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Abstract

Parallel Communicating Grammar Systems (PCGS) were introduced as a language-theoretic treatment of

concurrent systems. A PCGS extends the concept of a grammar to a structure that consists of several gram-

mars working in parallel, communicating with each other, and so contributing to the generation of strings.

PCGS are generally more powerful than a single grammar of thesame type. PCGS with context-free com-

ponents (CF-PCGS) in particular were shown to be Turing complete. However, this result only holds when

a specific type of communication (which we call broadcast communication, as opposed to one-step commu-

nication) is used. We expand the original construction thatshowed Turing completeness so that broadcast

communication is eliminated at the expense of introducing asignificant number of additional, helper com-

ponent grammars. We thus show that CF-PCGS with one-step communication are also Turing complete. We

introduce in the process several techniques that may be usable in other constructions and may be capable of

removing broadcast communication in general.

We also show how an earlier result proving that CF-PCGS only generate context-sensitive languages is

incorrect. We discover that this proof relies of coverability trees for CF-PCGS, but that such coverability

trees do not contain enough information to support the proof. We are also able to conclude that coverability

trees are not really useful in any pursuit other than the one already considered in the paper that introduces

them (namely, determining the decidability of certain decision problems over PCGS).
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Chapter 1

Introduction

Parallel Communicating Grammar Systems (PCGS for short) have been introduced as a language-theoretic

treatment of concurrent (or more general, multi-agent) systems [21]. A PCGS extends the concept of a

grammar to a structure that consists of several grammars working in parallel and contributing to the generation

of strings.

In a PCGS one grammar component is considered the master of the system and the other component

grammars are called helpers or slaves; they all participatein the derivation but may or may not have a di-

rect impact on the generation of the final string produced by the system. The master grammar controls the

derivation which is considered complete as soon as it produces a string of terminals regardless of the state

of the strings in the other components (hence the name helperor slave component). In order for the helper

components to contribute to the derivation, communicationsteps (sometimes called query steps) are required.

In essence a communication step allows the different components in the system to share strings with one an-

other: A grammar proceeds with a communication step by introducing in its string a request for a string from

another grammar. Once a communication step has been introduced, all rewriting steps are put on hold until

the communication is complete, meaning they are put on hold until the requesting grammar(s) receive the

string from the queried component(s).

The location of communication steps in a PCGS will determinewhether a system is centralized or non-

centralized; if the master is the only component that contains query symbols then the system will be con-

sidered centralized; if on the other hand, there are query requests in other components of the system it will

be considered non-centralized. Regardless of whether the system is centralized or non-centralized they com-

municate in one of two ways: returning or non-returning. In areturning system, once a communication

request has been completed the queried component returns toits original axiom and continues the derivation
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CHAPTER 1. INTRODUCTION 2

from there; conversely if a system is non-returning the component string remains intact and the derivation

continues to rewrite that string [5, 23].

The co-ordination of derivation steps within a system can bedefined to progress in a synchronized or

unsynchronized manner. If a system is synchronized, a component must use exactly one rewriting rule per

derivation step unless it has a terminal string. If a system is non-synchronized a component grammar can

chose to wait or rewrite at each derivation step. As with any system there are circumstances that can lead a

PCGS to block; such a block happens if a non-terminal in a component grammar does not have a correspond-

ing rewriting rule, or if a circular query is introduced. If aderivation blocks then no string will be generated

by that derivation [5, 23].

Our main area of interest is the generative capacity of PCGS.It has been shown that a PCGS with com-

ponents of a certain type are more powerful than single grammars of the same type; we will summarize some

results in this respect in Section 3 on page 10. There have also been other attempts to associate the generative

power of PCGS with additional representations, including parse trees [2] and coverability trees [19, 24].

We focus here on PCGS with context-free components (CF-PCGSfor short). Significant findings in

this area include a proof that non-returning PCGS with context free components can generate all recursively

enumerable languages [16]. Combined with the fact that non-returning systems can be simulated by returning

systems [10] based on an earlier result [17], this result establishes that returning PCGS with context-free

components are also computationally complete. An alternative investigation into the same matter consists

in the development of a returning PCGS with context-free components that simulates an arbitrary 2-counter

Turing machine (yet another complete model [11]), thus proving that this kind of PCGS are Turing complete

[7]. On close examination of the derivations of this PCGS simulating a 2-counter machine [7] we noticed

that the returning communication steps used are of a particular kind [22]. In this PCGS multiple components

query the same component at the same time, and they all receive the same string from the queried component;

only then does the queried component returns to its axiom. Throughout the document we will refer to this

style of communication asbroadcast communication. Later work used a different definition, stating that the

queried component returns to its axiom immediately after itis communicated [5]; we will refer to this type

of communication asone-step communication. According to this definition one querying component would

receive the requested string and all the other components querying the same component would receive the

axiom. One consequence is that the CF-PCGS simulation of a 2-counter Turing machine [7] will not hold

with one-step communication, for indeed the proposed system will block after the first communication step.
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Another line of investigation contradicts the result described above. Some authors expected that languages

produced by a CF-PCGS would be recognizable byO(n) space-bounded Turing machines [3]; if proved to

be true this would lead to the conclusion that context-free PCGSs generate only context-sensitive languages,

and that context-free PCGSs are weaker than context-sensitive grammars. This was all subsequently proved

[1]. However if the findings mentioned above [7, 16] are true then CF-PCGS are computationally complete,

a contradiction.

