks, each lasting 8.5 minutes, with 1-minute
rest breaks between blocks to maintain participant alertness and data quality. Each
participant completed 810 trials. Six distinct stimulus types were presented 135
times in a pseudo-randomized order. Each trial began with a fixation cross that
turned red, followed by a jittered delay between 0.5 and 1 second, and a 2-second
grating presentation. After the stimulus presentation, the fixation cross returned
to black, signaling a 2-second rest period. Additional 8-second rest intervals were
introduced every two minutes to allow for blinking and posture adjustments, min-
imizing muscle-related artifacts.

EEG data were recorded using a 64-channel Brain Products system, with elec-
trode placement following the international 10-20 system. The ground electrode
was placed between FPz and Fz, while the reference electrode was placed between
CPz and Cz. Data were sampled at 500 Hz and subsequently downsampled to 256
Hz for computational efficiency. Channels with poor signal quality were identified
using z-score thresholds and interpolated. Continuous EEG recordings from the
90-minute session were bandpass filtered between 1 and 120 Hz. Preprocessing
was conducted using EEGLAB [23] and custom MATLAB scripts. Independent
component analysis (ICA) was applied to remove artifacts, with the guidance of a
neuronal response function extracted from posterior electrodes filtered in the 10–25
Hz and 40–110 Hz bands. Components exhibiting the highest Pearson correlation
with this response function were retained, and visual inspection confirmed their
occipital origin [43, 85].

For spectral analysis, EEG trials were epoched from −0.85 seconds to 2.85 sec-
onds relative to stimulus onset. Event-related spectral perturbations (ERSPs) were
computed for the interval between 500 milliseconds and 2000 milliseconds following
stimulus presentation. Further preprocessing steps, including baseline correction
and spectrogram generation, were implemented using custom Python scripts.

The visual stimuli were designed to assess the effects of luminance contrast and
spatial-temporal randomization on EEG responses. Grayscale images were normal-
ized for global luminance to ensure consistency across conditions. Six experimental
conditions were used:

• Contrast Levels: High (100%), Medium (33%), and Low (5%)—designed
to modulate the salience of the visual input and the corresponding neural
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5% Contrast 33% Contrast 100% Contrast

10% SR 60% SR

Figure 3.1: Visual stimuli: Contrast levels (top row) and Spatial Randomization
(SR) levels (bottom row).

response strength.

• Randomization Levels: None (0%), Low (10%), and High (60%)—used to
control the degree of spatial structure disruption in the images, assessing
sensitivity to spatial predictability.

Stimuli used during recordings are presented in Figure 3.1.

3.2 Dataset Structure

This section provides detailed information about the dataset structure used as input
for both machine learning (ML) and deep learning (DL) models. The ML models
were trained on hand-crafted, feature-engineered datasets, while the DL models
utilized spectrogram representations derived from single-trial ERSPs.

The initial single-trial ERSP dataset, gathered from previously recorded EEG
data, had the shape (subjects, stimuli, trials, frequencies, time points)
with the following parameters:
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• Stimulus conditions: Six types, varying by contrast (100%, 33%, 5%) and
spatial randomization (0%, 10%, 60%).

• Trials: 135 trials per stimulus type, totaling 810 trials per participant.

• Frequencies: 60 frequency bands ranging from 1 to 120 Hz in 2 Hz intervals.

• Time points: 350 time points per trial.

The input data for the DL models consisted of spectrograms represented as
arrays of shape (60, 350), where the first axis corresponds to frequency values and
the second axis represents time points. Spectrograms were computed separately for
each trial, stimulus type, and subject. In total, 31 participants with 6 stimulus types
and 135 trials per type yielded 31 × 6 × 135 spectrograms using this method.

For the machine learning analysis, the dataset had to be reshaped further, as most
machine learning models require two-dimensional input. In the case of subject-level
analysis (targeting individual-level responses), the remaining factors—stimuli and
trials—formed the first dimension of the input, while frequencies and time points
were flattened into the second dimension. For frequency-level analysis (capturing
shared responses), the first dimension included subjects, stimuli, and trials, and the
second dimension included only the time points. The exception to this structure
was the per-subject, per-frequency analysis, where the first dimension included
stimuli and trials, and the second dimension consisted of time points only.

Across both approaches, participants exhibiting strong gamma-band responses
across stimulus types and trials were identified as 1, 4, 8, 9, 10, 12, 13, 14, 18, 20,
22, 23, 24, 25, 27, and 31. These individuals, identified based on the ERSP plots
shown in Figure 3.3, were of particular interest, especially in response to 100% and
5% contrast stimuli, which represented the strongest and weakest levels of visual
stimulation across the gamma and alpha frequency bands.

3.3 Deep Learning Models

Different deep learning model architectures were tested on spectrograms of single-
trial ERSP data, including fully connected feedforward networks, CNNs, LSTMs,
GRUs, and SimpleRNN structures. These models were selected to account for
model simplicity (fully connected networks), the ability to extract low-level features
from images (CNNs), and the capacity of recurrent neural networks to capture and
memorize temporal dependencies. Additionally, hidden layer activations (ReLU
and ELU) were tested, along with dropout, L1/L2 regularization, and MaxNorm
kernel constraints to prevent overfitting. A batch size of 32 was used, and early
stopping was employed to further mitigate the risk of overfitting. The optimizers
employed were Adam and RMSprop, with learning rate schedules designed to fine-
tune the training process. The models were implemented using TensorFlow version
2.10, employing both subclassing and the functional API.
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The data were split into training (70%) and validation (30%) sets. All models
were trained for 30 epochs to ensure adequate model convergence and to assess
performance across various stages of training. The choice of 30 epochs was made
to balance training duration and computational efficiency, as early stopping was
applied to halt training when performance on the validation set stopped improving.
This strategy mitigates overfitting and ensures that the model doesn’t overtrain on
the data.

Transformers were not included in this study due to the limited size of our
dataset. Despite their success in various domains, transformer models typically
require large amounts of data to effectively capture complex patterns and avoid
overfitting. In contrast, our dataset was insufficient to support the training of such
models without the risk of poor generalization. Recent studies have highlighted
similar challenges when applying transformer-based models to EEG data, partic-
ularly in contexts with small datasets. For example, a study by [116] discusses
the limitations of transformers in EEG analysis, emphasizing the need for large-
scale datasets to achieve optimal performance in classification tasks. Therefore,
to ensure robust and generalizable results, we opted for alternative deep learning
architectures better suited to the constraints of our data.

