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Abstract

Transformer-based approaches have led to significant improvements in 3D hu-
man pose estimation (HPE) from 2D pose sequences, achieving state-of-the-art
(SOTA) performance. However, current SOTAs fall short of capturing the spatial-
temporal correlations of joints at different levels simultaneously. In this thesis,
we present a joint group spatial-temporal transformer (JSTFormer). This trans-
former consists of three types of transformer encoders, a fusion module, a regres-
sion head, and a center frame extraction module to get the temporal-spatial cor-
relation at different levels and further refine the transformer’s output. We divide
the human joints into three joint groups based on pose grammar. Extensive exper-
iments on two datasets (Human3.6M and MPI-INF-3DHP) demonstrate that our
work achieves competitive performance on benchmarks.
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Chapter 1

Introduction

Monocular 3D human pose estimation is a subfield of computer vision that es-
timates the 3D pose of a human body using a single 2D image or video frame as
input. It is applied to a wide range of applications (e.g. motion capture[33], human-
computer interaction[29], sports analysis[1], and medical diagnosis[39]). There are
two main categories of 3D human pose estimation: direct estimation and 2D-to-
3D lifting approaches. Direct estimation methods focus on directly estimating the
position of body joints in 3D space from 2d images or video frames without inter-
mediately estimating the 2D pose representation. In contrast, 2D-to-3D lifting ap-
proaches aim to reconstruct the 3D human pose from an intermediately estimated
2D pose. It has become popular in 3D human pose estimation, mainly due to the
excellent performance of state-of-the-art 2D pose detectors and more accurate 3d
pose estimation results. The success of 2D-to-3D lifting methods can be attributed
to the robustness of 2D pose detectors and the efficiency of lifting algorithms in
learning complex mapping from 2D joint positions to 3D space.

However, mapping 2D poses to 3D poses is a non-trivial task. Various potential
3D poses could be generated from the same 2D pose due to depth ambiguity and
occlusion[44]. A single 2D pose can correspond to multiple 3D poses because the
third dimension (depth) information is lost during the 2D projection, which leads
to an ill-posed problem when trying to recover the 3D pose from 2D key points.
To alleviate this issue, researchers have proposed different approaches to lifting
2D poses to 3D, including optimization-based methods, geometric constraints, and
deep learning-based methods[[19], [19], [30], [18], [2]]. Several methods exploit ad-
ditional information, such as temporal consistency in video sequences or multiple
views, to improve 3D pose estimation. For example: [30] proposes a method that
incorporates temporal convolutions in a CNN architecture for 3D pose estimation
from 2D key points. It leverages temporal information by utilizing semi-supervised
training with both labeled and unlabeled video data to improve the model’s perfor-
mance. [13] proposes a robust multi-view 3D human pose estimation framework
that effectively utilizes information from multiple camera views to overcome these
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CHAPTER 1. INTRODUCTION 2

challenges and improve the accuracy of the estimated poses. [11] proposes a differ-
entiable pose augmentation framework specifically designed for 3D human pose
estimation to enhance the robustness and generalization capabilities of the pose
estimation model.

On the one hand, CNN-based approaches that rely on dilation techniques can
have limited temporal connectivity, making it difficult to capture long-range de-
pendencies in the data. On the other hand, Recurrent networks[16] can model se-
quential correlation, but they often struggle to capture complex temporal dynam-
ics over long sequences due to their inherent sequential nature. The Transformer
is a deep learning model architecture introduced by [35], which was originally de-
signed for natural language processing (NLP) tasks such as machine translation
but has since been applied to a wide range of applications, including computer
vision[12], speech recognition[7], and reinforcement learning[4]. Moreover, Trans-
formers can process input sequences of varying lengths and capture complex long-
range dependencies, which is beneficial for many temporal tasks, such as video
understanding[10], time-series analysis[34], machine translation[38]. Thanks to
the self-attention mechanism of the transformer, relationships between joints in a
human body and contextual information from the input data can be distinctly cap-
tured, and The transformer architecture has shown great potential for learning tem-
poral representations across frames in sequences. Several notable works, including
[21], [17], [24], and [47] have showcased the remarkable potential of transformer ar-
chitectures in 3D human pose estimation tasks. These approaches effectively cap-
ture complex spatial-temporal correlations, enabling them to achieve state-of-the-
art performance in their respective domains. Concurrently, pose grammar[9] has
been increasingly employed to facilitate the process of 3D pose estimation tasks
more sophisticatedly. The HSTFormer[31] uses an innovative transformer-based
framework designed to structurally model multiple levels of joint spatial-temporal
correlations in a bottom-up fashion. This approach emphasizes the importance of
capturing hierarchical relationships for more accurate 3D pose estimation. Inspired
by pose grammar and the vision transformer architecture, this study integrates a
temporal-spatial transformer encoder and employs a joint group transformer en-
coder to accurately predict 3D human poses in a more formal and sophisticated
manner.