In this paper we set out to elucidate the contradiction between the results mentioned above. We first

wonder whether the 2-counter Turing machine simulation canbe modified so that it works with one-step

communication. The answer turns out to be affirmative. We present in Section 4 on page 18 a PCGS that

observes the one-step communication definition and at the same time simulates a 2-counter Turing machine

in a similar manner with the original construction [7]. The construction turns out to be substantially more

complex. We eliminate broadcast communication using extracomponents (so that the original broadcast

communication is replaced with queries to individual components), which increases the overall number of

components substantially. The number of components however remains bounded. We thus conclude that

CF-PCGS are indeed Turing complete regardless of the type ofcommunication used.

Having established the computational power of CF-PCGS we try to find what is wrong with the contra-

dicting proof [1]. We discover that the reasoning behind theproof is sound, but the result is correct only if the

concept of coverability tree [24] has certain properties. Such a coverability tree imposes a finite structure over

an arbitrary derivation in a context-free PCGS. However, this finite structure cannot guarantee certain limits

on the number of nonterminals throughout the derivation, which in turn invalidates the aforementioned proof

[1]. Essentially coverability trees can represent some properties of CF-PCGS derivations but we demonstrate

that essential information required for a successful derivation will be lost in the coverability tree depiction.

We present details on the matter in Section 5 on page 59, wherewe use a counterexample to show how the

original proof fails.

The issue of Turing completeness for CF-PCGS was until now anawkward matter. Indeed, some proofs

that establish Turing completeness modify (silently) the definition of PCGS, while some proofs of the contrary

also exist. Our work establishes in a definitive manner that CF-PCGS are indeed Turing complete.



Chapter 2

Preliminaries

The symbolε will be used to denote the empty string, and only the empty string. Given a stringσ and a set

A we denote the length ofσ by |σ|, while |σ|A stands the length of the stringσ after all the symbols not inA

have been erased from it. We often write|σ|a instead of|σ|{a} for singleton setsA = {a}. The word “iff”

stands as usual for “if and only if”.

A grammar [15] is a quadrupleG = (T,N, S,R). T is a finite nonempty set; the elements of this set

are referred to as terminals.N is a finite nonempty set disjoint fromT ; the elements of this set are referred

to as nonterminals.S ∈ N is a designated nonterminal referred to as the start symbol or axiom. R is a

finite set of rewriting rules, of the formα → β whereα ∈ (T ∪ N)∗N(T ∪ N)∗ andβ ∈ (T ∪ N)∗

(α andβ are strings of terminals and nonterminals butα has at least one nonterminal). Given a grammar

G, the⇒G (yields in one step) binary operator on strings from the alphabetW = (T ∪ N)∗ is defined as

follows: T1AT2 ⇒G T1uT2 if and only if A → u ∈ R andT1 ,T2 ∈ (T ∪N)∗. We often omit the subscript

from the yields in one step operator when there is no ambiguity. The language generated by a grammar

G = (T,N, S,R) is L(G) = {w ∈ T ∗|S ⇒∗
G w}, where⇒∗

G denotes as usual the reflexive and transitive

closure of⇒G.

The Chomsky hierarchy defines four classes of grammars, depending on the form of the rewriting rules.

LetG = (Σ, V, S,R) be a grammar; then:

1. G without any restriction is called a type-0 or unrestricted grammar. Exactly all the languages gener-

ated by this type of grammar are semidecided by Turing machines. Languages generated by a type-0

grammar are referred to as recursively enumerable, or RE forshort [15].

2. G is called a type-1 or context sensitive grammar if each rewriting ruleα → β in R satisfies|α| ≤ |β|.

4



CHAPTER 2. PRELIMINARIES 5

Recursively enumerable
Context sensitive

Context free
Regular

Figure 2.1: The Chomsky hierarchy.

This type of grammar can have a rewriting rule of the formS → ε, as long asS is not on the right-hand

side of any rewriting rule. The languages generated by type-1 grammars are referred to as context

sensitive, or CS for short [15].

3. G is a type-2 or context-free grammar if every rewriting ruleα → β in R satisfies|α| = 1 (meaning

thatα is a single nonterminal). A special type of context free grammars are linear grammars where

no rewriting rule is allowed to have more that one non-terminal symbol on its right hand side.The lan-

guages generated by type-2 grammars are referred to as context free or CF for short, and the languages

generated by the linear grammar subtype are referred to as Linear or LIN [12, 14].

4. G is a type-3 or regular grammar, if their rewriting rules haveone of the following forms:A → cB,

A → c, A → ε, orA → B whereA,B are nonterminals andc is a terminal. The languages generated

by a type-3 grammar are referred to as regular, or REG for short. A language is semi-linear iff it is letter

equivalent to a regular language. Two languages are called letter equivalent whenever the languages

are indistinguishable from each other if we only look at the relative number of occurrences of symbols

in their words, without regard to their order [15].

The four language classes are arranged in a hierarchy, REG being the smallest and RE the largest class. This

is illustrated in Figure 2.1.

A Parallel Communicating Grammar System (or PCGS) providesa theoretical prototype that combines

the concepts of grammars with parallelism and communication. This allows for the examination of the

properties of parallel systems. The structure of a PCGS is similar to a basic grammar in the sense that all

components of a PCGS have the characteristics that allow them to be classified in the Chomsky hierarchy.

The major difference between a grammar and a PCGS is that a PCGS features more than one component

grammar, and the component grammars of a PCGS work together to generate the resulting language instead

of generating languages on their own [5, 23].
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Definition 1 PARALLEL COMMUNICATING GRAMMAR SYSTEM [5]: Let n ≥ 1 be a natural number. A

PCGS of degreen is an (n + 3) tupleΓ = (N,K, T,G1, . . . , Gn) whereN is a nonterminal alphabet,T

is a terminal alphabet, andK is the set of query symbols,K = {Q1, Q2, . . . , Qn}. The setsN , T , K are

mutually disjoint; letVΓ = N ∪K ∪ T . Gi = (N ∪K,T,Ri, Si), 1 ≤ i ≤ n are Chomsky grammars. The

grammarsGi, 1 ≤ i ≤ n, represent the components of the system. The indices1, . . . , n of the symbols inK

point toG1, . . . , Gn, respectively.