The selection of models and hyperparameters was guided by recent research in
EEG classification tasks and general deep learning best practices:

• Fully Connected Feedforward Networks: These models serve as a baseline
and are useful for initial comparisons, providing insights into the basic capac-
ity of deep learning for EEG analysis.

• Convolutional Neural Networks (CNNs): CNNs are effective for spatial
feature extraction, which is crucial when working with spectrograms derived
from EEG data. CNNs capture frequency-domain patterns that are important
for decoding visual stimuli [103].

• Long Short-Term Memory (LSTM) Networks: LSTMs are ideal for sequential
data and are particularly beneficial for capturing long-term dependencies,
which are crucial for EEG signals that exhibit temporal dynamics [124].

• Gated Recurrent Units (GRUs): GRUs are simpler than LSTMs but still per-
form well on sequential data, providing a more computationally efficient
alternative for temporal feature learning [15].

• SimpleRNNs: Although less effective in capturing long-range dependencies,
SimpleRNNs were tested as a baseline model to assess the advantage of more
advanced recurrent architectures.

The choice of hyperparameters is as follows:
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• Activation Functions (ReLU and ELU): ReLU is widely used due to its sim-
plicity and effectiveness in avoiding vanishing gradients. ELU is tested for
its ability to allow negative activations, which can help improve learning
dynamics [18].

• Dropout: Dropout is a regularization technique that helps prevent overfitting
by randomly setting a fraction of input units to zero during training [109].

• L1/L2 Regularization: These regularization techniques help reduce overfit-
ting by adding penalty terms to the loss function [82].

• MaxNorm Kernel Constraint: This constraint helps stabilize training by lim-
iting the weight values, which can lead to better generalization [6].

• Batch Size (32): A batch size of 32 is commonly used, providing a balance
between efficient training and stable optimization [6].

• Early Stopping: Early stopping prevents overfitting by halting training when
performance on a validation set stops improving [88].

• Optimizers (Adam and RMSprop): Adam is an adaptive optimizer that
works well in various contexts, including EEG classification, while RMSprop
is effective for non-stationary data like EEG signals [42, 55].

• Learning Rate Schedulers: Learning rate schedules adjust the learning rate
during training, helping the model converge more efficiently and avoiding
overshooting minima [70].

• Epochs (30): The models were trained for 30 epochs to ensure sufficient con-
vergence and to monitor performance stability, with early stopping employed
to prevent overfitting and ensure generalization.

Deep Learning model architectures used for analysis are as follows:

• 3-Layer Dense (Binary Classification, Multiclass Classification): 128-32
units, ReLU activation, last dense layer with value of 1 or 6 depending on
the classification type.

• 5-Layer Dense (Binary Classification, Multiclass Classification): 512-256-
128-32 units, last dense layer with value of 1 or 6 depending on the classifica-
tion type, ReLU activation. A regularized form using L1/L2 regularization,
MaxNorm constraints, and dropout layers of (0.4, 0.3, 0.2).

• 6-Layer Dense (Binary Classification, Multiclass Classification): 1024-512-
256-128-32 units, last dense layer with value of 1 or 6 depending on the
classification type, ReLU activation.
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• 3-Layer CNN (Multiclass Classification): 32-64 filters, max pooling, last
dense layer with value of 1 or 6 depending on the classification type.

• 4-Layer CNN (Binary Classification, Multiclass Classification): 32-64-128
filters, last dense layer with value of 1 or 6 depending on the classification
type, batch normalization, ReLU activation, dropout (0.1-0.15-0.35).

• 8-Layer SimpleRNN (Binary Classification, Multiclass Classification): 64-
128-256 units of SimpleRNN layers, followed by 128-64-32-16 units of dense
layers, tanh activation, last dense layer with value of 1, dropout values of 0.2
and 0.3.

• 3-Layer LSTM (Binary Classification, Multiclass Classification): 64-32 units,
tanh activation, last dense layer with value of 1.

• 4-Layer LSTM (Binary Classification): 128-64-32 units, tanh activation, last
dense layer with value of 1.

• 3-Layer GRU (Binary Classification, Multiclass Classification): 64-32 units,
tanh activation, last dense layer with value of 1.

The classification accuracies of the deep learning models and detailed hyperpa-
rameters are explained in the results section for the deep learning approach.

3.4 Machine Learning Models

Several machine learning models were initially tested to address the multi-class
classification task across multiple dimensions of the dataset. The subset used for this
evaluation comprised data from half of the subjects, all stimulus types, the first half
of the trials, all frequency bands, and the first quarter of the time points. Both One-
vs-Rest and One-vs-One classification schemes were employed to accommodate the
nature of the models [2, 22]. Among all tested models, the Random Forest classifier
achieved the highest validation accuracy on this data subset and was subsequently
chosen for further investigation.

The full suite of evaluated models included: Support Vector Machines (SVM)
[19], Random Forests (RF) [10], Logistic Regression (LR) [37], Gradient Boosting
[26], HistGradient Boosting [98], Gaussian Process Classifier [91], Linear SVC
[12], Stochastic Gradient Descent (SGD) Classifier [93], Perceptron [94], Passive-
Aggressive Classifier [21], Ridge Classifier with Cross-Validation [44], Quadratic
Discriminant Analysis (QDA) [78], Nearest Centroid [100], Multi-layer Perceptron
(MLP) [7], Label Spreading [145], Gaussian Naive Bayes [25], Extra Trees Classifier
[32], Decision Tree Classifier [89], and Bernoulli Naive Bayes [77]. The hyperpa-
rameters for each model were set to the default values as specified in scikit-learn
version 1.6.1 [86].
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Figure 3.2: Averaged ERSP responses to different stimuli type across all subjects

To incorporate temporal dynamics into the classification pipeline, several strate-
gies were applied at both the per-subject and per-frequency levels: (1) using all
time points, (2) averaging across all time points, (3) averaging the first and second
halves of the time series, and (4) segmenting time points into distinct intervals.
These approaches enabled a comprehensive analysis of the temporal evolution of
neural activity, providing detailed insights into how visual stimuli modulate brain
responses over time [79]. For each case, the classifier was trained on 70% of the data
and validated on the remaining 30%.

