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Abstract

This thesis introduces ST-ANet, an innovative framework that uses WiFi channel
state information (CSI) to improve human activity recognition. ST-ANet combines
advanced signal processing techniques and machine learning to extract valuable in-
sights from WiFi CSI data. The thesis explains how WiFi CSI data can be collected
without intruding on individuals’ privacy during the data collection process. It
also provides a detailed explanation of the feature extraction method and the dual-
channel spatiotemporal framework used in ST-ANet. Furthermore, it explores deep
learning algorithms for activity recognition, showcasing their effectiveness in han-
dling complex CSI matrices. The main findings of the study highlight the significant
potential of ST-ANet. By utilizing WiFi CSI, this framework achieves higher levels
of accuracy and detail when identifying human activities compared to traditional
deep learning methods. It accomplishes this while ensuring the protection of in-
dividuals’ privacy. The system accurately identifies various activities through the
extracted BVP files. In summary, ST-ANet not only enhances human activity recog-
nition but also finds practical applications in healthcare, smart homes, and security
systems. This framework demonstrates how WiFi CSI data can be harnessed to
improve our understanding of human behavior in various environments.

Keywords: Human Activity Recognition, Deep Learning Algorithms, Artificial
Intelligence, Internet of Things, Slow-Fast, Self-attention Mechanism.
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Chapter 1

Introduction

1.1 The IoT Infrastructure: Building the Foundation for
HAR Research

HAR aims to equip machines with the ability to analyze and interpret human
movements. Using algorithms and computer systems can identify and categorize
various human activities such as walking, running, and jumping. However, it
is essential to note that individual activities can have significant differences. For
example, the patterns present in human activities can reveal specific ideas, habits,
and cultures. We believe that learning these patterns can help machines better
understand human behavior.

In the meantime, the emergence of the IoT has enabled billions of electronic de-
vices and appliances to be equipped with advanced sensors and wireless networks.
Combined with appropriate embedded or cloud computing, these devices have
become smarter and more convenient [1]. This thesis seeks to establish an effective
HAR system within the IoT environment. Furthermore, it aims to integrate this
HAR system with a multi-channel Convolutional Neural Network (CNN) to attain
high precision, efficiency, and low energy consumption in activity recognition.

IoT has spawned numerous wearable intelligent devices and smart home ap-
plications. In addition, adopting 5G communication standards has impacted all
aspects of the world [2]. This technology enables different physical devices to
connect to the Internet and exchange data constantly, and the cost of this data ex-
change is gradually decreasing. As a result, connected devices, including mobile
phones, social networks, and electronic communications collect and transmit real-
time information [3]. The data generated by these devices contain a large amount
of information and knowledge and have become a valuable resource, and master-
ing its use will drive the world toward increased intelligence [4]. The objective of
HAR-related tasks lies in automated comprehension of human activities through
data analysis. This has become an increasingly relevant tool in smart surveillance,
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CHAPTER 1. INTRODUCTION 4

offering potential improvements in safeguarding public areas and critical infras-
tructure.

The vast amount of data generated by the IoT and new communication tech-
nologies have evolved into a new field known as Big Data. Big data encompasses
structured data, such as organizational databases, and unstructured data, such as
images, videos, and audio [5]. As the computational power required by data anal-
ysis exceeds the limits of humans, computers that excel in performing repetitive
tasks at high speed have become crucial. This shift has driven the field of computer
science towards data-driven discoveries and made deep learning one of the hottest
trends in the rapidly evolving digital world.

Figure 1.1: Data transactions in IoT [6].

Inspired by biological observations on human brain mechanisms for processing
natural signals, deep learning has gained much attention in the domain of Artificial
Intelligence(AI) due to its state-of-the-art performance in areas such as speech
recognition [7], natural language processing [8], and computer vision [9]. Figure 1.1
shows that with the emergence of technologies such as cloud computing, big data
storage, and high-speed networks, the convenience of data transactions has enabled
deep learning models to use more diverse and comprehensive data sets. These
advances lead to more effective and efficient data processing and deep learning
models, enabling new and innovative applications in various fields.

The use of visual information is deeply ingrained in the human problem-solving
process. Many real-world problems require visual data to be effectively addressed,
and information processed by humans is also visual. Over the decades, computer
vision has been applied to various scenarios, including medical imaging, surveil-
lance, and self-driving vehicles [10]. As a typical application of deep learning in
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human-computer interaction(HCI), HAR is a data-driven task that requires a large
amount of data for training and evaluation. Hence, the abundant data gathered
from sensors or cameras streamlines the automatic learning and feature extraction
processes in deep learning models. We will leverage deep learning technology to
introduce a HAR model integrated with IoT infrastructure.

1.1.1 Unlocking the Benefits of HAR

The advancements in deep learning have significantly improved the accuracy and
efficiency of HAR systems [11], leading to new opportunities for their applications.
In video surveillance, the application of HAR enhances the performance of surveil-
lance systems by automating the detection and analysis of human motion. The
technology enables the identification and classification of various activities, detect-
ing anomalies or significant events to improve the overall efficiency and accuracy
of the system [12]. Furthermore, by combining human activity recognition and
face recognition technology, the real-time tracking and analysis of human activi-
ties in public spaces can better understand human behavior and improve security
measures accordingly.

In addition, studying HAR can deepen our understanding of human behavior
and movement, leading to new insights and knowledge in computer vision. By
analyzing complex and dynamic human behavior, researchers can gain new insights
into various aspects of human behavior, such as the relationship between body
posture and movement, and the interaction of individuals with their surroundings.
Therefore, exploring and advancing this field can lead to significant advances in
our understanding of human behavior and enhance the intelligence of machines
by providing them with a comprehensive understanding of human behavior and
movements.

By leveraging the power of AI, machines can learn to interpret and understand
problems visually, leading to improved decision-making and problem-solving ca-
pabilities. For instance, in healthcare settings, researchers can monitor patients’
movements and detect anomalies, providing timely alerts to medical professionals.
Furthermore, it can also contribute to smart cities, where urban infrastructure and
services are optimized through advanced technologies [4].

Overall, HAR has the potential to drive the world towards increased intelli-
gence by providing machines with a more comprehensive understanding of human
behavior and movements. Although it may deliver more concerns about privacy
leakage, this still can lead to the development of more positive and effective solu-
tions across a wide range of industries and applications. Additionally, it has the
potential to enhance the intelligence of machines by providing them with a more
comprehensive understanding of human behavior and movements. The utilization
of HAR has the potential to propel the world towards intelligent automation and
facilitate the development of more efficient and effective solutions across a diverse
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range of industries and applications. This serves as the ultimate aim of the present
study.

1.2 Main approaches to HAR and Ways of Data Collection

HAR is a challenging research area due to several factors, including the need for
accurate and efficient recognition algorithms, the robustness required to handle
changes in lighting, perspective, and clothing, and the need to have large annotated
datasets. To overcome these, researchers have investigated two main approaches:
vision-based and sensor-based HAR [13].

In order to classify the various activities performed by humans, they are usually
divided into several groups. The first of these groups consists of gestures, which are
simple movements of the hands or other parts of the body used to convey a specific
thought or meaning. The second category is actions, which are simple activities,
often involving multiple gestures. Interactions represent another activity category,
characterized by the participation of two agents, one of which is always a person.
The other agent can be the object or another person, resulting in human-object or
human-human interaction.

Finally, group activities are the most complex, requiring more than two people
and often involving one or more objects. As such, research related to HAR is
inherently intertwined with different methodologies, scientific statistical analyses,
and meticulous documentation of data generated by human activities that can
illuminate the distinct features of human culture [14].

Despite the advancements, the methodologies employed in human activity
recognition remain limited.

1. Wearable sensors
The advent of the IoT and mobile computing in recent years has fostered an en-
vironment for wearable sensors. These sensors have emerged as a preeminent
form of HAR that can be integrated into portable and wearable devices. Sev-
eral standard wearable sensors are facilitating human activity detection with
the ability to measure signal differences before and after human activities,
like magnetometers and gyroscopes.

2. Environmental sensors
In contrast to wearable sensors, environmental sensors are typically deployed
in the surrounding environment or affixed to particular objects to monitor
alterations in environmental parameters during physical activities, to capture
human activities. Experimental results have indicated that sensors generate
highly detailed data, resulting in rising accuracy in activity classification.
However, environmental sensors are less prevalent than wearable sensors
due to their complex setup requirements.
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3. Kinds of videos
Vision-based HAR has garnered considerable attention due to its widespread
usage in real-world applications. Examples of such applications include
closed-circuit television systems deployed in public spaces and various online
video sites. These facilities, either physical or virtual, with video data as the
primary medium, offer a rich source of HAR data.

Data collection plays a pivotal role in HAR systems, as the quality of the input
data directly affects the subsequent analytical steps. Over time, plenty of datasets
have been employed to validate the efficacy of HAR models. To capture the uniform
patterns, video recording devices, and diverse physical measurement sensors have
been utilized for an extended period. Wearable sensors have garnered significant
popularity due to their affordability, portability, and compatibility with various
devices. However, hybrid sensors that consist of both wearable and environmental
sensors, are also prevalent. Notably, hybrid sensors have gained increased promi-
nence in intricate activity recognition applications owing to the ability to improve
model robustness and performance through multiple sensors [15]. Furthermore,
researchers often generate their datasets by collecting data in various environments
and activity types in alignment with their research objectives. These datasets are
frequently made accessible to the public to encourage further exploration in this
domain.