Chapter 2

Related Work

Direct 3D Pose Estimation and 2D-to-3D Lifting are two different approaches to
estimating 3D human poses from 2D images or video sequences. At the early stage,
Direct 3D Pose Estimation is widely adopted. However, Direct 3D pose estimation
generally requires more complex models and training procedures than the 2D-to-
3D lifting approach, making it more difficult to develop, implement, and optimize.

2.0.1 2D-to-3D Lifting

The 2D-to-3D Lifting approach involves a two-step process. First, 2D human
poses are estimated from the input images or video frames. Second, the 2D poses
are ”lifted” or converted into 3D poses. [3] present an simple approach to 3D hu-
man pose estimation by performing 2D pose estimation, followed by 3D exemplar
matching. [27] proposed a simple and effective approach to estimate 3D joint lo-
cations using a fully connected residual network based on 2D joint locations from
a single frame. However, using videos instead of one single image for 3D human
pose estimation offers several advantages due to the availability of temporal infor-
mation. The continuous frames in a video provide context about the motion and
enable the model to capture the dynamics of human movements more effectively.
[14] proposed a method for 3D human pose estimation that leverages temporal
information by using a recurrent neural network (RNN) with Long Short-Term
Memory (LSTM) cells. But many of the earlier works in 3D pose estimation [[40],
[37], [23], [20]] do not explicitly consider the kinematic correlations of human joints
when projecting the joint coordinates to a latent space.

2.0.2 Pose Grammar

Pose grammar is a useful approach to modeling the kinematic correlations of
human joints in 3D human pose estimation.

The idea behind pose grammar is to represent the human body as a hierarchi-
cal structure with rules that govern the possible configurations and relationships

3



CHAPTER 2. RELATED WORK 4

Figure 2.1: Illustration of human pose grammar, which expresses the knowledge of
human body configuration. This figure is from [9]. Inspired by [9], we divide the
human body into three parts based on motor coordination grammar and feed the
three parts into our joint group transformer encoder.

between the joints. By incorporating these rules into the estimation process, a pose
grammar-based method can effectively enforce kinematic constraints and predict
plausible human poses. [9] proposed a deep grammar network, which consists of
a base network that efficiently captures pose-aligned features and a hierarchy of
Bidirectional RNNs (BRNN) on the top to incorporate a set of knowledge regard-
ing human body configuration explicitly. It considers three kinds of human body
dependencies and relations which are kinematics grammar, symmetry grammar,
and motor coordination grammar. [31] utilized transformer architecture and hu-
man pose grammar to capture short-range and long-range dependencies in human
pose sequences. It processes pose sequence in a hierarchical paradigm, from joints
to body parts, and eventually to the entire pose in which four transformer encoders
are concatenated following the kinesiological orders: spatial transformer encoder,
joint temporal transformer encoder, body-part temporal transformer encoder, and
pose temporal transformer encoder.

Inspired by their works, we group the human joints into three groups based
on motor coordination grammar in Figure 2.1. Subsequently, we employ vanilla
transformer encoders to capture the spatial-temporal relationships between joint,
and one joint group transformer encoder to get the spatial-temporal correlation
between joint groups based on motor coordination grammar. In the joint group
transformer encoder, we assign three joint groups to the query, key, and value
components in the multi-head cross-attention mechanism to predict the correla-
tion between each group. In our proposed joint group transformer encoder archi-
tecture, the transformer incorporates position embeddings and multi-head cross-
attention. It includes node feature normalization, a feed-forward aggregator for
attention head outputs, and residual connections. These components enable the
model to scale effectively with stacked layers.



CHAPTER 2. RELATED WORK 5

2.0.3 Vision Transformers

Recently, there has been an emerging interest in applying transformers to vision
tasks.

Vision Transformer (ViT) was introduced in the paper [8]. It demonstrates that
the Transformer architecture, which was initially designed for natural language
processing tasks, could also be effectively applied to computer vision tasks, partic-
ularly image recognition. ViT is a class of models that apply the Transformer ar-
chitecture, originally designed for natural language processing tasks, to computer
vision problems.