The classification accuracies for the Random Forest model under different con-
ditions for per-subject and per-frequency splits are discussed in the results section
for the machine learning approach.

To visualize the consistent changes in power in frequency bands during record-
ing, the averaged baseline-corrected ERSP is displayed for each stimulus type,
which are as shown in Figure 3.2. Starting from top left to bottom right, the stimuli
are 100% contrast, 5% contrast, 33% contrast, 0% random, 10% random, and 60%
random, respectively. Figure 3.3 shows averaged ERSP activity across all stimuli
for each subject.
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Figure 3.3: Averaged ERSP responses to all stimuli per subject



Chapter 4

Results

This chapter presents the analysis results of deep learning in section 4.1 and classical
machine learning in section 4.2 approaches. Deep learning models applied to
spectrograms were divided into two main categories: (1) selected subjects with
strong gamma responses exposed to 100% and 5% contrast stimuli, referred to as
the binary classification task in the following context; and (2) all subjects across all
stimulus types, referred to as the multiclass classification task. For the deep learning
approach, a subset of five figures is presented in section 4.1, each corresponding
to the deep learning model that achieved the highest validation accuracy among
those listed in Table 4.1. Each figure contains two plots: one showing training and
validation accuracy, and the other showing training and validation loss. Figure 4.1
shows the 5-Layer Dense model for the binary classification task; Figure 4.2 presents
the 5-Layer Dense model for the multiclass classification task; Figure 4.3 displays
the 4-Layer CNN model for the binary classification task; Figure 4.4 illustrates the
4-Layer regularized CNN model for the binary classification task; and Figure 4.5
shows the 4-Layer LSTM model for the binary classification task.

The machine learning approach investigates classification performance on a per
frequency and per subject basis, assessing the impact of feature combinations within
this multi dimensional problem space. Figures 4.6 to 4.14 illustrate the validation
accuracy of the random forest model for various feature combinations at both the
per subject and per frequency levels. These results are discussed in greater detail
in the Machine Learning Approach section 4.2.

4.1 Deep Learning Approach

Each single trial event related spectral perturbation (ERSP) yields a spectrogram
of size (60,350), where each row represents a specific frequency band and each
column corresponds to a time point in the recording. These spectrograms serve
as input features for the deep learning classification models described in the Deep
Learning Models section of the Materials and Methods chapter. As noted earlier,

18
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Architecture Validation Accuracy
3-Layer Dense NN 82.33% (Binary Classification), 31.59% (Multiclass

Classification)
5-Layer Dense NN 83.56% (Binary Classification, Regularized), 83.10%

(Binary Classification), 31.53% (Multiclass Classifica-
tion)

6-Layer Dense NN 82.56% (Binary Classification), 30.94% (Multiclass
Classification)

3-Layer CNN 28.91% (Multiclass Classification)
4-Layer CNN 81.56% (Binary Classification), 85.57% (Binary Clas-

sifcation, Regularized), 29.27% (Multiclass Classifica-
tion)

3-Layer LSTM 75.85% (Binary Classification), 79.55% (Binary Classi-
fication, Bidirectional)

4-Layer LSTM 81.64% (Binary Classification)
3-Layer GRU 79.09% (Binary Classification, Bidirectional)
8-Layer SimpleRNN 48.84% (Binary Classification, Regularized)

Table 4.1: Summary of grouped architectures and their validation accuracies.

two distinct datasets were constructed. The first dataset comprises trials from all
subjects across six stimulus conditions: 100% contrast, 5% contrast, 33% contrast,
0% random (plaid), 10% random, and 60% random, and is treated as a multiclass
classification problem to distinguish among these conditions using the full range
of trials, frequency bands, and time points. The second dataset includes only
participants with strong gamma band responses and contains trials from the 100%
and 5% contrast conditions, and is treated as a binary classification task. For both
tasks, the primary evaluation metric was validation accuracy, supplemented by
training accuracy and loss metrics.

Among the models tested, a simple feedforward network the 5-Layer regularized
Dense model achieved satisfactory validation accuracy with low computational
cost. This model was selected for hyperparameter tuning using Keras Tuner [84],
with the tuning search space defined as described in the Materials and Methods
section. However, the highest validation accuracy of 85.57% was achieved by a
4-Layer regularized CNN model.

The remainder of this section presents a summary of the models evaluated and
their corresponding validation accuracies.

The 5-Layer Dense model comprises fully connected layers of sizes 512, 256,
128, 32, and 1. It uses ReLU activations between layers and a sigmoid activation
in the final layer for binary classification of strong gamma band responders to 5%
and 100% contrast stimuli. As shown in Figure 4.1, the model exhibits clear signs
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Accuracy metric across epochs Loss metric across epochs
Loss: 8.6518e−04, Accuracy: 1, Validation Loss: 1.0583, Validation Accuracy:

0.8310

Figure 4.1: Performance of the 5-Layer Dense Model on Selected Subjects with
strong gamma response

of overfitting: the training loss rapidly drops to zero with perfect (100%) accuracy,
while the validation loss steadily increases and validation accuracy plateaus. This
behavior indicates that the model memorizes the training data but fails to generalize
to unseen examples.

The 5-Layer Dense model comprises fully connected layers with sizes 512, 256,
128, 32, and 6, designed for multiclass classification across all subjects and stimulus
types. ReLU activations are applied between layers, and a softmax activation in the
final layer predicts one of the six stimulus classes. Figure 4.2 illustrates that the
model quickly achieves near perfect training accuracy; however, the validation loss
steadily increases, and validation accuracy plateaus at approximately 31%. This
behavior indicates significant overfitting: the model memorizes the training data
but fails to generalize to unseen examples.