1.2.1 Challenges in Conventional Human Activity Detection

Figure 1.2: Distinguished by different methods of data collection [13].
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As shown in Figure1.2, there are diverse ways of collecting human activity data.
Vision-based HAR involves analyzing video streams to recognize human activi-
ties. Relevant features such as motion, shape, and color are extracted from the
video stream using computer vision techniques. These features are then used to
classify the activity, such as walking, running, or sitting. Sensor-based HAR, on
the other hand, relies on data from wearable or environmental sensors such as
accelerometers, gyroscopes, and magnetic sensors. The data is processed using sig-
nal processing techniques and machine learning algorithms to identify and classify
activity. Sensor-based approaches are less affected by environmental factors such
as lighting and viewpoint and can provide more detailed information about body
movement.

Vision-based and sensor-based HAR have their strengths and weaknesses, and
the choice of approach depends on the specific application requirements. Vision-
based systems are useful in applications where visual information is important,
such as sports analysis or security monitoring. Sensor-based HAR is well-suited for
applications where privacy is a concern, such as in healthcare or home monitoring,
or where wearable devices are more appropriate, such as sports training or reha-
bilitation. Video-based human activity recognition methods invariably introduce
irrelevant information that is difficult to eliminate, such as intricate backgrounds
or non-target objects.

Recently, HAR has gained prominence due to the proliferation of wearable
devices and wireless network technologies. HAR has proven its value by enhancing
various application areas, particularly improving the quality of life for the elderly
and disabled. While numerous machine learning methods have been explored
for HAR, the ongoing challenge is the most effective approach that balances high
accuracy and interpretability with scalability and efficiency. Equally important is
the need to examine the advantages and drawbacks and to propose a framework
that efficiently utilizes these sensors for precise human activity recognition.

Several recent studies have contributed to HAR research using various sensor-
based methods. In 2016, researchers created a dataset to investigate the impact
of wearable device positioning on activity recognition, utilizing acceleration data
from smartphones and smartwatches [16]. However, a drawback lies in the potential
discomfort and inconvenience of wearing multiple devices simultaneously. In 2018,
another study focused on measuring human biological signals and identifying
activities by attaching wearable sensors to subjects’ lower extremities, joints, and
waist [17]. While providing detailed physiological data, this approach necessitates
participants to wear multiple sensors, which may not be practical for extended use.
In a 2021 study, the Biosignalsplux Researcher Kit was employed, capturing bio-
signals from channels to enhance HAR [18]. However, this method may involve
the burden of carrying additional equipment, and if a smartphone serves as the
data source, it can be constrained by battery limitations. Thus, while sensor-based
approaches offer valuable insights into HAR, they raise concerns about user comfort
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and device practicality.
Wearable sensors have gained popularity for their high recognition accuracy.

However, such systems require users to wear and carry extra devices, which can be
inconvenient and cumbersome. Another popular option is smartphones, equipped
with numerous embedded sensors. Nevertheless, activity recognition may cease
when users forget their smartphones, and sensor usage can deplete the battery.
Consequently, there is a growing interest in identifying novel data sources for
delineating human activities, injecting fresh vitality into this evolving field.

1.3 An Alternative: Wi-Fi CSI

HAR is increasingly important in healthcare for elderly and impaired people, smart
homes, and IoT-based solutions. Wearable and visual-based solutions for HAR
can be limited in residential environments. Thus, device-free sensing technologies
have been investigated, such as WiFi-based approaches. WiFi-based solutions [19]
which take advantage of the fact that human actions between WiFi transmitters and
receivers will influence WiFi signal characteristics. WiFi signals can be generated
without additional cost, and passive activity recognition systems based on WiFi do
not require wearable devices.

Informative characteristics of WiFi have been widely accepted due to the abun-
dant and stable information [20]. CSI provides fine-grained physical layer informa-
tion such as amplitude/phase information for each sub-carrier, making it a possible
candidate for sensor information input for HAR. CSI is measured from radio links
per orthogonal frequency division multiplexing (OFDM) sub-carriers for each re-
ceived packet [21]. However, the high noise ratio of raw measurements makes them
less representative of human activities.

The raw CSI data for activity recognition is collected using transmitters and
receivers. For each packet reception, the data values are extracted into an 𝑁𝑇 ·𝑁𝑅 ·
𝑁𝑆 dimensional matrix, where 𝑁𝑇 and 𝑁𝑅 represent the number of transmitters
and receivers, respectively, and 𝑁𝑆 denotes the number of sub-carrier groups. The
CSI matrix is then flattened into a column vector, with each column representing the
time series of values for each sub-carrier group. If only the magnitude is considered
for activity recognition, ignoring the phase, the example in Figure 1.3 illustrates
the raw data for running, sitting, walking, and standing activities. The raw data
can train machine learning models based on the magnitude. We postulate that
investigating the method of utilizing CSI to capture human activities is a highly
worthwhile pursuit. Firstly, the underlying hardware is exceedingly easy to set
up, potentially even ubiquitous within households. Secondly, CSI offers a unique
capability to mitigate static object interference enabling robust tracking.
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(a) RUN (b) SIT

(c) WALK (d) STAND

Figure 1.3: CSI Phase of Different Activities [22]
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1.3.1 Widar System Overview

With the advancement of signal processing technology, Wi-Fi devices have demon-
strated commendable performance within specific data domains. Researchers in-
troduced Widar 3.0 in 2021 as a Wi-Fi-based human activity recognition system to
facilitate cross-domain recognition. In contrast to their prior works, namely Widar
and Widar 2.0, which primarily tracked general human motion states, Widar 3.0
aspires to achieve a more holistic recognition of overall activities while discerning
movement trends specific to different body parts. The core innovation of this system
centers on domain-independent features related to human posture at a lower-level
signal, capturing the unique dynamics of gestures that remain consistent across
various data domains. As a result, the model necessitates only a single training it-
eration but can be flexibly adapted to diverse data domains. Experimentation across
multiple domain factors, including environment, location, and human orientation,
yielded an impressive recognition accuracy.

Figure 1.4: Common Gestures Utilized in Human-Computer Interaction [23].

In these experiments, gesture data was gathered from five distinct locations and
orientations within each sensing area. The dataset comprises common gestures in
human-computer interaction, such as push, pull, swipe, tap, circle, and zigzag. Fig-
ure 1.4 illustrates sketches of all the gestures in Widar 3.0. The dataset encompasses
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(a) RUN (b) SIT

(c) WALK (d) STAND

Figure 1.5: CSI Phase of Different Activities [22]

a total of 12,000 gesture samples, incorporating contributions from 16 users, span-
ning five locations, encompassing five orientations, entailing six distinct gestures,
and involving five instances for each combination.

The analysis delves into the distribution of velocity components within the
human body coordinate system by examining CSI obtained from Wi-Fi Network
Interface Cards (NICs). The CSI data encapsulates critical frequency and amplitude
information relating to electromagnetic waves, as depicted in Fig. 1.5(a). Each body
part exhibits a unique velocity distribution, serving as a distinctive indicator of
human activity. This underscores the significance of human body reflection signals,
such as Doppler frequency shift (DFS), in conveying essential information about the
dynamic characteristics of human activities, as evidenced in Fig. 1.5(b). However,
DFS is closely tied to an individual’s position and direction, rendering it challenging
to identify specific activities solely through DFS profiles. To tackle this, the authors
developed a technique to derive a body velocity profile (BVP) from a DFS profile.

Fig. 1.5(c) and Fig. 1.5(d) showcase the BVP as a matrix that quantifies the power
distribution of physical velocity within the body coordinate system. Signal power
contributed by any velocity component in the human frame is mapped to a specific
frequency component in the DFS profile of the link connecting the human to the
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Wi-Fi device. This mapping relies on coefficients associated with transmitter and
receiver positions. Deriving the BVP from the DFS profile involves extracting the
principal components of the CSI stream using a PCA-based algorithm, followed by
a short-term Fourier transform to generate the power distribution in the time and
Doppler frequency domains, ultimately yielding the BVP within the DFS profile.

Figure 1.6: Structure of deep learning model for activity recognition [13].

Widar 3.0 incorporates its recognition mechanism, depicted in Figure 1.6, en-
compassing BVP normalization, spatial feature extraction, temporal modeling, and
outlier detection. The normalization phase is pivotal for eliminating extraneous
factors that could disrupt the stability of gesture indicators. Spatial features are ex-
tracted systematically through a Convolutional Neural Network (CNN) applied to
each snapshot of the BVP data. Subsequently, temporal modeling is accomplished
through a Recurrent Neural Network (RNN), with the employment of Gated Re-
current Units (GRUs) to capture temporal dynamics. Lastly, outlier detection is
employed to identify and discard any new activity classes that do not align with
the predefined set. However, it tends to exhibit lower accuracy for activities such
as "push and pull" and "circle." This discrepancy may be attributed to factors like
hand occlusion from particular angles or information loss during the extraction of
BVP data for body parts characterized by significant vertical variations.
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1.4 Exploration of HAR Through Wi-Fi CSI

In the experiment utilizing a WiFi-based system, the WiFi environment’s transmit-
ters and receivers are always equipped with network interface cards (NICs) [19],
which enable capturing the CSI values within the recorded transmissions. To cap-
ture the effect of moving or stationary human bodies on wireless signal propagation
in the channel, NIC tools capture CSI data packets exchanged between transmitters
and receivers. CSI data for human sensing has three dimensions: the number of
antennas, subcarrier data packets per antenna, and timestamp numbers.

The values of each subcarrier represent how the signal propagates through
diffraction, reflection, and scattering, which provides information about the spa-
tial environment. The amount of sub-carriers is determined by the NIC tool’s
bandwidth, and more subcarriers naturally result in higher-resolution data. Addi-
tionally, for each subcarrier, its temporal dynamics indicate environmental changes.