In the domain of 3D human pose estimation, ViT has been extensively em-
ployed and has demonstrated promising results. [47] designs a spatial-temporal
transformer structure to comprehensively model the human joint relations within
each frame and the temporal correlations across frames, then outputs an accu-
rate 3D human pose of the center frame. [21] employs a triple attention mecha-
nism to merge multiple hypotheses into a unified representation effectively. By
using three attentions in a transformer, Multi-Hypothesis Transformer for 3D Hu-
man Pose Estimation Model merges multiple hypotheses into a single converged
representation and then partitions it into several diverged hypotheses and there-
fore learns spatial-temporal representations of multiple plausible pose hypotheses.
Subsequently, it partitions this representation into various diverged hypotheses,
enabling the model to learn spatial-temporal representations of multiple plausible
pose hypotheses in a sophisticated manner. [43] employs a distinct temporal trans-
former block to individually model each joint’s temporal motion and a separate
spatial transformer block to capture inter-joint spatial correlations. By alternating
these two blocks, the model achieves superior spatial-temporal feature encoding.
Consequently, [43] surpasses the state-of-the-art approach with a significant im-
provement of 10.9% in P-MPJPE and 7.6% in MPJPE metrics.
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Method

In this thesis, we propose implementing our transformer architecture that in-
corporates spatial and temporal transformer encoders, along with a joint group
transformer encoder and fusion module, to facilitate the lifting process in a formal
context effectively.

As shown in Figure 3.1a, the input data is initially processed through an embed-
ding module (EM), followed by pose temporal transformer encoder (PTTE), joint
group transformer encoder (JGTE), and joint spatial transformer encode (JSTE). As
shown in Figure 3.1b, the PTTE, JGTE and JSTE process different parts of data. The
PTTE gets the entire pose sequence as input. The JGTE partitions the pose into
three joint groups and processes three different joint groups’ sequences. The JSTE
just gets one pose as input. Subsequently, the outputs of the three transformer en-
coders are passed through a fusion module (FM), which fuses the output of the
previous three types of transformers. The output of the FM will respectively go
through regression head (RH) and center frame extraction module (CFEM), there-
fore finally getting the predicted 3D pose sequence and predicted center frame of
the 3D pose sequence.

3.0.1 Embedding Module

The token embedding module (EM) employs a trainable convolutional layer
to project each token into a higher-dimensional feature space. Each 2D pose is
treated as an input token for the embedding module, analogous to the approach
used in ViT. The input sequence for the embedding has a dimensionality of X ∈
R f×(J×2), f is the number of frames of the input sequence, J is the number of joints
of each 2d poses, and 2 indicates joint’s coordinate in 2D space. While the output
sequence from the embedding possesses a dimensionality of Xe ∈ R f×(J×C), C is
the embedding output channel. The process can be expressed as follows:

Xe = CONV(X) = CONV([x1, x2; ...; x f ]) (3.1)

6
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Figure 3.1: (a) The entire 3d pose estimation process. The PTTE predicts the pose
temporal correlation between each frame. The JSTE predicts the spatial correlation
between each skeleton joint in one frame. The JGTE partitions the input human
skeleton into three parts (joint groups) based on motion coordination pose gram-
mar and predicts the temporal and spatial correlation between each joint group.
(b) Input data for PTTE, JGTE and JSTE. About the input data shape, it is R f×(J×C)

for PTTE; R f×(G×C) for JGTE; RJ×C for JSTE. Where f is the frame number in one
pose sequence, J is the joint number in one human, G is the joint number in one
joint group, C is the feature dimension.

where xi ∈ R1×(J×2)|(i = 1, 2, ... f ) indicates the input vector of each frame and xi
contains the information of one 2d pose in one frame. CONV means the convolu-
tional neural network computation.

3.0.2 Pose Temporal Transformer Encoder

To get the temporal pose correlation between each frame, we adopt a pose tem-
poral transformer encoder (PTTE) like the temporal transformer encoder in [47].
As shown in Figure 3.2a, the PTTE uses positional embedding to maintain the po-
sitional information of the sequence. The architecture of PTTE is shown in Figure
3.2c. The process of the embedding module (EM) and summing with positional
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Figure 3.2: (a) The pose temporal transformer encoder (PTTE) architecture. It is in-
spired by the work[47]. The PTTE takes the 3D pose sequence as a token (R f×(J×C))
and output encoded feature Y f×(J×C)

t . It extracts features by considering pose cor-
relations in the pose sequence. Yt contains information of a sequence pose. (b)
Spatial transformer baseline. In this thesis, the JSTE takes the 3D pose of one frame
as a token (RJ×C) and output encoded feature Y J×C

s . It obtains the correlation of
joint correlations of each individual skeleton. Ys contains information of a sequence
pose. (c) the transformer encoder architecture for PTTE and JSTE.

embedding can be expressed as follows:

Xt = Xe + Etpos (3.2)

where Etpos ∈ R f×(J×C) is the positional embedding. After going through the EM
and summing with the positional embedding, we get the PTTE input Xt. The input
sequence X ∈ R f×(J×C) becomes Xt ∈ R f×(J×C), where C is the embedding dimen-
sion. Xt is sent to the layer normalization module and multi-head self-attention.