A derivation in a PCGS consists of a series of communication and rewriting steps. A rewriting step is

not possible if communication is requested (which happens whenever a query symbol appears in one of the

components of a configuration).

Definition 2 DERIVATION IN A PCGS [5]: Let Γ = (N,K, T,G1, · · · , Gn) be a PCGS as above, and

(xi, x2, . . . , xn) and(yi, y2, . . . , yn) be two n-tuples withxi, yi ∈ V ∗
Γ , 1 ≤ i ≤ n. We write(xi, . . . , xn) ⇒

(yi, . . . , yn) iff one of the following two cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n, and for eachi, 1 ≤ i ≤ n, we havexi ⇒Gi
yi (in the grammarGi), or xi ∈ T ∗

andxi = yi.

2. There existsi, 1 ≤ i ≤ n, such that|xi|K > 0. Then, for each suchi, we write xi =

z1Qi1z2Qi2 . . . ztQitzt+1, t ≥ 1, for zj ∈ V ∗
Γ , |zj |K = 0, 1 ≤ j ≤ t + 1. If |xij |K = 0, 1 ≤ j ≤ t,

thenyi = z1xi1z2xi2 . . . ztxitzt+1 [and yij = Sij , 1 ≤ j ≤ t]. When, for somej, 1 ≤ j ≤ t,

|xij |K 6= 0, thenyi = xi. For all i, 1 ≤ i ≤ n, for whichyi is not specified above, we haveyi = xi.

The presence of[and yij = Sij , 1 ≤ j ≤ t] in the definition makes the PCGSreturning. The PCGS is

non-returningif the phrase is eliminated.

We use⇒ for both component-wise and communication steps, but we also use (sparingly)
Λ
⇒ for commu-

nication steps whenever we want to emphasize that a communication takes place. A sequence of interleaved

rewriting and communication steps will be denoted by⇒∗, the reflexive and transitive closure of⇒.

In other words, ann-tuple(x1, . . . , xn) yields(y1, . . . , yn) if:

1. If there is no query symbol inx1,. . . ,xn, then we have a component-wise derivation (xi ⇒Gi
yi,

1 ≤ i ≤ n, which means that one rule is used per componentGi), unlessxi is all terminals (xi ∈ T ∗)

in which case it remains unchanged (yi = xi).
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2. If we have query symbols then a communication step is required. When this occurs each query sym-

bol Qj in xi is replaced byxj , if and only if xj does not contain query symbols. In other words, a

communication step involves the query symbolQj being replaced by the stringxj ; the result of this

replacement is referred to asQj beingsatisfied(by xj ). Once the communication step is complete the

grammarGj continues processing from its axiom, unless the system is non-returning. Communication

steps always have priority over rewriting steps; if not all query symbols are satisfied during a commu-

nication step, they will be satisfied during the next communication step (as long as the replacement

strings do not contain query symbols).

The derivation in a PCGS can be blocked in two ways [5, 18, 20, 23]:

1. if componentxi of the currentn-tuple(x1, . . . , xn) does not contain a nonterminal that can be rewritten

in Gi, or

2. if a circular query appears; in other words ifGi1 queriesQi2 , Gi2 queriesQi3 , and so on untilGik−1

queriesQik andGik queriesQi1 , then a derivation will not be possible since the communication step

always has priority, but no communication is possible because only strings without query symbols can

be communicated.

Definition 3 LANGUAGES GENERATED BY PCGS [5]: The language generated by a PCGSΓ is L(Γ) =

{w ∈ T ∗ : (S1, S2, ..., Sn) ⇒∗ (w, σ2, ..., σn), σi ∈ V ∗
Γ , 2 ≤ i ≤ n}.

The derivation starts from the tuple of axioms(S1, S2, ..., Sn). A number of rewriting and/or communi-

cation steps are performed untilG1 produces a terminal string (we do not restrict the form of, orindeed care

about the rest of the components of the final configuration).

As with any model certain behaviors have been defined in semantic terms to simplify their description.

These terms will be used frequently in what follows.

Definition 4 PCGS SEMANTICS [23]: A PCGSΓ is called centralized if there is a restriction that only

the first component grammarG1 can control the communication, meaning that onlyG1 can introduce query

symbols. If on the other hand any component grammarGi can coordinate communications steps, meaning

any component grammar can introduce communication symbols, then the system is non-centralized.

A returning system refers to the component grammars returning to their respective axiom after a com-

munication step. If on the other hand the component grammarsdo not return to their respective axioms but
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continue to process the current string after communicatingthen the PCGS is considered to be a non-returning

system.

A system can be synchronized whenever a component grammar uses exactly one rewriting rule per deriva-

tion step (unless the component grammar is holding a terminal string, case in which it is allowed to wait). If

a system is non-synchronized then in any step that is not a communication step the component may chose to

rewrite or wait.

The family of languages generated by a non-centralized, returning PCGS withn components of type

X (whereX is an element of the Chomsky hierarchy) will be denoted by PCn(X). The language families

generated by centralized PCGS will be represented by CPCn(X). The fact that the PCGS is non-returning

will be indicated by the addition of anN , thus obtaining the classes NPCn(X) and NCPCn(X). Let M be a

class of PCGS,M ∈ (PC,CPC,NPC,NCPC); then we define:

M(X) = M∗(X) =
⋃

n≥1

Mn(X)

Communication steps play an obviously integral role in the functioning of a PCGS. We therefore define a

measure for communication.