In wireless communication systems, noise can corrupt CSI data, reducing its
accuracy and usefulness. To address this issue, it is crucial to filter the noise and
extract relevant features from CSI data. Multiple studies have identified that Prin-
cipal Component Analysis (PCA) denoising [24] is a common method used for this
purpose. PCA is a statistical technique that enables dimensionality reduction and
feature extraction. It works by identifying the linear combination of raw features
that captures the most significant variation in the data and removes noise from data
by discarding the principal components corresponding to the noise. The remaining
principal components can then be used for feature extraction and classification.

In 2017, a CSI-based system was proposed for Activity Recognition and Moni-
toring (CARM) [19]. The authors addressed the limitations of existing systems that
use machine learning to discover statistical patterns by building a velocity and an
activity model. The former describes the relationship between the frequency of
CSI power changes and the speed of human motion, and the latter describes the
relationship between the speed of motion of different body parts and specific hu-
man activities. The experimental results proved that CARM provides an accurate
WiFi-based approach to identifying human activities.

The authors also address technical challenges, such as noise and environmental
changes. PCA is the main denoising method used in this research. In the context
of CSI streams, PCA can be used to extract the underlying signal corresponding
to the motion of a person or object. According to the analysis of the researchers,
among the multiple principal components obtained, the first principal component
contains most of the noise, and due to the orthogonality of the phase, removing the
first component will not cause a significant loss of human motion information.

During feature extraction, CARM extracts activity features from the frequency
components of different activities at different time scales. These features capture
the duration and frequency of an activity, where duration represents the time spent
performing the activity, and frequency represents the multipath velocity due to
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body motion during the activity. Additionally, CARM also estimates the trunk
and leg velocities using the percentile method introduced in Doppler radar. The
experiment achieved an average accuracy rate of 96%. Commercialization attempts
were also made, and the overall success indicates the direction for future research.

Another research proposed constructing a public WiFi-based activity dataset
named WiAR [25] to reduce time and labor costs, share large amounts of activity
data, and promote the development of wireless sensing in practical applications.
The study considers four factors that influence the dataset: indoor environment,
activity type, activity diversity, and the relative position between transmitters and
receivers. The data is collected from three indoor environments (empty rooms,
conference rooms, and offices). Sixteen actions are included, which are categorized
into upper, lower, and overall actions based on the position of key joints. The
diversity of human activities is analyzed in terms of differences between the same
activities performed by different volunteers.

Similar studies have gradually emerged, signaling a growing recognition of
WiFi-based HAR. These investigations have converged on a shared view regarding
the immense potential of CSI data in advancing HAR. WiFi, which involves the
analysis of CSI values during wireless signal transmission and reception, has risen
as a prominent research focal point within the HAR domain. While researchers
have made substantial strides in this arena, current models grapple with certain
limitations. They face formidable challenges when tackling the complexities of
deep learning and HAR tasks, as these demand the processing of intricate multidi-
mensional data, encompassing both temporal and spatial dimensions, to accurately
discern human activities. Furthermore, the omnipresent specters of noise and in-
terference can erode data accuracy, necessitating the development of more robust
processing methodologies to surmount these challenges.

In response to these formidable challenges, this paper introduces the Spatial-
Temporal Attention-Enhanced Network(ST-ANet), meticulously designed to har-
ness WiFi CSI data for human activity recognition. The ST-ANet bolsters HAR
performance by adeptly capturing spatiotemporal multipath information, thus sur-
mounting the formidable obstacles posed by data complexity and noise interfer-
ence. Specifically, it elevates accuracy by finely delineating dynamic shifts and
signal propagation routes within human activities through spatiotemporal data
modeling. While existing research has made commendable progress, challenges
remain on the horizon. The ST-ANet, which we delve into in the next section,
promises to open new vistas in deep learning and HAR. In Chapter 2, we will
explore Deep Learning Recognition within WiFi-based HAR. Our journey will en-
compass the innovative "SlowFast" Two-pathway Action Recognition Model with its
related studies, and the attention mechanisms enhancing the learning of temporal
features.



Chapter 2

Related Works

In this chapter, we look deep into the realm of Deep Learning Recognition in the
context of WiFi-based HAR. We commence by exploring the intricate landscape of
deep learning methodologies applied to WiFi-based HAR, shedding light on the
transformative potential of these techniques. Within this context, we introduce
the Two-pathway Action Recognition Model known as "SlowFast," which stands as
an exemplar of deep learning innovation in HAR. Moreover, we turn our focus to
the critical facet of enhancing the learning of temporal features, a pivotal element
in the domain of HAR. This enhancement is achieved through attention mecha-
nisms, which play a role in refining the model’s ability to discern temporal nuances
within activity recognition. Within this sphere, we also study the intricacies of
self-attention modules, unveiling their profound impact on temporal feature learn-
ing. Following this, we put our attention to related studies that have harnessed the
power of SlowFast for HAR applications, elucidating the diverse array of insights
and advancements that have emerged from this research avenue.

2.1 Deep Learning Recognition on WiFi-based HAR

Numerous types of deep learning models have been applied to the HAR task.
Currently, two primary paradigms dominate video-based action recognition algo-
rithms: CNN-based and RNN-based methods [11]. CNN-based algorithms are
renowned for their utilization of spatiotemporal information for encoding. This
process entails the direct application of convolution operations to extract temporal
information, resulting in 3D convolutions that encapsulate both the 2D spatial and
temporal features. Notably, they excel in implementing multi-stream network de-
signs that segregate temporal and spatial information extraction [9]. On the other
hand, RNN-based models encompass a diverse range of architectures tailored for
processing sequential data, like time series or text. They incorporate loops within
their structure to facilitate the transfer of information from one sequence step to the
next. In addition to CNN and RNN approaches the Transformer architecture has

16
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emerged as a noteworthy contender in the HAR field [26]. Transformers leverage
attention mechanisms and excel at capturing spatial and temporal relationships in
data.

Figure 2.1: Structure of deep learning model for activity recognition [27].

Figure 2.1 illustrates the differences between the three methods and the funda-
mental concepts underlying the Transformer architecture. Deep learning models
are composed of multiple processing layers that can automatically learn high-level
representations without requiring heavy feature engineering or domain knowledge.
This is especially beneficial for HAR tasks, where features of interest can be com-
plex and challenging to describe. Deep learning models can learn to extract these
features from raw data, such as sensor readings or video frames [27]. For instance,
CNNs are particularly suitable for HAR tasks because they can capture local and
scale-invariant features from time series data.

By using convolutional layers, the network can learn to extract features from
different time steps simultaneously, thus capturing temporal dependencies and
patterns. As shown in Figure 2.1, CNNs have multiple layers of neurons that
can learn to detect both simple and complex features in input data, similar to the
specialized cells in the brain’s visual cortex that detect edges, lines, and other visual
features. The four key ideas of CNN are local connection, parameter sharing,
pooling, and multi-layer [28]. Local connectivity means that each neuron is only
connected to a small part of the input, allowing the network to learn spatially
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local features. Parameter sharing means that all neurons in a given layer use the
same weights, reducing the number of parameters and improving generalization.
Pooling is a down-sampling operation that reduces the size of feature maps and
helps make the network invariant to small spatial translations. Multi-layer refers
to multiple convolutional and fully connected layers to enable the network to learn
more and more abstract features.

In addition, the success of RNNs in NLP has drawn researchers’ attention to
their potential in HAR. For instance, long short-term memory (LSTM) networks [29],
are used to explore temporal relationships in data, capturing how activity evolves.
RNNs are great for modeling time series because they can extract both temporal
and semantic information. They can remember previous information and use it to
influence the output of subsequent nodes in the short term. However, to capture
long-term dependencies, the LSTM structure includes three special gates: the input,
the output, and the forget gate.

RNNs and their variants can improve prediction accuracy with more data [30],
which can only handle data of a predefined size. Predictions vary over time, making
RNNs more sensitive to changes in input data. In HAR, RNNs and their variants
are good at exploiting temporal correlations in human activities [31], which is
crucial for recognizing them. Researchers have exploited LSTMs to learn complex
dependencies across time in features extracted by deep learning models from range-
Doppler maps [32]. Through the cooperation of CNN and LSTM, the task of
simultaneously exploring spatial and temporal information is completed.

Furthermore, the recent Transformer architecture is based on an attention mech-
anism that enables the model to selectively focus on different parts of the input
sequence during computation [33]. This architecture can be utilized for feature ex-
traction from images by dividing the image into smaller blocks, which are concate-
nated and enriched with positional embeddings to determine their spatial location.
The attention mechanism in the Transformer architecture uses a dot product to cal-
culate the attention between any two patches, which measures the cosine similarity
between them. This allows the Transformer to capture spatial-temporal features.
With sufficient training data, the Transformer can interconnect with every patch of
the image, making it a powerful tool for computer vision applications. However,
the Transformer architecture has several parameters, making the training process
computationally expensive.
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2.1.1 Two-pathway Action Recognition Model: SlowFast

Figure 2.2: Dual-path networks: SlowFast [34].

The statistics of natural spatiotemporal signals suggest that we should not treat
space and time symmetrically in video recognition tasks. Slow motions are more
common than fast motions, and our perceptual system is biased towards slow
movements [35]. Therefore, it may be beneficial to factor the architecture to treat
spatial structures and temporal events separately. Recognizing categorical spatial
semantics of visual content, such as object identities, can evolve slowly and be re-
freshed relatively slowly. In contrast, the motion being performed can evolve much
faster than their subject identities, such as clapping, waving, shaking, walking, or
jumping. This can be achieved by using fast refreshing frames (high temporal reso-
lution) to effectively model potentially fast-changing motion while recognizing the
categorical semantics at a slower pace.