The 4-Layer CNN model begins with a Conv2D layer consisting of 32 filters
with a kernel size of 3 and ReLU activation, followed by a MaxPooling2D layer
to reduce spatial dimensions. This is succeeded by two additional Conv2D layers
with 64 and 128 filters, respectively, each employing ReLU activation to extract pro-
gressively more complex features. The resulting feature maps are then flattened,
and the network concludes with a dense output layer containing a single neuron
with sigmoid activation for binary classification tasks. This compact architecture
balances effective feature extraction with computational efficiency for selected sub-
jects with strong gamma response to 5% and 100% contrast stimuli. As shown in
Figure 4.3, the model exhibits steadily increasing training accuracy, reaching 99.5%
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Accuracy metric across epochs Loss metric across epochs
Loss: 4.7e−2, Accuracy: 0.9991, Validation Loss: 4.5485, Validation Accuracy:

0.3153

Figure 4.2: Performance of the 5-Layer Dense Model on All Subjects Across All
Stimuli

by epoch 30; however, validation accuracy plateaus around 81–83%, and validation
loss increases, indicating overfitting and limited generalization capability.

The 4-Layer regularized CNN model begins with a Conv2D layer containing
32 filters, a kernel size of 3, and same padding to preserve spatial dimensions,
followed by a BatchNormalization layer to stabilize and accelerate training. A ReLU
activation function introduces nonlinearity, and a Dropout layer with a rate of 0.1
helps mitigate overfitting. A MaxPooling2D layer with a pool size of 2 then reduces
the spatial resolution of the feature maps. This pattern is repeated with a Conv2D
layer comprising 64 filters, followed by BatchNormalization, ReLU activation, a
Dropout rate of 0.15, and another MaxPooling2D layer. A third convolutional block
with 128 filters follows the same sequence, incorporating a higher dropout rate of
0.35 for stronger regularization. The resulting feature maps are flattened, and a
Dropout layer with a rate of 0.5 is applied before the final output layer. The model
concludes with a Dense layer comprising a single neuron and sigmoid activation,
making it suitable for binary classification of selected subjects under 5% and 100%
contrast visual stimuli.

This architecture emphasizes training stability and generalization by incorpo-
rating progressive dropout and normalization across layers, offering a balanced
tradeoff between depth, expressiveness, and regularization. The model exhibited
consistent improvement, reaching 92.2% training accuracy by epoch 30, while val-
idation accuracy peaked at 85.6% with a corresponding loss of 0.3554, indicating
effective learning and minimal overfitting. The use of progressive dropout and
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Accuracy metric across epochs Loss metric across epochs
Loss: 4.36e−2, Accuracy: 0.9954, Validation Loss: 0.5431, Validation Accuracy:

0.8156

Figure 4.3: Performance of the 4-Layer CNN Model on Selected Subject with Strong
Gamma Response

normalization techniques helped the model generalize better. Model performance
is illustrated in Figure 4.4.

The 4-Layer LSTM model employs a sequential architecture composed of three
stacked LSTM layers to capture complex temporal dependencies in EEG signals. It
begins with an LSTM layer of 128 units configured with an input shape of (350,60)
and return_sequences=True to preserve the full temporal structure across time
steps. A second LSTM layer with 64 units and a third with 32 units follow, both
maintaining the sequence format. The output is then flattened into a single vector
and passed to a Dense layer with one neuron and sigmoid activation, making it
suitable for binary classification of visual stimuli across selected subjects at 5%
and 100% contrast levels. Unlike earlier designs that relied on bidirectional or
handcrafted recurrent structures, this model emphasizes progressive hierarchical
abstraction of temporal features through depth and sequence retention. During
training over 30 epochs, the model showed steady learning progression: training
accuracy increased from 48.8% to 86.1%, and validation accuracy rose from 53.5%
to 81.6%. Meanwhile, validation loss decreased from 0.6908 to 0.4177, suggesting
effective generalization without clear signs of overfitting. This performance is
illustrated in Figure 4.5.
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Accuracy metric across epochs Loss metric across epochs
Loss: 1.916e−1, Accuracy: 0.9216, Validation Loss: 0.3554, Validation Accuracy:

0.8557

Figure 4.4: Performance of the regularized 4-Layer CNN Model on Selected Subjects

Accuracy metric across epochs Loss metric across epochs
Loss: 3.261e−1, Accuracy: 0.8611, Validation Loss: 0.4177, Validation Accuracy:

0.8164

Figure 4.5: Performance of the 4-Layer LSTM Model on Selected Subjects with
Strong Gamma Response
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4.2 Machine Learning Approach

The classification of baseline corrected single trial ERSP data was formulated as a
multidimensional multitask problem, requiring analysis along two axes: frequency
level (to assess shared patterns across subjects) and subject level (to capture indi-
vidual neural responses). A broad range of classical machine learning models was
first applied to the multiclass classification task. This section presents results for
various feature combinations in both frequency level and subject level classification.
These analyses employed the Random Forest model alongside other models tested
on an initial representative subset of the dataset, as described in the Materials and
Methods section.

The following sections detail the outcomes of the frequency level and subject
level analyses.

4.2.1 Subject-level Analysis

For this analysis, classification was performed at the subject level, training a separate
model for each individual’s single trial ERSP data. This within subject validation
ensured that accuracy metrics reflected each model’s ability to generalize to unseen
data from the same individual. During training, the classifier incorporated variation
across stimulus types, trials, frequency bands, and time points, enabling it to learn
subject specific patterns while accounting for multidimensional variability within
the same individual’s data. The conditions tested were as follows:

i. All stimuli, all trials, all frequencies, all time points.

ii. Stimuli: ’100% contrast’, ’5% contrast’, ’33% contrast’, all trials, all frequencies,
all time points.

iii. Stimuli: ’0% random’, ’10% random’, ’60% random’, all trials, all frequencies,
all time points.

iv. Per frequency, stimuli: ’100% contrast’, ’5% contrast’, ’33% contrast’, all trials,
all time points.

v. Per frequency, stimuli: ’0% random’, ’10% random’, ’60% random’, all trials,
all frequencies, all time points.

vi. Per frequency, stimuli: ’100% contrast’, ’5% contrast’, ’33% contrast’, all trials,
time points segmented into (0–0.33, 0.33–0.66, 0.66–1.0).