Definition 5 [23] Consider a PCGSΓ and a derivation inΓ:

D : (S1, S2, · · · , Sn) ⇒ (w1,1, w1,2, · · · , w1,n) ⇒
(w2,1, w2,2, · · · , w2,n) ⇒∗ (wk,1, wk,2, · · · , wk,n)

We define com((wi,1, wi,2, · · · , wi,n)) =
∑n

j=1 |wi,j |K and com(D) =
∑ki=1

i=1 com((wi,1, wi,2, · · · , wi,n)).

For x ∈ L(Γ) we further define com(x,Γ) = min{com((S1, S2, · · · , Sn) ⇒∗ (x, α2, · · · , αn))}. Then,

com(Γ) = sup{com(x,Γ)|x ∈ L(Γ)}, and, for a languageL and a classX , X ∈ {PC,CPC,NPC,NCPC},

comX(L) = inf{com(Γ)|L = L(Γ),Γ ∈ X}.

The notion of coverability trees [24] is central to one of theresults [1] that we will analyze later in the

paper. We now present briefly this construction.

We order the setN of nonterminals of a PCGSΓ such thatN = {A1, . . . , An+m} with A1 = S1, . . . ,

An = Sn. For a configurationw = (w1, . . . , wn) of Γ let Mw = ((|w1|X1 , . . . , |w1|X2n+m
), . . . , (|wn|X1 ,

. . . , |wn|X2n+m
)), whereXi = Ai, 1 ≤ i ≤ n + m, andXn+m+j = Qj , 1 ≤ j ≤ n. Mw(i, j) de-

notes the element|wi|Xj
of Mw. We introduce a phantom rewriting rule in each component that does not

change the string and that can be applied only to terminal strings. A rewriting step inΓ is then ann-tuple

t = (r1, . . . , rn), whereri denotes either a rule ofGi or the phantom rule. For uniformity we say that
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communication steps are produced by a special transitionΛ. Let TR(Γ) be the set of allt = (r1, . . . , rn)

together withΛ. A transitiont ∈ TR(Γ) is enabled in a certain configuration if the corresponding rewriting

or communication step can be applied in that configuration. If a transitiont is enabled for a configurationw

of Γ then we writeMw

t
։

Γ
. We further writeMw

t
։

Γ
Mw′ wheneverw′ is result of aplyingt onw.

Definition 6 COVERABILITY TREES [24]: A labelled treeT = (V,E, l1, l2) is a coverability tree for

Γ = (N,K,Σ, G1, . . . , Gn) if (V,E) is a tree,l1 : V → (N2n+m
ω )n is the node labelling function,l2 : E →

TR(Γ) is the edge labelling function, and the following hold (withthe setdT (v1, v2) including exactly all the

nodes on the path fromv1 to v2 in the treeT ):

1. The root, denoted byv0, is labeled byMx0 , wherex0 = (S1, . . . , Sn) (initial configuration).

2. The number of outgoing edges|v+| of v ∈ V is

• 0 if either no transition is enabled atl1(v) or there existsv′ ∈ dT (v0, v) such thatv 6= v′ and

l1(v) = l1(v
′), and

• the number of transitions enabled all1(v) otherwise.

3. For anyv ∈ V , |v+| > 0 and any transitiont enabled atl1(v), there existsv′ ∈ V such that(v, v′) ∈

E, l2(v, v′) = t, andl1(v′) is determined as follows:

Let l1(v)
t
։

Γ
M . If M contains queries thenl1(v′) = M . Otherwise for all1 ≤ i ≤ n and 1 ≤

j ≤ 2n + m: if there existsv∗ ∈ dT (v0, v) such thatl1(v∗) ≤ M and l1(v∗)(i, j) < M(i, j), then

l1(v
′)(i, j) = ω, otherwisel1(v′)(i, j) = M(i, j). The introduction of anω label is called anω

breakpoint.

The coverability tree for any CF-PCGS is always finite and canbe effectively constructed.



Chapter 3

Previous Work

We start by summarizing the existing results regarding the generative capacity of the most commonly studied

PCGS. One will notice that not all structural variations have been studied in this respect. Most of the existing

results are about centralized systems, and even then not allof the centralized variants have been studied

thoroughly. As mentioned previously PCGS are more powerfulthan grammars of the same type.

CS and RE are the two most powerful PCGS and grammar types. Surprisingly their behavior is quite

similar, as shown below. We start with the immediate finding that a RE grammar is just as powerful as a

PCGS with RE components. Due to this the PCGS of this type withn components are not very interesting

since they are just as powerful as a PCGS with one component. In other words a PCGS with unrestricted

components are Turing equivalent and are just as powerful asRE grammars: RE= Yn(RE) = Y∗(RE),

n ≥ 1, for all Y ∈ {PC,CPC,NPC,NCPC} [5].

The same holds to some degree for PCGS with context-sensitive components versus context-sensitive

languages:CS = Yn(CS) = Y∗(CS), n ≥ 1, for Y ∈ {CPC,NCPC} [5]. Note that this result describes

the centralized case. We would expect that the non-centralized case to be more powerful, so presumably

this result does not hold in the non-centralized case. One should note that PCGS with CS components are

computationally expensive, which limits their usefulness. As is the case with normal grammars, the most

useful classes are the simple ones. The results in the area ofPCGS with regular or context-free components

are therefore much more interesting.

The following result shows that the class of languages generated by a centralized returning PCGS with

regular components is a subset of the class of languages generated by a non-centralized, returning PCGS with

regular components. This indicates that the generative power of a PCGS is greater than of a single grammar

component, and that the more communication facilities we have the more powerful the resulting system is:

10



CHAPTER 3. PREVIOUS WORK 11

CPCn(REG) ( PCn(REG), n > 1 [23].