The authors of a 2019 research [34] propose a new architecture for video recogni-
tion called SlowFast networks. The SlowFast network architecture offers a promis-
ing approach to capturing spatial and temporal information, resulting in improved
accuracy. It consists of two pathways: a Slow pathway that operates at a low frame
rate to capture spatial semantics and a Fast pathway that operates at a high frame
rate to capture motion at fine temporal resolution.

The Slow pathway is a convolutional model in the SlowFast network that oper-
ates on a video clip as a spatiotemporal volume. It processes only one key frame
out of several frames due to a large temporal stride on input frames. The Fast path-
way, on the other hand, is designed to capture motion at a fine temporal resolution
and has a higher input resolution than the Slow pathway [34]. It also maintains
high-resolution features throughout the network hierarchy and does not use tem-
poral downsampling layers. However, its lower channel capacity makes it more
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lightweight and computationally efficient, indicating a tradeoff between temporal
and spatial modeling abilities.

In essence, the Fast pathway works in parallel with the Slow ones and aims
to achieve a fine representation along the temporal dimension, by using a smaller
temporal stride and a higher frame rate than the Slow pathway, enabling it to sample
frames at a higher density.

Lateral connections play a vital role in fusing information from the two pathways
in the SlowFast network to ensure that each path is aware of the representation
learned by the other [36]. This technique has been extensively used in optical flow-
based two-stream networks and image object detection to incorporate different
levels of spatial resolution and semantics. Figure 2.2 shows a lateral connection
between the two paths in each stage. These connections allow the features of
the Fast pathway to be fused into the Slow pathway [37]. However, since the
two pathways have different time dimensions, lateral connections need to perform
transformations to align them. Finally, global average pooling is performed on the
output of each pathway, and the resulting pooled feature vectors are concatenated
to form the input to a fully connected classifier layer.

The SlowFast method is gradually becoming the mainstream approach to video-
based action recognition, owing to its ability to separate temporal and spatial infor-
mation and enhance recognition accuracy. It has gained increasing popularity in
recent years and is now considered one of the leading methods in this field [38]. Its
success has inspired further research into developing more sophisticated algorithms
capable of extracting and processing video data more effectively and efficiently. An
interesting idea to explore further is the tradeoff between temporal and spatial
modeling abilities and their impact on the performance of the SlowFast network.
Consequently, this paper aims to investigate novel and innovative approaches for
leveraging its functionality and enhancing the accuracy of video-based action recog-
nition algorithms. It is anticipated that the impact of the SlowFast methodology
will continue to expand in the future.

2.2 Related Studies Using SlowFast

After Facebook’s AI team proposed the SlowFast network structure, they went on
to propose the Audiovisual SlowFast network [36], which aims to integrate audio
and visual perception by developing a unified representation of sound and vision.
This approach is based on the idea of having two visual paths - a slow and a
fast path - which are deeply integrated with a faster audio path, as shown in Fig-
ure 2.3. The AVSlowFast network fuses audio and visual features at multiple levels,
allowing audio to contribute to a hierarchical audio-visual concept. To enhance
the synchronization between audio and visual modalities, hierarchical audiovi-
sual synchronization is performed, inspired by previous neuroscience research.
This technique enables the network to learn joint audio-visual features [39]. The
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AVSlowFast network is evaluated on six video action classification and detection
datasets, achieving state-of-the-art results. One challenge in training AVSlowFast
networks is the different learning dynamics between audio and visual modalities.
To address this challenge, the authors introduce DropPathway, a regularization
technique that randomly drops audio paths during training. The authors also con-
duct detailed ablation studies to understand the impact of different components on
performance. Overall, the AVSlowFast architecture represents an important step
towards integrating audio and visual perception into a unified representation. It
is also pointed out that the SlowFast network can flexibly increase the path to in-
crease the overall number of feature extractions, and the added feature channels
can further strengthen the learning effect.

Figure 2.3: Add a audio path to SlowFast [36].

SlowFast provides a lightweight and effective spatiotemporal feature learning
network for video-based action recognition research. In a recent study, a new archi-
tecture called spatiotemporal ResNets is introduced for human action recognition
in videos, which combines the advantages of SlowFast two-stream convolutional
networks and residual networks [40]. The model is initialized with pre-trained
ResNets for image classification, and the convolutional dimension map filters are
converted to temporal filters, allowing the network to operate over a large temporal
range of inputs. The entire model is trained end-to-end for hierarchical learning of
complex spatiotemporal features and is evaluated on two standard action recogni-
tion benchmarks, where it outperforms previous state-of-the-art results.

In another study, the importance of object detection algorithms in vision tasks
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was highlighted, and the limitations of SlowFast’s detection algorithm were pointed
out in terms of both detection accuracy and speed [41]. To address this issue, the
paper proposes utilizing YOLOv3, YOLOX, and CascadeRCNN to improve detec-
tion accuracy and speed. The author points out that SlowFast’s detection algorithm
FasterRCNN is not perfect. As a two-stage object detection algorithm, FasterRCNN
generates region proposals through a Region Proposal Network (RPN). The RPN
structure generates region proposals, maps proposals to feature maps, and then
obtains the corresponding feature matrix. The generated feature map is then clas-
sified, and outputted by the fully connected layer to obtain the prediction. In
contrast, YOLOv3 is a one-stage object detection algorithm that takes the entire im-
age as input and directly predicts the location and class of the bounding box using a
neural network. CascadeRCNN, an extension of FasterRCNN, uses multiple stages
of classification and regression to improve accuracy. The paper emphasizes the
importance of enhancing SlowFast’s detection algorithm.

In a 2020 study, the authors propose a joint utilization of 3D convolution and
post-temporal modeling for action recognition in videos [42]. They emphasize the
significance of spatial and temporal information in action recognition, where spatial
information denotes static information in a scene and temporal information cap-
tures the dynamic nature of actions. The authors critique Temporal Global Average
Pooling(TGAP), which fails to make full use of temporal information and ignores
the ordering of temporal features. They suggest using an attention mechanism to
determine which temporal features are more important. To better use temporal in-
formation, the authors replace the traditional temporal global average pooling layer
with a Bidirectional Encoder Representation from Transformer (BERT) layer [43],
which utilizes BERT’s attention mechanism. Their experiments show that BERT’s
attention mechanism outperforms the traditional temporal global average pooling
layer used in 3D CNN architectures such as ResNeXt, I3D, and SlowFast.

To implement BERT on the SlowFast architecture, the authors propose two
alternative solutions: early-fusion BERT and late-fusion BERT. In the early-fusion
BERT, temporal features are concatenated before BERT layers, and a single BERT
module is used. In late-fusion BERT, two different BERT modules are used, one
for each stream, and the outputs of the two BERT modules from both streams are
concatenated. Both BERT solutions outperform the standard SlowFast architecture,
but the improvement of early-fusion methods is limited due to the destruction of the
temporal richness of fast streams [43]. Moreover, the higher temporal resolution in
the SlowFast architecture and the implementation of the two-way structure requires
consideration of the increase in model parameters.

The SlowFast architecture offers numerous advantages, particularly in acceler-
ating video recognition research. In a 2022 study, researchers used a dual-stream
model represented by SlowFast and proposed a Temporal Correlation Module
(TCM) for action recognition in videos [44]. The TCM extracts action visual tempo,
which characterizes action dynamics and temporal scale. It comprises two main
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components: a Multi-scale Temporal Dynamics Module (MTDM) and a Temporal
Attention Module (TAM).

The MTDM is a computer vision component that extracts efficient temporal
dynamic features for fast- and slow-paced motion. It involves three main steps:
feature source utilization, visual similarity computation, and motion estimation. In
the feature source utilization step, the MTDM extracts slow-paced and fast-paced
motion visual rhythm features by sampling deep features at different rates. This can
efficiently utilize single-layer deep features and is not constrained by the backbone
network. On the other hand, the TAM aims to capture local cross-temporal interac-
tions between adjacent frames to enhance temporal information while reducing the
influence of non-important features during training [45]. This module learns tem-
poral attention using a band matrix, where the weights of temporally aggregated
features are computed by considering only the temporal interactions with their k
neighbors. The scope of temporal interactions is determined by a function of the
characteristic temporal dimension, which expands the temporal receptive field and
captures both fast-paced and slow-paced information. TAM can better enhance
useful slow and fast visual beat information and suppress unwanted information,
making it more effective in video recognition.

In summary, TCM combines SlowFast and attention mechanisms to increase the
model’s sensitivity to temporal features. The researchers also verified the method
on multiple datasets, and the results demonstrated that it can accurately identify
the temporal characteristics of human action data [11]. This provides a valuable
reference for future research.

2.3 Enhance Learning of Temporal Features Using Attention
Mechanism

In recent years, there has been an increasing number of studies that enhance the
ability of spatial-temporal SlowFast networks to capture both the local and overall
context of data for a better understanding of human actions. To this end, a proposed
model has integrated the self-attention mechanism to extract four important fea-
tures in video information: spatial information, temporal information, slow motion
information, and fast motion information. By utilizing the self-attention mecha-
nism, the network can extract global semantic context, which can greatly improve
the accuracy of action recognition [46]. Overall, incorporating the self-attention
mechanism into the SlowFast two-way network has shown promising results and
can be applied to various applications.

2.3.1 Self-attention Modules

Self-attention, also known as intra-attention, is an attention mechanism that as-
sociates different positions of a single sequence to compute a representation of
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the sequence. This attention mechanism has been successfully used in various
natural language processing tasks, such as reading comprehension, abstract sum-
marization, textual entailment, and learning task-independent sentence represen-
tations [46].