Scaled Dot-Product Attention is employed to compute attention weights for
each position in the input sequence. As shown in Figure 3.3b, it functions as a
mapping function that maps a query matrix Q, key matrix K, and value matrix V to
an output attention matrix. Q, K and V have dimensions of N × d, where N denotes
the number of vectors in the sequence, and d represents the dimension. A scaling
factor of 1

d is utilized within this attention operation for appropriate normalization,
preventing extremely small gradients when large values of d lead dot products to
grow large in magnitude. Thus the output of the scaled dot-product attention can
be expressed as:

Attention(Q, K, V) = So f tmax(QKT/
2
√

d)V (3.3)



CHAPTER 3. METHOD 9

Figure 3.3: (a)The architecture of transformer encoder. The illustration of the
transformer encoder is followed by ViT[8] (b)The architecture of multi-head self-
attention(MSA) and scale dot-product attention. They are all used in PTTE and
JSTE. h is the head number in MSA.

In the PTTE, d = (J × C)/h, where J is joint number, C is the embedding di-
mension and h is head number of multi-head self-attention. N = f . The Q, K, V are
computed from the embedded feature Z ∈ R f×C by linear transformations WQ, WK
and WV ∈ RC×C:

Q = XWQ, K = XWK , QV = XWV (3.4)

Multi-head Self Attention Layer (MSA) is similar to vanilla transformer en-
coder attention in [20]. It utilizes multiple heads to model the information jointly
from various representation subspaces with different positions. Each head applies
scaled dot-product attention in parallel. The MSA partitions the input data Xt,in
into h heads, allowing each head to independently process the attention mecha-
nism in parallel, as shown in Figure 3.3b.

MSA(Q, K, V) = Concat(H1, ..., Hh)Wout (3.5)

where Hi = Attention(Qi, Ki, Vi), i ∈ [1...h] (3.6)

Subsequently, the independent attention outputs are concatenated and linearly
transformed into the expected dimension. The concatenated output is then pro-
cessed through the feed-forward network (FFN). For the PTTE structure in l-th
layer, the data process can be expressed as follows:

X
′
t,l = MSA(LN(Xt,l−1)) + Xt,l−1, l = 1, 2, ...L (3.7)
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X
′′
t,l = FFN(LN(X

′
t,l)) + X

′
t,l , l = 1, 2, ...L (3.8)

Yt = LN(X
′′
t,l) (3.9)

where Xt,l−1 is the l − 1-th layer output or l-th layer input, LN() denotes the layer
normalization operator. FFN module normally contains 2 fully connected layers, 2
activation layers and 1 dropout layer. The PTTE output is Yt ∈ R f×(J×C). The PTTE
consists of L identical layers and the PTTE output Yt ∈ R f×(J×C) keeps the same
size as PTTE input Xt ∈ R f×(J×C).

3.0.3 Joint Group Transformer Encoder

Inspired by [9] and [21], a joint group transformer encoder (JGTE) receives Yt
and captures the spatial-temporal correlations between joint groups. The process
is shown in Figure 3.4. The JGTE just has one encoder layer.

Figure 3.4: Joint Group Transformer Encoder (JGTE) architecture. It is designed
to measure both spatial and temporal correlations between joint groups. LIN is
a linear layer, and LN is a layer normalization layer, MCA is multi-head cross-
attention, FFN is feed-forward network.

Before implementing the JGTE, the PTTE output(Yt ∈ R f×(J×C)) is partitioned
into 3 parts(Y1 ∈ R f×(5×C), Y2 ∈ R f×(6×C), Y3 ∈ R f×(6×C)) following the motor
coordination grammar[9] shown in Figure 2.1.

Y1, Y2, Y3 = DIV(Yt) (3.10)

Among them, Y1 encapsulates the human torso temporal-spatial information;
Y2 contains human left leg and right arm temporal-spatial information; Y3 contains
human right leg and left arm temporal-spatial information.



CHAPTER 3. METHOD 11

Figure 3.5: Multi-Head Cross-Attention (MCA).