A similar result was found for PCGS with context free components; however in this case increased com-

munication may not make the system more powerful:CPC∗(CF) ⊆ PC∗(CF) [9].

We note in general that the centralized variant is a particular case of a non-centralized PCGS. Indeed,

that centralized qualifier restricts the initiation of the communication to the first grammar in the system. As

a consequence the class of languages generated by a centralized PCGS of any type can be generated by a

non-centralized PCGS of the same type:CPCn(X) ⊆ PCn(X) for anyn ≥ 1. This indicates that the

fact that the generative power of a PCGS is greater that of a single grammar component is largely due to the

introduction of the parameter com. Once the parameter is restricted, the generative power is also restricted.

Another example in this respect is that a certain subclass ofcentralized PCGS with regular components

can generate at most the class of CF languages: IfΓ is a regular, centralized or non-centralized, returning

PCGS such that com(Γ) = 1, thenL(Γ) is context free [23]. Even though this kind of regular PCGS has a

higher generative capacity than a regular grammar, it is still restricted to the class of context-free languages.

The following two results further demonstrate that there are limitations to the generative power of PCGS.

When we have only two regular components the languages generated by centralized PCGS are all context

free. Even the non-centralized variant is limited to generating context-free languages.

• CPC2(REG) ( CF, [5].

• PC2(REG) ⊆ CF [5].

Another way to increase the generative power of a system is toincrease the number of components in the

system. We have shown that this does not change the generative capacity in the RE and (to some degree) CS

case. However if we examine classes that are lower in the hierarchy we notice that an increase in the number

of components generally increases the generative capacityof the system [5].

1. There exists a language generated by PCGS with 2 or more REGcomponents that cannot be generated

by a linear grammar:Yn(REG) \ LIN 6= ∅ for n ≥ 2, Y ∈ {PC,CPC,NPC,NCPC}.

2. There exists a language generated by a PCGS with 3 or more REG components that cannot be generated

by a context free grammar:Yn(REG) \ CF 6= ∅ for n ≥ 3 (andn ≥ 2 for non-returning PCGS),

Y ∈ {PC,CPC,NPC,NCPC}.

3. There exists a language generated by a PCGS with 2 or more linear components that cannot be gener-

ated by a context free grammar:Yn(LIN) \ CF 6= ∅, n ≥ 2, Y ∈ {PC,CPC,NPC,NCPC}.
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4. There exists a language generated by a non-returning PCGSwith 2 or more regular components that

cannot be generated by a context free grammar:Yn(REG) \ CF 6= ∅, n ≥ 2, Y ∈ {NPC,NCPC}.

Obviously an increase in the power of the components will generally increase the power of a PCGS.

This holds strictly in the centralized case for REG versus LIN versus CF components:CPCn(REG) (

CPCn(LIN) ( CPCn(CF), n ≥ 1, [5]. Presumably the same relationship would hold for the non-

centralized case, but this has not been investigated.

We already mentioned the number of components as an important factor in the generative power of PCGS.

It therefore makes sense to consider the hierarchies generated by this factor. Some of these hierarchies are in

fact infinite, namelyCPCn(REG) andCPCn(LIN), n ≥ 1 [5].

Some hierarchies however collapse. We have already mentioned thatCPCn(CS) andNCPCn(CS),

n ≥ 1, do not give infinite hierarchies, for all of these classes coincide withCS. Lower classes also produce

collapsing hierarchies; for instance non-centralized CF-PCGS with 11 components can apparently generate

the whole class of RE languages [7]:

RE= PC11CF= PC∗CF. (3.1)

A later paper found that a CF-PCGS with only 5 components can generate the entire class of RE languages

by creating a PCGS that has two components that track the number of non-terminals and use the fact that for

each RE languageL there exists and Extended Post Correspondence problemP [13] such thatL(P ) = L.

[6]:

RE= PC5CF= PC∗CF. (3.2)

There have also been other papers that have examined the sizecomplexity of returning and non returning

CF systems even further. It has been shown that every recursively enumerable language can be generated

by a context fee returning PCGS, where the number of nonterminals in the system is less than or equal to a

natural numberk [4]. It has also been shown that non-returning CF-PCGS can generate the set of recursively

enumerable languages with 6 context free components by simulating a 2-counter Turning machine [8].

We will show however in Section 3.1 on the next page that the above results [4, 6, 7] usebroadcast

communicationwhich modifies the power of a system when compared toone-step communication. We will

also show (Section 4 on page 18) that the hierarchyPC∗CF does collapse irrespective of the communication

model being used (though not necessarily atn = 11 or n = 5).

Turing completeness was also shown for non-returning systems [8, 16]. In particular, ifk ≥ 2 and

L ⊆ {a1, . . . , ak}+ is a recursively enumerable language, then there exists a non-returning CF-PCGS without
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ε-rules (meaning without rules of the formA → ε) that generatesL [8]. If we consider that non-returning

systems can be simulated by returning systems via the help ofassistance grammars holding intermediate

strings [10], these results [8, 16] also apply to returning systems (though the number of components necessary

for this to happen does not remain the same).

3.1 Broadcast Communication and the Turing Completeness ofCF-
PCGS

Recall that two different types of communication for returning PCGS were introduced in Section 1 on page 1:

broadcast and one-step communication. In broadcast communication the queried component retains its string

until all components requesting that string have received copies of it. Once this process is complete the

queried component returns to the axiom. This is different from a one-step returning system where the queried

component returns to the axiom immediately after being queried, regardless of the number of components

that are requesting a copy of its string.