Vaswani and his team proposed the Transformer [47], a transduction model that
relies entirely on self-attention to compute representations of its inputs and out-
puts, without using sequence-aligned RNNs or convolutions. The Transformer is
a significant advancement in exploiting attention mechanisms because it efficiently
preserves long-range dependencies between distant locations. We aim to apply
self-attention to video feature extraction and study how to extract critical infor-
mation from continuous action frames containing temporal semantic relationships.
This includes considering the spatial structure of the human body and continuous
action changes.

HAR is of great importance in computer vision and pattern recognition, which
involves detecting and classifying human actions. A new short-term HAR model
has been proposed [33], aimed at classifying actions over short time steps in the
past, which is crucial for real-time applications such as robotics.

Figure 2.4: Learnable positional embedding in Transformer architecture [33].

This study is inspired by the Transformer architecture and proposes a unique
approach to solving the problem. The Transformer-encoder takes 2D human pose
estimation, linearly projects it to the dimensions of the model, and adds a class
label before passing it through the encoder, as shown in Figure 2.4. The ViT model’s
learnable positional embedding is also included with each input token. The encoder
is built based on a multi-layer multi-head self-attention and feed-forward network,
and the output class tokens are then passed through a multi-layer perception head
to obtain the final class prediction. The architecture is designed for short-duration
human action recognition, with a focus on real-time applications.

This new approach to HAR has several benefits, including improved accuracy,
robustness, and faster performance. The proposed model can be implemented in
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real-time applications such as robotics, where quick response times are crucial [48].
Overall, this study provides a promising solution to the problem of HAR and
demonstrates the potential of the Transformer architecture in the field of computer
vision and pattern recognition.

2.3.2 SlowFast HAR Models Utilizing Attention Mechanism

In 2020, a study proposed a Spatial-Temporal SlowFast Self-Attention Network for
action recognition [26], which combined global context and long-term dependen-
cies using a self-attention mechanism. The study highlights that human behavior
can be divided into human movement and human action, which require considering
both the movement and the movement of limb parts to solve the action recognition
problem. The proposed network integrates spatial and temporal attention mecha-
nisms to focus on relevant regions and action times. On the spatial scale, human
limbs are regarded as spatial features, while on the temporal scale, the duration of
each action and the resulting spatial coherence are considered as temporal features
for action recognition [49]. The main contribution of this method is the combina-
tion of the SlowFast network and the self-attention mechanism, which addresses
the limitations of local feature-based methods of convolutional neural networks.
Furthermore, this approach combines global context and long-term dependence to
improve accuracy.

Figure 2.5: Overall architecture of The Spatio-Temporal SlowFast Self-Attention
Network [26].

This paper focuses on two main topics: action recognition and self-attention.
Regarding action recognition, the paper highlights the importance of understand-
ing the relationships between people and objects in video data. However, capturing
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long-term dependencies using CNNs remains a challenge. To address this, the pa-
per proposes using self-attention to focus on meaningful regions that are crucial
to the target and can learn long-term dependencies while focusing on important
features. Self-attention has been successfully used in image generation tasks, such
as the Self-Attention GAN (SAGAN). The paper applies this module to video un-
derstanding tasks to enhance the model’s ability to detect long-range interactions
and important contexts, as shown in Figure 2.5. By doing so, the proposed Spatio-
Temporal SlowFast Self-Attention Network can extract four types of features, in-
cluding spatial information, temporal information, slow action information, and
fast action information, to enable better action recognition performance.

The authors have introduced a spatial attention module to capture contextual
information such as hands and faces, which is crucial for determining human behav-
ior. This module is designed to focus on spatial features as well as other contextual
information, such as hands and faces, and is based on the self-attention module for
image understanding. However, it has been modified to find spatially significant
parts of the entire video features. Additionally, the temporal attention module has
been introduced to focus on important regions of the temporal axis. These two
modules are capable of separating slow and fast path features, as the amount of
feature information differs between them. To compute attention maps, video fea-
tures are first projected into two new feature spaces in the attention module. The
output of the attention layer is then multiplied by a scale parameter and added to
the initial input feature map.

The self-attention mechanism employs spatial encoding to enhance the deep
learning model’s comprehension of spatial features [33]. However, attention is
computationally expensive because of the intricate input sequence length. Current
techniques for diminishing the number of tokens produced during spatial encoding
have limitations, including structured spatial compression and unstructured token
pruning. Methods aimed at reducing the computational burden of models linked
with Vision Transformers (ViT) have garnered significant research interest in recent
years.

In a 2022 study, the author proposes Evo-ViT [50], a self-motivated slow-fast
token evolution approach for dynamic Vision Transformers (ViT) that addresses the
inefficiency problem of modeling long-range dependencies among tokens in ViTs
from the beginning of the training process while suitable for structured compression
methods, as shown in Figure 2.6. The proposed approach distinguishes informative
tokens from placeholder tokens for each instance in an unstructured and dynamic
way and updates the two types of tokens with different computation paths.
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Figure 2.6: The pipeline of Evo-ViT: token selection and SlowFast token updat-
ing [50].

ViT is an image classification model that utilizes the Transformer architec-
ture [51]. It divides images into blocks and linearly projects them into positional
embeddings, which are combined with extra class tokens (CLS) to create a global
image representation. These tokens, including the CLS token, are then fed through
stacked transformer encoders for final classification. Each encoder contains a multi-
head self-attention (MSA) module and a feed-forward network (FFN) module. The
MSA module is an extension of the self-attention module, where queries, keys, and
values are split and computed in parallel alongside the image block operation.

Compared with ViT, Evo-ViT solves the problem of slow training speed by
dynamically distinguishing informative tokens from placeholder tokens [52]. This
is achieved by processing each input instance from the very beginning of the training
process. The architecture of Evo-ViT consists of two main modules - a structure-
preserving token selection module and a slow token update module. The structure-
preserving token selection module determines informative tokens and placeholder
tokens by evolving global class attention and leveraging residual connections to
regularize the attentional information flow. In the subsequent slow-fast token
update module, the informative token is carefully evolved through the MSA and
FFN modules. In contrast, the placeholder token is roughly summarized and
updated through the representative tokens.

In conclusion, the proposed method has a unique approach to preserving all
tokens, which ensures complete information flow throughout the training pro-
cess. This enables the model to update tokens at both slow and fast rates, rather
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than simply discarding placeholder tokens. This research provides a novel way of
synthesizing temporal and spatial features, and effectively integrates self-attention
and position encoding, leading to improved model performance in dealing with
complex objects [53]. As a result, this method can enhance the model’s ability to
provide more complete and accurate functions. At the same time, several stud-
ies have examined the effectiveness of the SlowFast model in extracting complex
features from video data. These studies have shown that the SlowFast network
can not only effectively integrate spatio-temporal features, but also demonstrates
good flexibility, making it a promising option for various applications. Building
on this phenomenon, this paper aims to propose an attention mechanism that can
accurately identify spatial features and address the statistical noise generated by
the SlowFast model’s two-way architecture. The proposed mechanism is expected
to improve the ability of feature extraction and enhance its overall performance.



Chapter 3

Methodology and Evaluation

3.1 Proposed ST-ANet: Architecture and Multipath Compo-
nents

Our particular dataset presented challenges because it contains 3D data, featur-
ing consecutive frames of BVP data, with dimensions 𝐻 ×𝑊 and 𝑇 frame rates.
Therefore, the input to our network is represented as 𝑋𝑖𝑛 ∈ R𝐶×𝑇×𝐻×𝑊 , laying the
foundation for the introduction of ST-ANet, an architectural innovation designed
to meet these demands. ST-ANet is in its ability to expertly convert continuous
BVP frame data into video dimensions for processing. Additionally, it utilizes slow
frames, residual blocks, and self-attention encoders. The network is not only cus-
tomized for the complexity of the Widar dataset but also engineered to efficiently
extract and process critical information from the wireless signal data. Furthermore,
due to the generality of the self-attention mechanism, it possesses the versatility to
process video data.

Figure 3.1: Overall architecture of the ST-ANet.

29
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At the heart of ST-ANet is the Slow-Fast framework, as shown in Figure 3.1,
the framework operates at two different frame rates, capturing complex temporal
nuances and providing high temporal resolution. It consists of two basic paths: the
slow path and the fast path.

The slow path is specialized for processing wireless signal data into a spa-
tiotemporal representation. By taking more time steps (𝜏) over the input frames, it
carefully analyzes each 𝜏 frame, allowing it to capture long-term temporal depen-
dencies. In this case,𝑇 = 11 frames represent the period of slow-path processing. In
contrast, the fast path specializes in preserving fine temporal details by exploiting
smaller time steps (𝜏/𝛼), where 𝛼 > 1 represents the frame rate ratio between the
fast and slow paths. This approach produces densely sampled 𝛼𝑇 frames, ensuring
excellent temporal fidelity. In our experiments, the typical value of 𝛼 is set to 8.
However, considering the limited period in the dataset and the short-lived nature
of the action duration, 𝛼 is set to 2, and the fast path processes 𝛼𝑇 = 22 frames.

Both pathways benefit from the introduction of "horizontal connections", imple-
mented to facilitate the exchange of information between them. These connections
enable the slow path to leverage insights gained by the fast path, promoting a com-
plete understanding of the data. By fusing temporal features extracted by the fast
path, these connections prevent over-fitting while preserving the overall nature of
the data.

In the complex framework of ST-ANet, "residual blocks" play a crucial role in
enhancing feature extraction. These modules draw inspiration from the success
of Residual Networks and are positioned in the architecture. What sets them
apart is their adaptation to the slow paths. It is worth noting that in the slow
path, these residual blocks are carefully integrated, but with the introduction of
temporal convolutions in the lateral connections, as opposed to relying solely on 2D
convolution kernels. This design choice meets the need for a larger spatial receptive
field, especially when analyzing fast-moving objects. At the same time, it ensures
that the features to be fused can also be converted into the same dimension size.