vii. Per frequency, stimuli: ’0% random’, ’10% random’, ’60% random’, all trials,
time points segmented into (0–0.33, 0.33–0.66, 0.66–1.0).
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4.2.2 Frequency-level Analysis

At the frequency level, classification was performed by training an independent
model for each frequency band. Cross subject validation ensured that model per-
formance was assessed on previously unseen samples within the same frequency
band. This setup allowed for a more accurate estimation of the model’s ability to
generalize to shared frequency specific patterns. During each training iteration,
variability across subjects, stimulus types, trials, and time points was retained, en-
abling the model to focus on frequency dependent neural features while capturing
the inherent multidimensional structure of the data. The following conditions were
explored:

i. All subjects, all stimuli, all trials, all timepoints.

ii. All subjects, all stimuli, all trials, average of timepoints.

iii. All subjects, all stimuli, all trials, timepoints averaged on the first half.

iv. All subjects, all stimuli, all trials, timepoints averaged on the second half.

v. All subjects, stimuli: ’100% contrast’, ’5% contrast’, ’33% contrast’, all trials, all
timepoints.

vi. All subjects, stimuli: ’0% random’, ’10% random’, ’60% random’, all trials, all
timepoints.

vii. All subjects, stimuli: ’100% contrast’, ’5% contrast’, ’33% contrast’, all trials,
time points divided into three parts (0–0.33, 0.33–0.66, 0.66–1.0).

viii. All subjects, stimuli: ’0% random’, ’10% random’, ’60% random’, all trials,
time points divided into three parts (0–0.33, 0.33–0.66, 0.66–1.0).

4.2.3 Initial Exploratory Cases with Low Validation Accuracy

The following exploratory cases involve initial evaluations using the Random For-
est classifier to identify temporal and stimulus-related conditions that may enhance
validation accuracy. These scenarios were designed to inform more detailed inves-
tigations under per-frequency and per-subject analysis frameworks.

i. All subjects, all stimuli, all trials, all frequencies, all timepoints: 28.32%

ii. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, all frequencies,
all timepoints: 69.05%

iii. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, all frequencies,
average of timepoints: 62%

iv. All subjects, all stimuli, all trials, all frequencies, average of timepoints: 24.79%



CHAPTER 4. RESULTS 26

v. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, first half of
frequencies, average of timepoints: 54.99%

vi. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, second half of
frequencies, average of timepoints: 62.04%

vii. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, first half of
frequencies, first half of timepoints, average: 56.59%

viii. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, second half of
frequencies, first half of timepoints, average: 64.91%

ix. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, first half of
frequencies, timepoints averaged over the second half: 55.11%

x. All subjects, stimuli: ’100% contrast’, ’5% contrast’, all trials, second half of
frequencies, timepoints averaged over the second half: 56.59%

4.2.4 Additional Models and Conditions Tested

The results in this section include the validation accuracy for the alternative models
tested, as discussed in the Materials and Methods section, using the subset dataset.

i. First half of the subjects all stimuli first half of trials first half of the frequencies
first quarter of the timepoints

(a) Gradient boosting ; 22.6%
(b) Hist Gradient boosting: 19.78%
(c) Gaussian Process: 16.63%
(d) LinearSVC: 18.46%
(e) LogisticRegression: 17.91%
(f) SGDClassifier: 16.47%
(g) Preceptron: 17.96%
(h) PassiveAgressive: 19.07%
(i) RidgeClassifierCV: 16.36%
(j) QuadraticDiscriminantAnalysis: 15.97%

(k) NearestCentroid: 22%
(l) MLP: 19.12%

(m) LabelSpreading: 17.19%
(n) GaussianNB: 20.28%
(o) ExtraTreesClassifier: 20.89%
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(p) tree.ExtraTreeClassifier: 17.3%
(q) DecisionTreeClassifier: 18.18%
(r) BernoulliNB: 17.91%

ii. second half of the subjects all stimuli first half of the trials first half of the
frequencies first quarter of the timepoints

(a) LogisticRegression: 17.4%

4.2.5 Random Forest Results for Subject Level and Frequency Level
Analysis

Subject Level Analysis Results

Validation accuracies for the per subject classification cases are visualized using lol-
lipop plots, with a 50% accuracy threshold distinguishing meaningful performance
from chance. The results show that contrast stimuli consistently yield higher vali-
dation accuracies across participants compared to randomized or mixed conditions.
This suggests that contrast stimuli elicit more discriminative and consistent neural
responses, particularly within the gamma frequency range, improving the model’s
ability to differentiate between stimulus types on a per subject basis. Participants
who exhibit elevated gamma band activity demonstrate notably higher classifica-
tion performance, underscoring the significance of individual differences in gamma
band dynamics for decoding accuracy. Furthermore, a combined per subject and
per frequency analysis revealed that frequency bands within the 20–40 Hz range
contribute substantially to model performance. These mid to high frequency bands,
commonly associated with cognitive processing and attentional mechanisms, are es-
pecially prominent in successful classification cases. Temporal analysis also shows
that early post stimulus segments—specifically the first 30% of time points in the
ERSP data—have a pronounced effect on classification outcomes. This indicates
that early neural responses contain temporally localized information critical for ac-
curate stimulus classification. These findings emphasize the importance of subject
specific modeling within the gamma band (20–40 Hz) and early temporal windows,
highlighting how individualized spectral and temporal features can enhance in-
terpretability and accuracy in multidimensional classification approaches for EEG
based visual stimulus decoding.

Figure 4.6 shows per subject classification under three stimulus conditions (all,
contrast only, and randomized), using all frequency bands, all trials, and all time
points. The plots indicate that splitting by contrast only stimuli enables the model
to extract more meaningful features and achieve the highest classification per-
formance, followed by the randomized condition, with the all stimuli condition
yielding the lowest performance.
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Figure 4.7 displays per subject per frequency classification under contrast and
randomized stimulus splits, using all trials and all time points. For contrast stimuli,
subjects 1, 4, 25 and 27 within the 20–40 Hz range contribute most to validation
accuracy. In the randomized condition, subjects 1 and 25 contribute most, with
subject 1 in the 20–40 Hz range and subject 25 in the 1–10 Hz range. This indicates
that a subset of strong gamma responders enhances classification under contrast
stimuli, while a combination of gamma band features and strong responders within
the alpha band improves classification under randomized stimuli.