Evidently, the type of communication step used in returningsystem has a direct impact on the generative

power of a PCGS. Consider for example a PCGSΓ with the following sets of rewriting rules for the master

and the two slave components, respectively:

{S → aS, S → Q2, S → Q3, S1 → b, S2 → c, S → ε}

{S1 → bS1, S1 → Q3, S2 → c}

{S2 → cS2, S2 → Q2, S1 → b}

The following is an example of a possible derivation with broadcast communication inΓ:

(S, S1, S2) ⇒ (aS, bS1, cS2, ) ⇒ (aQ2, bbS1, cQ2)
Λ
⇒ (abbS1, S1, cbbS1) ⇒ (abbb, bS1, cbbb),

(recall that the superscriptΛ denotes a communication step). We note that in this example the second com-

ponent is queried by both the other two components. Both querying components receive copies of the same

string and then the second component returns to its axiom.

Here is another example of a possible derivation ofΓ but this time using one-step communication:

(S, S1, S2) ⇒ (aS, bS1, cS2, ) ⇒ (aQ2, bbS1, cQ2)
Λ
⇒ (aS1, S1, cbbS1) ⇒ (ab, bS1, cbbb)

In this last case the third component was nondeterministically chosen to be the initial component to receive
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a string from the second component (bbS1). Once communicated, the string of the second component was

reset to the respective axiom, which was then communicated to the first component (which thus receivesS1).

The derivation that used broadcast communication steps generated the stringabbb, whereas the derivation

that followed the rules of a returning system generatedab. The different strings were obtained despite the

use of the same rewriting rules, and same rewriting steps. Itis therefore clear that the use of different styles

of communication has a direct impact on the strings generated by a PCGS that is, the languages produced by

the system.

This difference in communication steps is what causes us to call into question the result shown in Equa-

tion 3.1 on page 12 [7]. Indeed, the proof that led to this result hinges on the use of broadcast communication

steps. This approach to communication was also used in otherrelated papers [4, 6], though we will focus on

what was chronologically the first result in this family [7].The sets of rewriting rules of the PCGS used in

the proof of this result [7] are shown in Figure 3.1 on the nextpage.

A derivation in this system begins with the initial configuration described below, then takes its first step

which results in a nondeterministic choice.

(S, S1, S2, S3, S4, S1, S2, S3, S4, S, S) ⇒ ([I], u1, u2, u3, S
(1)
4 , u′

1, u
′
2, u

′
3, S4, Qm, S(3))

As explained in the original paperu1, u2, u3 are eitherQm or Qc1
4 andu′

1, u
′
2, u

′
3 are eitherQm or Qc2

4 . At

this stage if any of the symbols areQc1
4 orQc2

4 the system will block, so the only successful rewriting stepis:

(S, S1, S2, S3, S4, S1, S2, S3, S4, S, S) ⇒ ([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S(3))

We will now proceed with the broadcast communication step. Notice that all occurrences of the symbolQm

are replaced with the symbol[I], and all of the components that receive[I] have a corresponding rewriting

rule for it:

([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S(3)) ⇒ (S, [I], [I], [I], S

(1)
4 , [I], [I], [I], S

(1)
4 , [I], S(3))

Should we have used one-step communication the behavior of the system would have been quite different.

The initialQm symbol (chosen nondeterministically), would be replaced with the symbol[I] from the master

grammar, and all the other components that communicate withthe master would receive axiomS since the

master will return to the axiom before any of the other components had a chance to query it.

([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S(3)) ⇒ (S, [I], S, S, S

(1)
4 , S, S, S, S

(1)
4 , S, S(3))
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PGMOriginal
= {S → [I ], [I ] → C,C → Qa1} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c
′

1, c
′

2, e
′

1, e
′

2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q
′

, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′

2 ∈ {Z,B}, e′1, e
′

2 ∈ {−1, 0,+1}} ∪

{< x, q, c
′

1, c
′

2, e
′

1, e
′

2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c
′

1, c
′

2, e
′

1, e
′

2 >→ x|

(x, q, c1, c2, q
′

, e1, e2,+1) ∈ R, c
′

1, c
′

2 ∈ {Z,B},

e
′

1, e
′

2 ∈ {−1, 0,+1}, x, y ∈ Σ},

P
c1
1 = {S1 → Qm, S1 → Q

c1
4 , C → Qm} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′

, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪

{[I ] → [I ]′, [I ]′ → AC},

P
c1
2 = {S2 → Qm, S2 → Q

c1
4 , C → Qm, A → A} ∪

{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I ] → [I ]|x ∈ Σ, q ∈ E,

c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P
c1
3 = {S3 → Qm, S3 → Q

c1
4 , C → Qm} ∪

{[x, q, Z, c2, e1, e2] → a, [x, q,B, c2, e1, e2] → [x, q,B, c2, e1, e2]

[I ] → [I ]|x ∈ Σ, q ∈ E, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P
c1
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Q

c1
1 , A → a}

P
c2
1 = {S1 → Qm, S1 → Q

c2
4 , C → Qm} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′

, [+1]′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪

{[I ] → [I ]′, [I ]′ → AC}

P
c2
2 = {S2 → Qm, S2 → Q

c2
4 , C → Qm, A → A} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],

[I ] → [I ]|x ∈ Σ, q ∈ E,

c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P
c2
3 = {S3 → Qm, S3 → Q

C2
4 , C → Qm} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]

[I ] → [I ]|x ∈ Σ, q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P
c2
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Q

c2
1 , A → a}

Pa1 = {S → Qm, [I ] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >, , I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pa2 = {S → S
3
, S

(1) → S
(2)

, S
(2) → S

(3)
, , S

(3) → S
(4)

,

S
(4) → Q

c1
2 Q

c1
3 Q

c2
2 Q

c2
3 S

(1)}.