To further enhance the processing capabilities of cascaded features derived
from dual-path CNN cascades, ST-ANet integrates a "self-attention encoder". This
addition endows the network with the ability to focus on relevant temporal and
spatial contexts in the data. Thanks to the self-attention mechanism, self-attention
encoders excel at capturing complex data relationships. By applying self-attention
to concatenated features, the network acquires the ability to discern and emphasize
relevant temporal and spatial cues. This enhancement enables the network to excel
in complex tasks, including but not limited to video understanding, precise object
recognition, and accurate action recognition. Therefore, the self-attention encoder
positions ST-ANet as a powerful tool in the field of deep learning, especially in the
fields of video analysis and data understanding.
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3.1.1 Fast Pathway: Capturing Temporal Information

Figure 3.2: The fast pathway operates at higher frame rates.

The fast path emerges as a dynamic counterpart to its slower sibling, the slow path.
Unlike the slow path, the fast path operates at a higher frame rate, enabling it to
process video frames at an accelerated pace. This acceleration is a key advantage
as it allows the fast path to capture temporal information.

Within this accelerated journey, the fast path encounters a sequence of video
frames, denoted as 𝑥 𝑓 = 𝑋𝑖𝑛 ∈ R𝐶×𝑇×𝐻×𝑊 . It’s worth highlighting that this path
excels in handling consecutive frames, which is crucial when operating at a higher
frame rate, typically at T = 22 frames per second.

The distinguishing feature of the fast path lies in its convolutional layers, as
shown in Figure 3.2. Much like its slower counterpart, these layers play a funda-
mental role in extracting features from individual frames. However, their primary
focus within the fast path is the detection of motion and dynamic patterns within
the video data. To enhance ST-ANet’s capacity for robust performance and ensure
stable training, we introduce the concept of a residual network, often referred to as
ResNet. This concept has significantly impacted various domains, including image
classification, object detection, and speech recognition. The core innovation of a
residual network addresses the challenges of vanishing and exploding gradients
encountered during the training of deep neural networks. It accomplishes this feat
by incorporating residual blocks and skip connections, leading to more effective
training and improved model performance.
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Figure 3.3: The content of a residual block.

As shown in the figure 3.3. The process begins with an input feature map,
represented as 𝑥𝑛 = 𝐻𝑛−1(𝑥𝑛−1). This represents the feature map at a particular
layer, denoted by 𝑛, which depends on the previous layer 𝑛 − 1. A series of
operations, including convolution, batch normalization, and activation functions,
are applied to the input feature map. These operations result in the learning of a
residual map, denoted as 𝐹𝑛(𝑥𝑛), capturing essential features related to motion and
dynamics. Finally, the learned residual map 𝐹𝑛(𝑥𝑛) is added back to the original
input 𝑥𝑛 , which can be mathematically expressed as 𝐻𝑛(𝑥𝑛) = 𝐹𝑛(𝑥𝑛) + 𝑥𝑛 . The
result of this addition forms the output of the residual block.

A critical choice arises between traditional temporal pooling layers and a novel
approach involving convolutional kernels with a stride of two. This shift in strategy
revolutionizes the game when preserving essential temporal information. Tem-
poral pooling layers aim at reducing the temporal dimension of time series data,
curbing computational demands, and paring down model parameters. However,
temporal pooling selectively cherry-picks representative samples within predefined
time windows.

As the convolution kernel traverses the data, it skips over two time steps at
each slide, efficiently achieving down-sampling within the temporal dimension.
This approach enhances the network’s grasp of temporal patterns and dynamics.
It operates efficiently with fewer parameters, allowing for an increase in network
depth without an undue computational burden. The adaptive nature of stride-two
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convolution empowers the network to autonomously unearth time-related features,
eliminating the need for manual intervention in specifying time pool window sizes.

In summary, replacing temporal pooling with stride-two convolutions enhances
its capacity to represent intricate patterns while mitigating information loss. With
this shift in technique, the Fast Path sets its sights on the potent realm of 3D
convolutions, honing in on temporal features intricately interwoven with motion
and dynamics within videos. These temporal nuances extend their reach to the
domain of action recognition, where the Fast Path excels at profiling actions by
scrutinizing alterations in object position and shape over time. It also shows the
ability to decipher intricate movement patterns like gestures, a critical skill for
recognizing complex actions such as sign language. The fast path in this article
comprises a total of five residual layers, culminating in the final output expressed
as 𝐹Fast = 𝐻(𝑥 𝑓 ).

3.1.2 Slow Pathway: Capturing Spatial Information

Figure 3.4: The slow pathway to capture static spatial information.

In the context of the slow-fast architecture, the slow path assumes a role, primarily
geared toward capturing prolonged temporal dependencies within video data. The
slow path’s operational strategy involves the utilization of a larger time step param-
eter denoted as (𝜏). This distinctive approach facilitates a meticulous examination
of each time step, effectively ensnaring extensive temporal dependencies present in
the video sequence. In this study, we have opted for a 𝜏 value of 2, signifying the
processing of 𝑥𝑠 = 𝑋𝑖𝑛 ∈ R𝐶×𝑇×𝐻×𝑊 with 𝑇 = 11 frames.

The slow path, as shown in Figure 3.4 adopts a convolutional model for treating
video clips as spatiotemporal volumes, a configuration well-suited for spatial fea-
ture extraction. This augmentation significantly enhances our grasp of the spatial
intricacies intrinsic to video content.

A salient characteristic of the slow path lies in the integration of lateral con-
nections, a feature for seamless information exchange between the slow and fast
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paths. These lateral connections are meticulously tailored to align with the tem-
poral dimension, facilitating the amalgamation of fast path features into the slow
path. This amalgamation empowers us with a comprehensive understanding of the
video dataset.

The slow path exhibits prowess in efficiently capturing protracted temporal de-
pendencies within videos, a capability of paramount importance for tasks demand-
ing consideration of object transformations over extended periods. By deploying
convolutional models on video clips, the slow path furnishes us with a deeper com-
prehension of the spatial and temporal nuances inherent in videos. This enriched
understanding proves invaluable for analyzing intricate video data, such as object
motion and action recognition. The inclusion of lateral connections further elevates
the model’s overall performance, countering the risk of over-fitting, preserving data
fidelity, and reinforcing model resilience.

Slow paths hold a role within slow-fast architectures, characterized by their
ability to encapsulate prolonged temporal dependencies and bestow profound in-
sights into video content. This attribute proves indispensable when dealing with
video analysis tasks. The incorporation of lateral connections stands as a testament
to its capabilities, effectively addressing the multifaceted challenges posed by the
analysis of complex video data. Owing to its slower frame processing speed, the
slow path excels in learning spatial features. This proficiency encompasses object
identification and detection within each frame, along with the discernment of object
relationships. For instance, it adeptly identifies players, balls, and courts in basket-
ball game videos, providing invaluable static spatial context for subsequent tasks
such as action recognition. Consequently, the output of the Slow Path is succinctly
expressed as 𝐹slow = 𝐻(𝑥𝑠). Through the slow path, the model furnishes a profound
analysis and comprehension of the static spatial information inherent in the video
dataset.
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3.1.3 Feature Fusion Using Attention Mechanisms

Figure 3.5: Overall architecture of the ST-ANet.

In the field of computer vision, the SlowFast network architecture has become a
strong contender, known for its ability to effectively combine spatial and temporal
features. This fusion capability is at the core of its huge success in tasks such
as action recognition. In the context of SlowFast networks, the incorporation of
attention mechanisms constitutes a key innovation, ushering in a new era of feature
fusion and improved prediction accuracy. Its main function is to enable neural
networks to selectively focus on specific areas of input data while reducing the
relevance of less relevant information. This selective attention mechanism, when
integrated into the SlowFast network, will be key to seamlessly aligning and merging
spatial and temporal features.

The basic principles underpinning the operation of the attention mechanism can
be articulated through mathematical formalism. Let us represent the input feature
tensor as

𝑋𝑎 = 𝑥 𝑓

⊕
𝑥𝑠 ∈ R𝐶×𝑇×𝐻×𝑊

, where 𝑇 represents the time dimension, 𝐶 represents the number of channels, 𝐻
and 𝑊 correspond to the height and width of the spatial dimension, respectively.
In the context of SlowFast networks, spatial and temporal features are represented
in this tensor.
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The attention mechanism, as shown in Figure 3.5, introduces the transformation
of the input tensor𝑋 to calculate the query (𝑄), key (𝐾), and value (𝑉) tensors, which
are the essential components of the attention mechanism:

𝑄 = 𝑋𝑎𝑊𝑄 , 𝐾 = 𝑋𝑎𝑊𝐾 , 𝑉 = 𝑋𝑎𝑊𝑉 (3.1)

Here, 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 represent learnable weight matrices that project the
input tensor into query, key, and value spaces. The dimensions of these weight
matrices are often adjusted to fit the specific design of the network.

The attention weight (𝐴) is calculated as a function of the query (𝑄) and key (𝐾)
tensors:

𝐴 = softmax
(
𝑄𝐾𝑇√
𝑑𝑘

)
(3.2)

In this equation, softmax represents the softmax activation function, and 𝑑𝑘
represents the dimension of the key (𝐾) vector, which determines the scale of the
attention score.

Subsequently, the weighted sum of the value (𝑉) tensors is calculated using the
attention weights (𝐴):

Attention(𝑋𝑎) = 𝐴𝑉 (3.3)

This process is performed in all spatial and temporal dimensions, facilitating
the alignment and fusion of features within the SlowFast network.