Then to record the temporal and relative positional information of each joint in
each group, those three data will go through linear projection and sum with three
corresponding positional embeddings E jPos1 ∈ R f×(5×C), E jPos2 ∈ R f×(6×C) and
E jPos3 ∈ R f×(6×C) respectively:

Y
′
1 = LIN(Y1) + E jPos1 (3.11)

Y
′
2 = LIN(Y2) + E jPos2 (3.12)

Y
′
3 = LIN(Y3) + E jPos3 (3.13)

After the initial processing, the summed results are subjected to layer normal-
ization and multi-head cross-attention (MCA) mechanisms, which measure the
temporal-spatial correlation among joint groups and has a similar structure to MSA,
as shown in Figure 3.5. The MSA focuses on a specific part of input data, but MCA
is used to get the relation of different input data. For each cross-attention the input
data Y

′
1, Y

′
2 and Y

′
3 are alternatively regarded as query (Q), key (k) and value (V).

Y
′′
1 = Y

′
1 + MCA(LN(Y

′
1), LN(Y

′
2), LN(Y

′
3)) (3.14)

Y
′′
2 = Y

′
2 + MCA(LN(Y

′
2), LN(Y

′
1), LN(Y

′
3)) (3.15)

Y
′′
3 = Y

′
3 + MCA(LN(Y

′
3), LN(Y

′
2), LN(Y

′
1)) (3.16)

After concatenating Y
′′
1 , Y

′′
2 and Y

′′
3 we get Yc1.

Yc1 = Concate(Y
′′
1 , Y

′′
2 , Y

′′
3 ) (3.17)
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Before getting the final output Yj of joint group transformer encoder, Yc1 must
be processed by feed-forward network (FFN) and be divided into Y

′′′
1 , Y

′′′
2 and Y

′′′
3 .

Y
′′′
1 , Y

′′′
2 and Y

′′′
3 will be mapped to their corresponding trainable linear projection

and get concatenated into Yc2 which will be Yj after going through a layer normal-
ization. The process can be expressed as follows:

Y
′′′
1 , Y

′′′
2 , Y

′′′
3 = DIV(Yc1 + FFN(LN(Yc1))) (3.18)

Yj = LN(Concate(LIN(Y
′′′
1 ), LIN(Y

′′′
2 ), LIN(Y

′′′
3 ))) (3.19)

3.0.4 Joint Spatial Transformer Encoder

Joint spatial transformer encoder (JSTE) is adopted to get the joint spatial corre-
lation in one frame. The architecture of the JSTE is like the temporal transformer en-
coder except for the input data format. In the PTTE, the input data is Xt ∈ R f×(J×C),
but in the JSTE, the input data is Xs ∈ RJ×C, where J is the joint number and C is
the feature embedding dimension, as shown in Figure 3.2b. The architecture of
JSTE is shown in Figure 3.2c. The JSTE takes each joint information as a token,
but the PTTE takes one pose information as a token. Following the general trans-
former pipeline to perform the feature extraction among all tokens. Those tokens
are sent to the JSTE after summing with spatial positional embedding. And finally,
get the JSTE result Ys. The JSTE consists of L identical layers and the JSTE output
Ys ∈ RJ×C keeps the same size as JSTE input Xs ∈ RJ×C.

3.0.5 Fusion Module

Inspired by [21], the fusion module (FM) is used to fuse the output of PTTE
Yt ∈ R f×(J×C), JGTE Yj ∈ R f×(J×C) and JSTE Ys ∈ R f×(J×C). The architecture of
FM is the same as the architecture of the JGTE except for the input difference. In
the JGTE, we regard each joint group (Y1, Y2 and Y3) as input, but in the FM, the
inputs are Yt, Ys and Yj which are the outputs of previous three types of transformer
encoder. The output of FM encoder is denoted as Y f ∈ R f×(J×C×3)

3.0.6 Regression Head for 3D Pose Sequence

The regression Head (RH) is used to predict 3d coordinates of the pose se-
quence. In the RH, three linear transformation layers are applied on the FM output
Y f to perform regression to produce the 3D pose sequence Yseq ∈ R f×J×3, where f
is the frame number, J is the joint number, 3 is the joint 3d coordinate. Finally, the
output 3D pose sequence Yseq is used to compute the loss.
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3.0.7 Center Frame Extraction Module

The center frame extraction module (CFEM) works as a full-to-singe scheme
like strided transformer[20] does. The CFEM contains 4 convolution layers, where
3 are used to reduce the frame length and 1 is used as a RH for a single 3d pose.
This module further refines the output from the FM to produce more accurate esti-
mations. The output of CFEM is denoted as Ycenter ∈ R1×J×3, where 1 is the center
frame of pose sequence, J is the joint number, 3 is the joint 3d coordinate.