Figure 3.1: A CF-PCGS with broadcast communication that simulates a 2-counter Turing machine [7].
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We see again a notable difference in the different communication models. Indeed, if broadcast communication

steps are not used then the derivation blocks since the returning communication step yields a configuration

where all but one of the componentsP c1
1 , P c1

2 , P c1
3 , P c1

4 , P c2
1 , P c2

2 , P c2
3 , andP c2

4 get a copy of the master

grammar axiomS, yet none of them have a rewriting rule forS. Since we also know that if any of the

components rewrite toQc1
4 or Qc2

4 the system will block, it becomes clear that broadcast communication

steps are essential for the original proof [7] to hold.

This being said, we will discuss in Section 4 on page 18 how a form of this result does hold even in the

absence of broadcast communication.

3.2 Coverability Trees and How CF-PCGS Are Linear Space

Considerε-free1, synchronized, non-returning CF-PCGS withn components. There exists a proof that the

languages generated by such PCGS can be accepted in linear space [1]. It follows that all these languages are

context-sensitive [15].

The construction that establishes the proof is a Turing machineM with inputσ that maintains a configu-

rationw = (w1, . . . , wn) which is repeatedly rewritten according to the PCGS being simulated. For clarity

of the presentation we assume without loss of generality that M hasn work tapes and each componentwi

is kept byM on a separate such a tape. Those stringswi that are shorter than the inputσ are kept in clear,

since they may be queried and find their way intoσ itself. Componentswi longer thanσ will not participate

directly in the production ofσ, but they may still affect the derivation through various side effects. These

side effects however depend only on the kind and number of nonterminals in the string, and so these strings

are maintained in the following form:

wi = @m1X1 . . .mjXjmj+1Q1 . . .mj+kQk (3.3)

A special symbol@ 6∈ N ∪ Σ ∪K introduce such strings.X1, . . . ,Xj andQ1, . . . ,Qk are all the distinct

nonterminals and query symbols inwi, respectively. The number of occurrences of each nonterminal or query

symbol inwi is given bymh, 1 ≤ h ≤ j + k. All the strings are then rewritten in the usual fashion (with

obvious modifications for those strings of the form shown in Equation 3.3) untilσ is produced by the first

component or the derivation is blocked [1].

The whole construction uses storage space linear with respect to |w| as long as an upper boundmmax

exists for the values of the countersmh from the strings of the form shown in Equation 3.3, in the sense that

1Recall that a grammar or PCGS isε-free whenever rules of the formA → ε are not used.
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eitherXh cannot exceedmmax, or oncemmax is exceeded then the counter will be always able to maintain

itself abovemmax in a successful derivation (case in which the value ofmh is for all practical purposes

equivalent toω and can be marked as such). The boundmmax should further be either independent of|σ| or

at most linear in|σ|.

Such a bound is immediate for query symbols, which are removed as soon as they are introduced (since

queries have priority) and so their bound can be determined independently ofσ by just inspecting the rewriting

rules of the system. There is however no obvious bound for nonterminals.

One such a bound was apparently found in the original proof [1] starting from the coverability tree of the

PCGS being simulated. Specifically, it is immediate from theconstruction of this tree in conjunction with a

pumping argument that given a configurationw such thatMw(i, j) = ω for some componentwi and some

nonterminalXj then the number of occurrences ofXj in thei-th component can be made arbitrarily large. It

is tempting to conclude (and indeed it has been so concluded in the original proof) that onceMw(i, j) = ω

thenXj cannot be totally removed by any successive derivation steps fromxi. If this is so then the bound

mmax can be determined by constructing the coverability tree (which does not depend on the inputσ) and

taking the maximum numberMw(i, j) 6= ω therein asmmax. We will further discuss this approach (and how

it fails) in Section 5 on page 59.



Chapter 4

CF-PCGS Are Really Turing Complete

We are now ready to show that PCGS with context-free components are Turing complete even when broadcast

communication is replaced with one-step communication. Asdiscussed earlier (Section 3.1 on page 13),

broadcast communication steps are critical in the constructions used in earlier proofs of this result [4, 6,

7]. If we attempt to use the same construction with one-step returning communication the derivation will

block. Nonetheless we are able to modify the original construction and eliminate the need for broadcast

communication. The resulting system is considerably more complex and so our result is slightly weaker, but

it shows that the result holds regardless of the communication model used.

Overall we have the following:

Theorem 1 RE= L(PC95CF) = L(PC∗CF).

The remainder of this chapter is dedicated to the proof of Theorem 1. Specifically, we show the inclusion

RE ⊆ L(PC95CF). Customary proof techniques demonstrate thatL(PC∗CF) ⊆ RE and consequently

L(PC95CF) ⊆ L(PC∗CF) ⊆ RE. We describe first the PCGS simulating the Turing machine (Section 4.1

on the next page) and we then describe how the simulation is carried out (Section 4.2 on page 40).

The proof is comparable to the one developed earlier [7], in that we use a CF-PCGS to simulate an

arbitrary 2-counter Turing machine. We use all of the components used originally in their construction,

but with modified labels. However, we follow the definition ofone-step communication, so we have to

ensure that the components can work together under one-stepcommunication without stumbling over each

other. In order to do this we add many copycat components, giving them new labels and slightly different

rewriting rules than the original component grammars; their job is to create and hold intermediate strings

throughout the derivation. For the most part the intermediate strings that these components hold are replicas

18
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of the original component strings, which allows every component grammar to communicate with its own

respective copycats, and so receive the same string as in theoriginal construction even in the absence of

broadcast communication. We also add components to the system whose job is to fix synchronization issues

by resetting their matching helpers at specific points in thederivation. Finally in order to avoid the generation

of undesired strings we use blocking to our advantage by ensuring that any inadvertent communication that

does not contribute to a successful simulation will introduce nonterminals that will subsequently cause that

derivation to block.