The deployment of attention mechanisms in the SlowFast architecture enables
precise alignment of spatial and temporal features, allowing the model to identify
key patterns and relationships between these dimensions. This judicious feature
fusion ensures that spatial and temporal information contributes harmoniously to
the final prediction output, thus improving the efficiency of the network in the field
of action recognition.

3.2 Evaluation Metrics and Experimental Setup

Cross-entropy loss is the main tool for evaluating the model’s competence. In the
context of classification, the mathematical formulation of the cross-entropy loss is
as follows:

𝐻(𝑦, 𝑝) = −
[
𝑦 · log(𝑝) + (1 − 𝑦) · log(1 − 𝑝)

]
(3.4)

Here, 𝐻(𝑦, 𝑝) represents the cross-entropy loss, 𝑦 embodies the actual class
labels, which can take values of either 0 or 1, and 𝑝 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑎))
symbolizes the model’s predicted probability that the input belongs to class 1,
which is typically the positive class of interest.
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One of the attributes of cross-entropy loss lies in its seamless integration with
gradient-based optimization algorithms, including the venerable stochastic gradi-
ent descent (SGD) and its numerous variations. This compatibility streamlines the
computation of gradients and facilitates the adjustment of model parameters dur-
ing the training process. Consequently, our training regimen attains computational
efficiency, leading to accelerated model convergence and more effective learning.

The issue of class imbalance, a common challenge in many real-world datasets,
particularly in human activity recognition tasks, looms large. Fortunately, cross-
entropy loss offers an elegant solution by imposing more significant penalties on
misclassified instances from the minority class, thus addressing the imbalance
issue with finesse. This property encourages our model to assign greater impor-
tance to the accurate identification of rare and critical activities within the dataset.
In essence, cross-entropy loss fosters the generation of well-calibrated probabil-
ity estimates, a critical facet with far-reaching implications, including improved
uncertainty estimation and more robust risk assessment.

In summation, the selection of cross-entropy loss as our primary loss function
stems from a myriad of advantages: its innate interpretability, harmonious synergy
with optimization algorithms, prowess in addressing class imbalance, support for
probabilistic outputs, and a well-documented history of success across various clas-
sification domains. Empirical experiments provide resounding evidence, under-
scoring the astute decision behind this choice. It significantly elevates the overall
efficacy of our model in navigating the intricacies of human activity recognition
grounded in the rich tapestry of Wi-Fi CSI data.

3.3 Widar Dataset

The Widar dataset is a crucial resource within the field of wireless signal analysis,
with a particular emphasis on human gesture recognition, indoor positioning, and
wireless sensing. Researchers and developers frequently turn to this dataset for its
comprehensive insights. At its core, the Widar dataset relies on Wi-Fi CSI mea-
surements, denoted as �̂�, meticulously captured by readily available Wi-Fi devices.
These measurements delve into the intricate multi-path effects of wireless signals
within indoor environments, revealing crucial information about their behavior
at specific time instances (𝑡) and frequencies ( 𝑓 ). The equation representing CSI
measurements is as follows [54]:

�̂�( 𝑓 , 𝑡) =
𝐿∑
𝑙=1

𝛼𝑙( 𝑓 , 𝑡)𝑒−𝑗2𝜋 𝑓 𝜏𝑙( 𝑓 ,𝑡)𝑒 𝑗𝜖( 𝑓 ,𝑡) (3.5)

Here, 𝐿 signifies the number of propagation paths, while 𝛼𝑙 and 𝜏𝑙 represent
the complex attenuation and propagation delay of the 𝑙-th path, respectively. Fur-
thermore, 𝜖( 𝑓 , 𝑡) accounts for the phase error introduced by factors such as timing
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alignment offset, sampling frequency offset, and carrier frequency offset.
To comprehensively understand these CSI measurements in the context of hu-

man activities, DFS (Doppler Frequency Shift) profiles are meticulously calculated.
These profiles provide a perspective by representing the distribution of signal power
over Doppler frequencies. The equation for DFS representation is given as [54]:

�̂�( 𝑓 , 𝑡) = 𝐻𝑠( 𝑓 ) +
∑
𝑙∈𝑃𝑑

𝛼𝑙(𝑡)𝑒 𝑗2𝜋
∫ 𝑡

−∞ 𝐷𝑙(𝑢)𝑑𝑢 (3.6)

In this equation, 𝐻𝑠 encapsulates the cumulative effect of static signals with
zero DFS (e.g., line-of-sight signals), while 𝑃𝑑 characterizes dynamic signals with
non-zero DFS, such as signals reflected by a person. The term 𝐷𝑙 encapsulates the
Doppler frequency shift associated with the 𝑙-th path.

One of the components of the Widar dataset is the BVP, which serves as a distinc-
tive indicator of human activities. BVP is derived from DFS profiles and represents
the distribution of signal power over velocity components within the body coordi-
nate system. This relationship between DFS profiles and BVP is encapsulated in
the equation [54]:

𝐷(𝑖) = 𝑐(𝑖)𝐴(𝑖)𝑉 (3.7)

Here, 𝐷(𝑖) signifies the DFS profile emanating from the 𝑖-th link, 𝑐(𝑖) accounts
for the scaling factor related to propagation loss,𝐴(𝑖)denotes the assignment matrix
facilitating the connection between DFS profiles and BVP, and𝑉 represents the BVP
matrix embodying velocity components.

BVP estimation from DFS profiles is a critical step in the dataset’s creation and
analysis. This process involves an optimization approach aimed at minimizing the
Earth Mover’s Distance (EMD) between the estimated BVP and the observed DFS
profiles. The optimization problem can be framed as follows [54]:

min
𝑉

(
𝑀∑
𝑖=1

|EMD(𝐴(𝑖)𝑉, 𝐷𝑖)| + 𝜂∥𝑉∥0

)
(3.8)

In this formulation, 𝑀 corresponds to the number of Wi-Fi links, 𝐷𝑖 represents
the observed DFS profile from the 𝑖-th link, 𝜂 serves as a sparsity coefficient and
∥𝑉∥0 quantifies the number of non-zero velocity components within 𝑉 .

Utilizing BVP files, as opposed to raw CSI, offers several distinct advantages
in the context of human activity recognition. BVP data encapsulates physiologi-
cal information related to blood volume changes, making it more informative for
discerning human activities. This physiological data provides a richer source of in-
formation, enabling a deeper understanding of activities such as walking, running,
or even subtle gestures. Moreover, BVP matrices are less susceptible to interference
and noise, which can often obscure the underlying patterns in raw CSI data. By
leveraging BVP, we can enhance the accuracy and reliability of our human activity
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recognition models, ultimately leading to more robust and effective applications in
various fields, from healthcare to smart home automation.

The input data utilized in this article consists of a 22 × 20 × 20 matrix derived
from the BVP data, as shown in Figure 1.5(c) and Figure 1.5(d). This matrix contains
vital information essential for subsequent analysis and serves as a foundational
component for researchers delving into the intricacies of gesture recognition, indoor
tracking, and wireless sensing. It’s important to note that, in the experiments
conducted for this study, we do not take into account the noise and imperfections
that may arise during the collection and computation of BVP data by the Widar
System. Consequently, our approach focuses solely on normalizing the raw data,
and subsequent experiments are carried out on this pre-processed dataset.



Chapter 4

Experiment and Results

4.1 Analysis and Ablation Study

Our research evaluated the ST-ANet model in Human Activity Recognition (HAR).
We optimized hyperparameters and refined the training regimen. We implemented
learning rate scheduling for further refinement and eventually set the learning rate
to 0.01 to balance speed and stability. Using a batch size of 64, we minimized over-
fitting and utilized GPU resources efficiently. We trained the model for 20 iterations
for convergence. We used the SGD algorithm to minimize the loss function. To
assess model performance, we relied on the accuracy metric. This metric provided a
reliable measure of classification ability. We conducted experiments on the WIDAR
dataset, comprising 22 actions with 8000 samples each. We divided the dataset
into 80% for training and 20% for validation. Our experiments aimed to compare
different models on the WIDAR dataset and highlight ST-ANet’s performance in
HAR. This approach will provide valuable insights into the competitive landscape
of HAR models.

40
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Figure 4.1: Training Performance of ST-ANet.

As shown in Figure 4.1, the model was trained over 20 epochs, utilizing a split
dataset into training and validation subsets to facilitate a detailed evaluation of
its learning progress and generalization capability. Key metrics such as training
and validation accuracy and loss were recorded meticulously after each epoch to
monitor performance and identify potential issues like overfitting.

Training involved iterative adjustments of model parameters, optimized through
the backpropagation of errors derived from a loss function. The model began with a
training accuracy of 50.1% and a loss of 1.6179, both of which improved substantially
throughout the training process; by the 20th epoch, the training accuracy had risen
to 97.21%, while the loss had decreased to 0.0823. This demonstrates the model’s
ability to effectively learn and adapt based on the feedback from the training data.

However, the performance on the validation set told a slightly different story.
The initial validation accuracy was 68.66%, peaking at 79.36% during the 7th epoch
before displaying fluctuations and generally stabilizing in the mid-70s range to-
wards the later epochs. This highest point of validation accuracy did not align with
the peak training accuracy, suggesting the model might be overfitting as training
progressed. Similarly, validation loss decreased initially to 0.81706 by the 5th epoch
but then began to increase, suggesting diminishing returns in the model’s ability to
generalize to new data as training continued.

This discrepancy between training and validation performance suggests that
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while the model has strong learning capabilities, it struggles with generalization,
potentially due to overfitting. The peak in validation accuracy around the 7th
epoch indicates that implementing early stopping could help mitigate this issue.
Future improvements might include incorporating techniques such as dropout or
regularization, modifying the model’s architecture, adjusting the learning rate,
or exploring different optimization algorithms to enhance both performance and
generalization capabilities.