3.0.8 Loss Function

Our model has two outputs which are 3D pose sequence and 3D pose center
frame. We compute mean Squared Error (MSE) loss for 3D pose sequence and 3D
pose center frame. The MSE loss for the 3D pose sequence can be defined as:

Lseq =
T

∑
i=1

J

∑
J=1

∥Yi
seq, j − Ỹi

seq, j∥2
(3.20)

where the Yi
seq, j is the estimated 3d coordination of j-th joint in i-th frame and Ỹi

seq, j
is the corresponding ground truth. The MSE loss for the center frame of 3D pose
sequence can be defined as:

Lcenter =
T

∑
i=1

J

∑
J=1

∥Yi
center, j − ˜Yi

center, j∥2
(3.21)

where the Yi
center, j is the estimated 3d coordination of j-th joint in i-th frame and˜Yi

center, j is the corresponding ground truth.
Given two loss outputs, Lseq and Lcenter, and their corresponding weights Wseq

and Wcenter, the final loss L can be computed as a weighted sum of the individual
losses:

L = Lseq × Wseq + Lcenter × Wcenter (3.22)

In our experiment Wseq and Wcenter are both 0.5.
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Experiments

4.0.1 Datasets and Evaluation Metrics

We evaluate our model on two commonly used 3DHPE datasets: Human3.6M[15]
and MPI-INF-3DHP[28].

Human3.6M. It is the most widely used indoor dataset for 3D single person
HPE. The dataset includes 11 professional actors performing 17 different actions,
such as sitting, walking, and talking on the phone. The videos of each subject were
recorded from 4 different views in an indoor environment. This dataset contains
3.6 million video frames with 3D ground truth annotation captured by an accurate
marker-based motion capture system. This makes it an ideal dataset for training
and evaluating HPE algorithms. Following the same policy of others [[31], [11],
[25], [21]], 5 subjects (S1, S5, S6, S7, S8) are used for training, and 2 subjects (S9,
S11) are used for testing.

MPI-INF-3DHP. The MPI-INF-3DHP dataset, which contains 1.3 million frames
and features a wider range of motions than Human3.6M, is also extensively used
for 3D human pose estimation due to its large scale and the increased challenge
posed by its inclusion of both indoor and intricate outdoor settings. The training
set consists of 8 subjects performing 8 different activities, while the test set com-
prises 7 subjects. The same as SOTAs [[21], [32], [43], [47]], we train our method
using the training set and evaluate it using the valid frames in the test set.

Evaluation Metrics. Following [[21], [32], [43], [47]], we use the same met-
rics for performance evaluation. For Human3.6M, two evaluation protocols are
adopted to calculate the quantitative results. Protocol #1 measures the mean Eu-
clidean distance in millimeters (mm) between the predicted 3D poses and the ground
truth 3D poses and is referred to as Mean Per Joint Position Error (MPJPE). Protocol
#2 refers to P-MPJPE which is the MPJPE between aligned 3D pose predictions and
ground truths. For MPI-INF-3DHP, evaluation metrics such as the area under the
curve (AUC), percentage of correct keypoints (PCK), and mean per-joint position
error (MPJPE) are employed.

14
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4.0.2 Implementation Details

We implement our proposed method with Pytorch. For Human3.6M, we trained
our JSTFormer from scratch for 200 epochs on 5 NVIDIA RTX 3090 GPUs using
AdamW optimizer with an initial learning rate of 0.0016 and learning rate decay
of 0.99. The batch size was 800 for each GPU. We chose frame sequence length to
be 81 and applied pose flipping horizontally as data augmentation both in training
and testing following [30].

Because, in Human3.6M, the poses from adjacent frames usually contain redun-
dant information since few changes happen between them if the video FPS is large
(25 or 30). Hence, to increase the diversity of the input poses, one way is to collect
a longer pose sequence. But this will increase the computation burden. Following
[31], we collected a pose sequence with a fixed number of frames T=81 and sam-
pled the frames with an interval of 5 in order to cover more temporal information
with fixed computation cost.

For the 2D pose detector, we used the cascaded pyramid network (CPN)[8] on
Human3.6M following [30], and also used the ground truth 2D pose as input for
Human3.6M.

For MPI-INF-3DHP, we trained our JSTFormer from scratch for 50 epochs on 5
NVIDIA RTX 3090 GPUs using AdamW optimizer with an initial learning rate of
0.0016 and learning rate decay of 0.98. But we didn’t sample the frames with an
interval.