Figure 4.8 shows the onset time segments for contrast stimuli. The first 33% of
time segments contributes most to classification accuracy, with prominent involve-
ment of the [1–5] Hz and [35–45] Hz bands. The middle segment (33%–66%) shows
a moderate effect from the [35–45] Hz band, while the final segment (66%–100%)
exhibits no single frequency band with a significant impact.

Figure 4.9 presents results for randomized stimuli, which follow a pattern simi-
lar to that of contrast stimuli but with lower overall effect. Nevertheless, the first 33%
of time segments and the [35–45] Hz frequency band contribute more substantially
to validation accuracy than other time segments and frequency bands.
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i. Per Subject, All Stimuli, All Frequencies, All Trials, All Timepoints

Subjects 1, 4, 25, 27 have more effect on the predictability of the results

ii. Per Subject, Stimuli 100%, 5%, 33% Contrast, All Trials, All Frequencies, All
Timepoints

Subjects 1, 4, 14, 24, 25, 27, 31 have more effect on the predictability of the results

iii. Per Subject, Stim-
uli [0%, 10%, 60% Randomization], All Trials, All Frequencies, All Timepoints

Subjects 1, 4, 8, 13, 24, 25, 27 have more effect on the predictability of the results

Figure 4.6: Validation Accuracy for Per subject, Stimuli splits (Contrast, Random-
ized, All), All Trials, All Frequencies, All Timepoints
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iv. Per subject, Stimuli 100% 5% 33% Contrast, All Trials, Per Frequency, All
Timepoints

Subjects 1, 4, 25, 27 in range [20–40 Hz] contribute more to the validation accuracy.

v. Per subject,
Stimuli 0% 10% 60% Randomization, All Trials, Per Frequency, All Timepoints

Subjects 1, 25 in range [20–40 Hz] for subject 1 and [1–10 Hz] for subject 25 contribute more
to the validation accuracy

Figure 4.7: Validation Accuracy for Per Subject, Stimuli Splits (Contrast, Random-
ized), Per Frequency, All Trials, All Timepoints
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vi. Per Subject, Stimuli 100% 5% 33% Contrast, All trials, All Frequencies, Time
Division Based

Time Division 0–0.33t

Time Division 0.33–0.66t

Time Division 0.66–1t

Figure 4.8: Validation Accuracy for Per Subject, Stimuli 100% 5% 33% Contrast, All
Trials, All Frequencies, Time Division Based
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vii. Per Subject, Stimuli 0% 10% 60% Randomization, All Trials, All Frequencies,
Time Division Based

Time Division 0–0.33t

Time Division 0.33–0.66t

Time Division 0.66–1t

Figure 4.9: Validation Accuracy for Per subject, Stimuli 0% 10% 60% Randomization,
All Trials, All Frequencies, Time Division Based



CHAPTER 4. RESULTS 33

Frequency Level Analysis Results

Validation accuracies for per-frequency classification are displayed as lollipop plots
with 40% and 50% accuracy thresholds to facilitate comparison across frequency
bands. Although these frequency-specific results are generally lower than those
from per-subject analyses, a clear pattern emerges: models trained on contrast
stimuli achieve higher validation accuracy than those trained on randomized stim-
uli or on all stimulus types combined. This finding suggests that contrast stimuli
evoke more stable and distinguishable neural signatures even when analysis is re-
stricted to individual frequency bands. While the effect is less pronounced than in
subject-specific models—likely because personalized temporal and spectral context
is excluded—the consistent trend across frequencies underscores the impact of stim-
ulus properties on EEG signal quality. In particular, the gamma band (20–40 Hz)
shows notable accuracy gains with contrast stimuli. These results demonstrate that
frequency-specific analyses, though narrower in scope than subject-informed mod-
els, still reveal how stimulus properties influence neural response patterns. Such
insights will guide future feature-selection strategies that balance generalization
with signal specificity in EEG classification studies.

Figure 4.10 shows that per frequency models under contrast or randomized
stimulus splits perform worse than the corresponding per subject analyses.

As shown in Figure 4.11, the per frequency models for contrast stimuli with
different time segment splits failed to perform as well as the per subject analyses
under the same conditions.

Figure 4.12 shows a similar pattern for randomized stimuli compared to contrast
splits, with slightly weaker performance across time segments in the per frequency
analysis.

Results are much weaker when training on all subjects across all stimulus con-
ditions and time points, whether using all time points, averaging across the entire
recording, or averaging over the first half. Validation accuracy fluctuates around
20%, corresponding to chance level, across different frequency bands, as shown in
Figure 4.13.

Figure 4.14 also demonstrates weak performance in per frequency analysis for
stimuli splits (all, contrast, randomized), across all trials, and for time points (all
and averaged over the second half).
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i. All Subjects, Stimuli 5% 33% 100% Contrast, All Trials, All Timepoints

ii. All subjects, Stimuli 0% 10% 60% Randomization, All Trials, All Timepoints

Figure 4.10: Validation Accuracy for Per Frequncy, Stimuli Splits (Contrast, Ran-
domized), All Trials, All Timepoints
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iii. All Subjects, Stimuli 5% 33% 100% Contrast, All Trials, Time Division Based

Time Division 0–0.33t

Time Division 0.33–0.66t

Time Division 0.66–1t

Figure 4.11: Validation Accuracy for All Subjects, Stimuli 5% 33% 100% Contrast,
All Trials, Time Division Based
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iv. All Subjects, Stimuli 0% 10% 60% Randomization, Time Division Based

Time Division 0–0.33t

Time Division 0.33–0.66t

Time Division 0.66–1t

Figure 4.12: Validation Accuracy for All Subjects, Stimuli 0% 10% 60% Randomiza-
tion, Time Division Based
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All Subjects, All Stimuli, All Trials, All Timepoints

All Subjects, All Stimuli, All Trials, Average of All Timepoints

All Subjects, All Stimuli, All Trials, Average of First Half of Timepoints

Figure 4.13: Validation Accuracy for All Subjects, All Stimuli, Timepoints (All,
Averaged on the whole or the First Half)
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All Subjects, All Stimuli, All Trials, Average of Second Half of Timepoints