In conclusion, the model demonstrated significant learning potential; however,
its ability to generalize effectively remains a challenge. Addressing these issues
is crucial to ensure that the high performance observed during training translates
more effectively to practical applications, thus enhancing the model’s utility in
real-world settings.

4.1.1 Performance Comparison with Existing Models

We provide a comparative analysis of the ST-ANet’s performance against several
established models using the Widar dataset. This comparison is vital for under-
standing how ST-ANet stands relative to traditional and contemporary approaches
in the field of human activity recognition.

The comparisons presented in the experiment were drawn from a variety of
sources to ensure accuracy and reliability. For the Multilayer Perceptron (MLP)
model, foundational insights were sourced from Gardner and Dorling’s work [55].
The Convolutional Neural Network with 5 layers (CNN-5) draws inspiration from
LeCun et al.’s seminal paper [56]. In the case of Recurrent Neural Networks (RNN),
Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) models, the
structural frameworks were primarily adapted from Hochreiter and Schmidhuber’s
pioneering research [57]. Additionally, insights into the GRU model’s implemen-
tation were gleaned from Dua et al.’s recent study on multi-task learning [58].
Finally, the Vision Transformer (ViT) architecture was referenced from Dosovitskiy
et al.[51]. While the Multilayer Perceptron and CNN-5 models were implemented
independently, adjustments were made to the RNN, GRU, and LSTM architectures
to align with the dimensions of the dataset under consideration.

Furthermore, it’s important to note that all models were executed independently,
and the results presented are derived from individual runs. This approach was ne-
cessitated by the BVP processing of the WiDAR dataset, which precluded a direct
comparison with traditional image or video datasets. As a result, each model under-
went separate training and evaluation processes tailored to the dataset’s character-
istics, ensuring that the comparative analysis accurately reflects the performance of
each architecture within the context of WiDAR data. This methodology underscores
the reliability and validity of the findings presented in the table. The table below
presents a detailed comparison of model performance, quantifying each model’s
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accuracy, computational complexity (measured in millions of floating-point opera-
tions, or Flops), and model size (measured in millions of parameters, or Params).

Table 4.1: Widar Dataset - Model Performance

Method Accuracy (%) Flops (M) Params (M)
MLP [55] 67.24 9.15 9.150

CNN-5 [56] 70.19 3.38 0.299
RNN [57] 46.77 0.66 0.031
GRU [58] 62.50 1.98 0.091
LSTM [57] 63.35 2.64 0.121
ViT [51] 64.85 9.28 0.106
ST-ANet 79.36 5.93 0.411

As illustrated, ST-ANet significantly outperforms all other tested models in
accuracy, achieving a 79.36% accuracy rate. Notably, it maintains a moderate level
of computational demand, with 5.93 million Flops, and a relatively low parameter
count at 0.411 million, showcasing an efficient balance between performance and
computational efficiency.

The traditional MLP, while having a high parameter and Flop count, lags in
accuracy at 67.24%. Similarly, CNN-5, despite being more efficient in terms of
parameters, achieves only 70.19% accuracy. Recurrent models like the RNN, GRU,
and LSTM display lower accuracies and variable computational costs, reflecting
the challenges of using such architectures for complex spatial-temporal feature
extraction in activity recognition tasks. The Vision Transformer (ViT), a newer
model type, shows moderate performance in both computational cost and accuracy.

This comparison highlights ST-ANet’s superior capability in accurately recog-
nizing human activities with a more optimized balance of computational overhead
and model complexity, suggesting its suitability for deployment in real-world ap-
plications where both accuracy and efficiency are critical.

4.1.2 Ablation Study

In our investigation of the proposed ST-ANet, we systematically evaluate the impact
of three critical network components: the fast-path, slow-path, and self-attention
mechanism. Our analysis, as presented in Table 4.2, sheds light on the effectiveness
of these components in the context of human activity recognition on the Widar
dataset.

The fast-path focuses on swift data processing, emphasizing speed in feature
extraction. Its operation alone achieved a baseline accuracy of 73.19%, demonstrat-
ing its effectiveness in handling simpler, high-frequency features without extensive
temporal or contextual analysis. This establishes the importance of the fast-path in
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Table 4.2: Comparison of Individual Components’ Performance

Fast-path Slow-path Self-Attention Accuracy (%)
✓ × × 73.19
✓ ✓ × 76.61
✓ × ✓ 75.43
✓ ✓ ✓ 79.36

scenarios where rapid response is crucial. Adding the slow-path to the fast-path im-
proved accuracy to 76.61%. The slow-path processes data more thoroughly, allow-
ing for the extraction of detailed, lower-frequency features over longer timescales.
This increase in accuracy highlights the slow-path’s role in capturing more complex
aspects of human activities that unfold gradually.

The integration of the self-attention mechanism with the fast-path led to an
accuracy of 75.43%. Although this was a smaller increase compared to the dual-
path configuration, it underscores the self-attention’s ability to dynamically refine
the network’s focus on relevant features. This mechanism adjusts feature weighting
based on the contextual importance of the data, enhancing the model’s precision.
The combination of all three components resulted in the highest accuracy of 79.36%,
demonstrating their synergistic effect. This configuration leverages the rapid initial
processing of the fast path, the comprehensive temporal analysis of the slow path,
and the contextual prioritization of the self-attention mechanism. Such interplay
allows the ST-ANet to optimize feature extraction and selection, adapting to the
varying complexities found within activity patterns.

This component-wise analysis not only confirms the effectiveness of each compo-
nent individually but also highlights the improved performance achievable through
their integration. It provides crucial insights for the optimization of deep learning
architectures, particularly for tasks requiring a nuanced understanding and classi-
fication of human activities. Future research could expand this model’s application
across diverse datasets and real-world scenarios, adjusting component configura-
tions to address more complex challenges. Exploring alternative architectures or
newer forms of attention mechanisms may also yield enhancements in performance
and efficiency. This systematic evaluation forms a strong foundation for further ad-
vancements in activity recognition systems, pointing towards a robust approach to
designing more adaptable and efficient networks.
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Conclusion

The deployment of Wi-Fi devices presents a compelling combination of cost con-
trollability and privacy protection, rendering Wi-Fi-based datasets an invaluable
resource for advancing the field of HAR. Within this context, the neural network
model crafted within this signaling system emerges as a powerful and versatile
tool, boasting commendable attributes including reliability, portability, and cross-
platform compatibility. Our empirical results, derived from the training of neural
networks on this dataset, underscore the profound impact of attention mechanisms
on enhancing the accuracy and efficacy of HAR systems.

The integration of attention mechanisms, as observed in our research, has played
a pivotal role in shaping the landscape of HAR, influencing multiple critical aspects:

Firstly, the attention mechanism adeptly prioritizes and selects pivotal features
from the input data through the utilization of learned attention weights. This
dynamic feature selection process ensures that the model concentrates its compu-
tational resources on the most informative aspects of the sensor data.

Moreover, the inclusion of the attention mechanism empowers our model with
an innate understanding of temporal dynamics inherent within the data. This
enhanced temporal modeling prowess significantly augments the model’s ability
to discern intricate patterns, even when they manifest over varying time scales.

Furthermore, the attention mechanism exerts a profound influence on the gen-
eralization capabilities of the model. It equips the network with the ability to adapt
to real-world fluctuations, accommodating diverse environmental conditions, and
gracefully handling variations among different actors. This inherent robustness
ensures that the model remains a stalwart and dependable asset when deployed in
real-world scenarios.

Expanding upon these technical innovations, the incorporation of the slow
dual-channel architecture within our ST-ANet has emerged as a transformative
advancement. This architectural innovation has significantly bolstered the model’s
accuracy in capturing the nuanced spatial and temporal characteristics present
within time series datasets. It is a testament to the fusion of cutting-edge technology
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with the nuances of human activity recognition.
Looking ahead to the future, the landscape of HAR using the Widar dataset

promises further advancements, with an unwavering focus on the technical fron-
tiers. Efficiency Enhancement remains paramount, with a steadfast commitment to
optimizing the computational efficiency of our model. The ultimate goal is to en-
able seamless real-time deployment on resource-constrained devices. Techniques
such as model quantization, model compression, and hardware acceleration will
be rigorously explored to realize this ambitious objective.

Simultaneously, the exploration of Transfer Learning techniques will continue
to be a cornerstone of our research. Transfer learning, characterized by pre-training
models on one environment or participant and fine-tuning them for diverse con-
texts, holds the potential to significantly elevate the model’s generalization prowess.
This strategy also mitigates the data-intensive nature of deep learning.

To fortify our model’s robustness in the face of signal noise and interference,
the development of Generative Adversarial Network (GAN) technology will be a
primary focus. GANs, serving as a powerful denoising tool, will play a pivotal
role in purifying raw sensor data. This enhancement will allow our model to focus
exclusively on the most salient and meaningful signal components. In the context
of real-world deployment, the evolution of deployment strategies will persist as
a focal point. Our commitment to practical implementation remains unwavering,
encompassing adaptability to diverse scenarios, scalability considerations, and an
unyielding commitment to data privacy and user-friendliness.

In summation, our ST-ANet research signifies a profound milestone in the do-
main of HAR utilizing Wi-Fi CSI data. The integration of attention mechanisms
and the innovative dual-channel architecture catapults our model to the forefront
of HAR technology. The outlined trajectory for future work not only extends the
horizons of our research but also lays the foundational framework for the prag-
matic implementation of HAR systems across a diverse spectrum of real-world
environments and applications.
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