4.0.3 Results and Comparisons

Human3.6M. We evaluate our method under two protocols. Tables 4.1 and 4.2
present the outcomes for Protocol 1 of our JSTFormer model, which is trained on
CPN predictions and GT, respectively. By employing both CPN and GT predictions
as input, our model achieves competitive performance.

We compare our method with 10 state-of-the-art methods and report quanti-
tative comparisons of protocol #1 with input 2d pose detected by the cascaded
pyramid network (CPN) in Table 4.1. It can be seen that our method achieves the
2nd best performance. Additionally, our average MPJPE (45.6mm) outperforms
the 3th best result (46.8mm) by 1.2%. Our average MPJPE (45.6mm) is worse than
the best result (43.0mm) by 2.6%. In Eating, Phoneing, Photoing, Siting, Smoking,
Waiting, Walking Down, and Walking actions, our method reaches the second-best
performence.

In Table 4.2, we compare our results with 10 state-of-the-art methods and report
quantitative comparisons of protocol #1 with ground truth (GT) input 2d pose. It
can be seen that our method achieves the 3rd best performance and our average
MPJPE (33.8mm) is worse than the best result (30.5mm) by 3.2%.

In Table 4.3, we compare our results with 9 state-of-the-art methods and report
quantitative comparisons of protocol #1 with ground truth (GT) input 2d pose and
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Table 4.1: Protocol 1 with MPJPE (mm): Reconstruction error on Human3.6M. In-
put 2D joints are acquired by detection. CPN - Cascaded Pyramid Network. Red:
best; Blue: second best. T is the input length. For MPJPE : the lower the better.

Method(CPN) Dir Disc Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Average
Martinez et al.[27] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Hossain et al.[14] ECCV’18 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Zhao et al.[45] CVPR’19 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 60.6 42.1 45.3 57.6
Luvizon et al.[26] CVPR’18 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2
Lee et al.[18] ECCV’18 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
Dabral et al.[6] ECCV’18 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 52.1
GraphSH[40](T=1) CVPR’21 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
GraFormer[46](T=1) CVPR’22 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
MGCN[48](T=1) ICCV’21 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Pavllo et al.[30] CVPR’19 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
UGCN[37](T=96) ECCV’20 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.6
MHFormer[21](T=351) CVPR’22 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
JSTFormer(T=81) Ours 42.3 45.3 43.0 44.5 47.3 54.4 43.6 44.1 55.7 63.1 46.6 42.9 46.3 31.8 32.7 45.6

Table 4.2: Protocol 1 with MPJPE (mm): Reconstruction error on Human3.6M. In-
put 2D joints are ground truth 2D poses. Red: best; Blue: second best. T is the input
length. For MPJPE : the lower the better.

Method(GT) Dir Disc Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Average
Wandt et al.[36] CVPR’19 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9
Martinez et al.[27] ICCV’17 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Zhao et al.[45] CVPR’19 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Hossain et al.[14] ECCV’18 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
VPose[30](T=243) CVPR’19 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
GraFormer[46](T=1) CVPR’22 32.0 38.0 30.4 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2
Liu et al.[24](T=243) CVPR’20 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Ray3D et al.[42](T=9) CVPR’22 31.2 35.7 31.4 33.6 35.0 37.5 37.2 30.9 42.5 41.3 34.6 36.5 32.0 27.7 28.9 34.4
PoseFormer[47](T=81) ICCV’21 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
MHFormer[21](T=351) CVPR’22 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5
JSTFormer(T=81) Ours 31.1 34.1 33.7 31.8 34.4 37.4 34.4 34.2 41.0 43.8 34.3 32.7 33.4 25.4 25.4 33.8

Table 4.3: Protocol 2 with P-MPJPE (mm): Reconstruction error on Human3.6M
with similarity transformation. CPN - Cascaded Pyramid Network. GT - Ground
truth. Red: best; Blue: second best. T is the input length. For P-MPJPE : the lower
the better.

Method(CPN) Dir Disc Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Average
Martinez et al.[27] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Hossain et al.[14](GT) ECCV’18 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
ST-GCN[2](T=7) ICCV’19 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
SGNN[41](T=9) ICCV’21 33.9 37.2 36.8 38.1 38.7 43.5 37.8 35.0 47.2 53.8 40.7 38.3 41.8 30.1 31.4 39.0
Cai et al.[2](T=7)(GT) ICCV’19 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 32.3 39.0
Wandt et al.[36](GT) CVPR’19 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2
Lin et al.[22](GT) BMVC’19 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo et al.[30](T=243)(CPN) CVPR’19 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
P-STMO[32](T=243)(CPN) ECCV’22 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
JSTFormer(T=81)(CPN) Ours 35.2 35.5 36.1 36.1 36.1 36.8 36.7 39.5 44.7 44.4 40.9 34.1 30.9 32.3 30.4 36.6
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detected input 2d pose by the cascaded pyramid network (CPN). Although our
method reaches the 3 best performance (36.6mm), the gap between our method
and the 2nd best result (36.5mm) is just 0.1mm. In some action like Photoing, Siting
Down and Walking Down, out method has the best performance.