All Subjects, Stimuli 100% 5% 33% Contrast, All Trials, All Timepoints

All Subjects, Stimuli 10% 60% 0% random, All Trials, All Timepoints

Figure 4.14: Validation Accuracy for All Subjects, Stimuli Splits (All, Contrast,
Randomized), Timepoints (All, Averaged on the Second Half)



Chapter 5

Discussion

This thesis presents a novel integrated approach for classifying visual stimuli us-
ing EEG-derived event related spectral perturbation (ERSP) data. Our method
addresses multiple dimensions of variability, including individual physiology,
frequency-band dynamics, stimulus characteristics, and post-stimulus temporal
features in single-trial EEG recordings. We applied deep learning architectures
(Dense, CNNs, BiLSTMs, and GRUs) to spectrogram inputs alongside classical
machine learning models (i.e. Random Forests) on manually engineered features.
This dual strategy enabled us to identify both generalizable neural signatures and
subject-specific patterns of brain activity. Our results show that hybrid model-
ing enhances predictive accuracy and neuroscientific interpretability. In particular,
gamma-band oscillations and early post-stimulus activity emerged as key discrim-
inative features, and individual differences in EEG responses were pronounced.
These findings suggest that combining deep and classical methods with targeted
neuroscientific hypotheses provides a powerful framework for EEG-based visual
stimulus classification.

5.1 Deep Learning Insights

The comparative evaluation of deep learning models for EEG-based visual stimulus
classification reveals trade-offs between model complexity, generalization capacity,
and susceptibility to overfitting. The 5-layer dense network, in both binary and
multiclass formats, demonstrated strong memorization of training data but poor
generalization to unseen examples. In the binary classification task where model
was targeting subjects with pronounced gamma-band responses to 5% and 100%
contrast stimuli, the model achieved perfect training accuracy, yet validation ac-
curacy plateaued and validation loss increased (Figure 4.1). This indicates classic
overfitting, where the model learns noise or idiosyncratic features from the training
set rather than generalizable patterns.

39
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Similar behavior was observed in the multiclass setting, where the model at-
tempted to classify all subjects across six stimulus types. Although training accuracy
again approached 100%, validation accuracy remained around 31% and loss steadily
increased (Figure 4.2). These results confirm that the model overfit to the training
distribution, particularly under class imbalance and inter-subject variability.

To mitigate these limitations, convolutional neural networks (CNNs) were in-
troduced. The initial 4-layer CNN, applied to the binary classification task among
gamma-responsive subjects, showed improved learning dynamics. Training accu-
racy neared 99.5% by epoch 30; however, validation accuracy plateaued between
81–83%, and validation loss increased (Figure 4.3). Although CNNs better captured
spatial features in the spectrograms, the model remained vulnerable to overfitting
in the absence of regularization.

To address this, a regularized 4-layer CNN architecture was developed, incor-
porating dropout and batch normalization in deeper convolutional blocks. This
version achieved a more stable training trajectory, reaching 92.2% training accuracy
and 85.6% validation accuracy with a moderate validation loss of 0.3554 (Figure 4.4).
The reduced discrepancy between training and validation performance indicated
enhanced generalization and minimized overfitting.

To leverage temporal dependencies in the spectrograms, a 4-layer long short-
term memory (LSTM) network was also implemented. This model comprised three
stacked LSTM layers and a final dense output layer. It demonstrated effective tem-
poral abstraction: training accuracy improved from 48.8% to 86.1%, and validation
accuracy rose from 53.5% to 81.6%, while validation loss decreased from 0.6908
to 0.4177 (Figure 4.5). These results suggest that temporal modeling offers a ro-
bust approach for learning sequential neural dynamics and avoids overfitting more
effectively than static architectures.

In general, deep learning models showed strong performance in binary clas-
sification tasks, achieving up to 85.57% validation accuracy for subjects with pro-
nounced gamma-band activity. These findings support the suitability of CNNs
and recurrent architectures for learning spatiotemporal features from EEG spectro-
grams, aligning with prior work in neural decoding [60, 97, 99]. CNNs excelled
in capturing spatial-frequency patterns, while recurrent layers effectively modeled
temporal dependencies across trials.

Although convolutional neural networks excel at extracting spatial frequency
features, they are particularly vulnerable to overfitting when trained on limited EEG
datasets without adequate regularization [30, 104, 113]. Without strategies such as
dropout and batch normalization, complex architectures tend to memorize training
examples, resulting in high training accuracy but poor validation performance
[31, 67]. In EEG classification tasks, where signal to noise ratios are low and sample
sizes are small, this overfitting is especially pronounced [129]. Recent work has
shown that implementing normalization and dropout across layers can stabilize
training and improve generalization, even in data constrained settings [47, 69, 102].
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For example, Choo et al. [17] observed significant reductions in overfitting for
motor imagery BCIs when using these techniques, while Roy et al. [95] reported
that models without proper regularization achieved high training but stagnant
validation accuracy.

Recurrent architectures such as bidirectional long short term memory networks
offer an alternative by leveraging both past and future temporal context, which
can yield richer representations and improved generalization in sequential EEG
tasks [120, 139]. Nevertheless, all deep learning models struggled in the multiclass
classification setting, where validation accuracy plateaued near 30%, a challenge
exacerbated by class imbalance and inter subject variability. To address these
limitations, future research should explore cross subject adaptation, pretraining
on larger neurophysiological corpora, and the integration of biologically informed
priors.

5.2 Classical Machine Learning Insights

Across both frequency and subject level analyses, our findings highlight that early
neural responses contain temporally localized information crucial for accurate stim-
ulus classification, consistent with prior work emphasizing the importance of early
poststimulus intervals in decoding visual information [81]. The observed improve-
ments in classification performance further support the idea that stimulus contrast
significantly enhances the discriminability of neural activity [76], even when ana-
lyzed within isolated frequency domains. Although the effect is more pronounced
in subject level models, likely due to the inclusion of personalized temporal and
spectral context, the consistent advantage of contrast stimuli across frequency bands
reinforces the critical role of stimulus characteristics in shaping EEG signal quality
for classification tasks [92].