MPI-INF-3DHP. We compare our method with 7 state-of-the-art methods ([22],
[5], [37], [21], [43], [32]). The quantitative comparisons on MPI-INF-3DHP are re-
ported in Table 4.4. As seen, although there is a gap between the best result, our
results achieve the 2nd best performance and outperform previous other methods
across the vast majority of subjects and on average.

Table 4.4: Quantitative comparison with the state-of-the-art methods on MPI-INF-
3DHP under three metrics. ↑ indicates the higher, the better. ↓ indicates the lower,
the better. Red: best; Blue: second best. T is the input length.

Method PCK ↑ AUC ↑ MPJPE ↓
Lin et al.[22](T=25) BMVC’19 83.6 51.4 79.8
Chen et al.[5](T=243) TCSVT’21 87.8 53.8 79.1
PoseFormer[47](T=9) ICCV’21 88.6 56.4 77.1
Wang et al.[37](T=96) ECCV’20 86.9 62.1 68.1
MHFormer[21](T=9) CVPR’22 93.8 63.3 58.0
MixSTE[43](T=27) CVPR’22 94.4 66.5 54.9
P-STMO[32](T=81) ECCV’22 97.9 75.8 32.2
JSTFormer(T=81) Ours 97.6 72.2 37.6

4.0.4 Ablation Study

Extensive ablation experiments have been performed on Human3.6M dataset
using CPN poses as input and MPJPE (mm) as the evaluation metric to examine
the impact of various modules and hyperparameters.

Effect of Architecture Modules. We first study the module choices by configur-
ing our modules with different combinations. The results are reported in Table 4.5.
It can be seen that the neural network get the best result when JGTE, Fusion and
Refinement are used. The JGTE plays an important role in the model. The model
gets the largest improvement when adding the Fusion module.

Table 4.5: Ablation study on different encoder combinations. PTTE : Pose Temporal
Transformer Encoder, JSTE : Joint Spatial Transformer Encoder, JGTE : Joint Group
Transformer Encoder

Model PTTE JSTE JGTE Fusion Refinement MPJPE
1 ! ! % % % 48.1
2 ! ! ! ! % 48.0
3 ! ! % ! ! 47.7
4 ! ! ! % ! 47.1
5 ! ! ! ! ! 46.8
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Effect of Architecture Hyper-Parameters. Table 4.6 reports the results of differ-
ent settings of the hyper-parameter T (the input length) and N (the sample inter-
val). It is obvious that when T = 81, N = 5, it gets the best result. Bigger interval
tends to get a better result.

Table 4.6: Ablation study for hyper-parameter setting in the input length (T) and
interval (N).

T 81 243 351
N 1 3 5 1 3 5 1 3 5

MPJPE 48.2 46.5 45.6 46.8 48.1 48.1 51.0 47.7 49.2

Figure 4.1: Qualitative results for several actions in the Humans3.6M dataset. From
left to right: Original RGB image with 2D keypoint predictions using hrnet. 3D
reconstruction using our method (T=81) which uses hrnet output 2d keypoints as
input data. Ground truth 3D keypoints.
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Figure 4.2: Qualitative results for in the wild scenes.



Chapter 5

Conclusion

In this thesis, we present JSTFormer, a transformer that computes the tempo-
ral and spatial correlation between each joint group by taking the joint groups as
query, key, and values into the attention respectively. We also combine the ex-
cellent work of [31], [21] and [47]. The pose temporal transformer encoder cap-
tures the temporal relationships between the poses in each frame, while the joint
spatial transformer focuses on the spatial correlations among each joint. Incorpo-
rating the concept of residual blocks, we develop a fusion module that combines
the outputs of the temporal, spatial, and joint group transformer encoder to refine
the ultimate pose sequences. To refine the fusion module output, we also use a
center frame extraction module to predict the center frame of the pose sequence.
Our method demonstrates competitive performance on Human3.6m and MPI-INF-
3DHP datasets.

There are some limitations in our work. When the human pose is unusual (like
people upside down, people curl up), the prediction fails. This work cannot predict
the video in real-time. For the 10s 60FPS video, it will take about 1 minute to predict
it. When there is camera obstruction, the network cannot get precise results on the
human-occluded parts.

20
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