Notably, the gamma band (20–40 Hz) emerged as a key region of interest, with
contrast stimuli yielding modest but meaningful improvements in classification
accuracy. This observation aligns with Fries’s review, which emphasizes the func-
tional relevance of gamma rhythms in visual processing [27]. While frequency
specific analyses provide a more constrained perspective than subject informed
models, they still reveal how stimulus properties modulate neural response pat-
terns. These insights will guide the development of feature selection strategies that
balance generalization with signal specificity in future EEG classification efforts
[135].

Classical machine learning models, particularly Random Forests, demonstrated
competitive performance in both frequency constrained and subject level condi-
tions. Their effectiveness stems from deliberate feature engineering focused on
spectral power, temporal energy, and band specific characteristics across trials.
These handcrafted features incorporate neurophysiological knowledge, such as the
significance of the gamma band, into model inputs, enabling effective learning even
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with limited data. Unlike deep learning approaches, classical models displayed ro-
bustness to class imbalance and small sample sizes, especially when features were
derived from cognitively relevant frequency bands and time windows. For instance,
features from the gamma band (30–100 Hz) and early poststimulus intervals (under
1000 ms) consistently improved classification accuracy, supporting the hypothesis
that these neural markers reflect perceptual encoding driven by stimulus properties
[28, 39, 112].

Beyond performance, interpretability remains a key strength of classical ap-
proaches. Feature importance scores from Random Forests revealed that stimulus
contrast modulates specific frequency components, aligning with previous studies
reporting increased gamma synchronization in response to stronger visual stimuli.
This interpretability offers valuable insights into the neural dynamics driving clas-
sification and informs future decisions in experimental design and feature selection.

The complementary advantages of classical and deep learning models suggest
that no single method is sufficient for EEG decoding in high dimensional, low
sample contexts. Deep models excel at capturing complex, nonlinear interactions,
whereas classical approaches provide domain informed, interpretable outputs. Hy-
brid frameworks such as deep feature extractors paired with classical classifiers may
offer an effective compromise. Introducing neurobiologically informed constraints,
such as frequency priors or temporal masks, can also reduce overfitting in deep
learning pipelines.

From a neuroscientific perspective, our results underscore the role of stimulus
contrast in shaping early sensory dynamics, particularly within the gamma band.
Participants exhibiting stronger gamma responses, as seen through ERSP visual-
izations, also achieved higher classification accuracy, highlighting the interplay
between neural signal quality and model performance. This reinforces the impor-
tance of individual variability in EEG decoding and supports further exploration
into personalized modeling strategies.

Our recommendation to balance generalization with signal specificity builds
upon Zhang et al.’s review of EEG feature selection methods [135]. By demon-
strating that hybrid pipelines combining deep spectrogram encoders with classical
classifiers using handcrafted features can achieve both high accuracy and inter-
pretability, we provide a practical realization of their proposed framework. These
connections to prior research validate our findings and emphasize the importance of
integrating neuroscientific insight with machine learning techniques in EEG based
visual stimulus classification.

5.3 Conclusions

This study introduced a novel approach for classifying event-related spectral per-
turbations (ERSPs) elicited by visual stimuli, addressing variability across subject



CHAPTER 5. DISCUSSION 43

identity, frequency bands, stimulus characteristics, and post-stimulus temporal dy-
namics. By combining deep learning models (CNNs, BiLSTMs, GRUs) with classi-
cal machine learning methods (notably Random Forests), the analysis showed that
early post-stimulus windows, gamma-band activity, and subject-specific factors
significantly enhanced classification performance. Deep models captured complex
spatiotemporal patterns, while classical methods achieved robust and interpretable
results, particularly under limited data conditions.

These findings highlight that successful EEG-based visual stimulus classifica-
tion benefits not solely from model complexity, but from the strategic integration
of complementary methodologies. Future work should focus on advancing hy-
brid, neurobiologically informed approaches that improve generalization, promote
model interpretability, and deepen understanding of the neural mechanisms un-
derlying visual information processing.

5.4 Future Directions

Building on the current findings, several avenues emerge for future work:

1. Richer Stimulus Paradigms: Expanding the stimulus space to include dy-
namic visual scenes, naturalistic images, or task-relevant cues (e.g., semantic
or affective content) may yield richer neural responses. Multi-dimensional
stimuli could improve model generalizability and offer deeper insight into
visual processing mechanisms.

2. Task Specific Unsupervised and Self Supervised Learning: While unsu-
pervised frameworks particularly contrastive and self supervised methods
like SimCLR, BYOL, and MoCo have shown potential in general use, their
adaptation for task specific scenarios in EEG classification remains under-
explored. Tailoring these approaches to time frequency representations of
EEG data, with task relevant augmentations such as frequency band dropout,
time warping, or adversarial noise, could enable more effective learning of
domain specific features. Task specific comparisons of these models could
offer insights into their suitability and performance for visual stimulus clas-
sification, helping to determine their advantages over conventional methods
in this domain.

3. Synthetic Data Generation: Leveraging GANs, VAEs, or diffusion models
to generate realistic EEG spectrograms could address class imbalance and
scarcity. Importantly, generative approaches should be paired with discrimi-
nators that enforce spectral-temporal plausibility to ensure physiological va-
lidity.

4. Personalized Transfer Learning: Subject-specific fine-tuning, few-shot learn-
ing, and domain adaptation techniques could bridge inter-subject variability.
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Architectures like EEGFormer or transformers with attention mechanisms are
promising in this regard, as they can learn individualized spectral-temporal
embeddings that generalize across participants [107, 118].

5. Neurofeedback and Real-Time Applications: The current framework, while
designed for offline classification, lays the groundwork for future real-time
or closed-loop BCI systems. Such applications would benefit from rapid,
personalized decoding pipelines, potentially incorporating adaptive feedback
loops informed by model uncertainty or signal quality.

This thesis demonstrates that combining classical and deep learning methodolo-
gies, anchored in strong neurophysiological principles, offers a robust path forward
for EEG based visual stimulus classification. As EEG datasets grow in size, diversity,
and ecological validity, models that fuse interpretability, adaptability, and neuro-
scientific insight will be best poised to advance both basic cognitive neuroscience
and applied brain computer interface development.
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