4.1 A PCGS that Simulates a 2-Counter Turing Machine

Let M = (Σ ∪ {Z,B}, E,R) be a 2-counter Turing machine [11] that accepts some languageL. M has

a tape alphabetΣ ∪ {Z,B}, a set of internal statesE with q0, qF ∈ E and a set of transition rulesR.

The 2-counter machine has a read only input tape and two counters that are semi-infinite storage tapes. The

alphabet of the storage tapes contains two symbolsZ andB, while the input tape has the alphabetΣ ∪ {B}.

The transition relation is defined as follows: if(x, q, c1, c2, q′, e1, e2, g) ∈ R thenx ∈ Σ ∪ {B}, q, q′ ∈ E,

c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}, andg ∈ {0,+1}. The starting and final states ofM are denoted by

q0 andqF , respectively.

Intuitively, a 2-counter Turing machine has an input tape which is read only and unidirectional, as well

as two read-write counter tapes. The counter tapes (just counters henceforth) are initialized with zero by

placing the symbolZ on their leftmost cell, while the rest of the cells contain the symbolB. A counter stores

an integeri by having the head of the respective tape movedi positions to the right of the cell containing

theZ symbol. A counter can be incremented or decremented by moving the head to the right or to the left,

respectively; it is an error condition to move the head to theleft of a cell containingZ (that is, decrement

a counter which holds a zero value). One can only test whetherthe counter holds a zero value or not by

inspecting the symbol currently under the head (with isZ for a zero andB otherwise).

A transition of the 2-counter machine(x, q, c1, c2, q′, e1, e2, g) ∈ R is then enabled by the current state

q, the symbol currently scanned on the input tapex, and the current value of the two countersc1 andc2

(which can be eitherZ for zero orB for everything else). The effect of such a transition is thatthe state of

the machine is changed toq′; the counterk ∈ {1, 2} is decremented, unchanged, or incremented whenever

the value ofek is −1, 0, or +1, respectively; and the input head is advanced ifg = +1 and stays put if

g = 0. When the input head scans the last non-blank symbol on the input tape and the machineM is in the
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accepting stateqF then the input string is accepted by the machine.L(M) be the language of exactly all the

input strings accepted byM .

We will now construct the following grammar system with 95 components that generatesL by simulating

the 2-counter Turing machine that accepts it:

Γ = (N,K,Σ ∪ {a}, Gmoriginal
, . . . Gm29 , G

C1

P1
, . . . , GC1

P15
, Gc1

P2
, Gc1

P3
, GC1

P1
, . . .

GC1

P15
, Gc2

P2
, Gc2

P3
, GPa1 . . . , GPa115

Ga2 , G
14
resetGMPa1

, G4
resetP1

. . .G4
resetP4

)

where

N = {[x, q, c1, c2, e1, e2], [e1]
′, [e2]

′, [I], [I]′, < I >,< x, q, c1, c2, e1, e2 > |

x ∈ Σ, q ∈ E,C1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪

{S, S1, S2, S3, S4, S
(1)
4 , S

(2)
4 , S(1), S(2), S(3), S(4)} ∪ {A,C}

and the rewriting rules sets are defined later. Note that all of the component definitions from the original

system have the wordoriginal in their label in order to differentiate them from the helpergrammars that were

added in order to accommodate the requirements of a on step-communication (returning) system. In order

for our construction to hold it is enough for the grammars that represent the original components to terminate

the derivation with the same strings as in the original 11-component derivation. The components defined as

“original” will work with the Turing machineM simulating the steps ofM in their derivation. The system

will change its configuration in sync with the state ofM and according to the value of the string derived so

far in the master component (which will correspond at the endof the derivation with an input accepted by

M ).

We now describe the rewriting rules of the component grammars. We use the symbolsQl as usual

to identify communication requests, but for clarity the label l will no longer be purely numerical. Most

components are modifications of components in the original 11-component construction, so we group the

newly introduced rules in sets labelledN. In most cases new rules have label(s) modified to match the

components they are designed to work with; in some cases the rewriting rule themselves are changed. Those

components that do not have an equivalent in the original construction have all their rules in the setN.

The new master contains the same rewriting rules and communications steps as it had in the original

construction [7]. The primary role of the master is to maintain its relationship with thePa1 component

grammar. The other component definitions that follow the newmaster arehelper grammarsdesigned to copy

the functionality of the master; they have been added to the system to handle queries fromP c1
1 , P c1

2 , P c1
3 ,
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P c1
4 , P c2

1 , P c2
2 , P c2

3 , andP c2
4 (these components will all be described in detail later). Inessence we ensure

that every component grammarP c1
1 ,P c1

2 ,P c1
3 ,P c1

4 ,P c2
1 ,P c2

2 ,P c2
3 , orP c2

4 that can query the master grammar

in the original broadcast construction has a matching helper grammar that can handle their communication

requests.

PGMOriginal
= {S → [I], [I] → C,C → Qa1} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 5 helper grammars simulate rules from the new master but each component is designed to work

with different components inP c1
1 , including theP c1

1originalS1
grammar and its four newly defined helpers. The

components below work with theP c1
1 grammars as the single grammar version would have in the original

construction but the labels of the query symbols have been modified to reflect the labels of their matching

component grammar.

P c1
GMS1

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B},

e′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following two grammars have new communication stepsS → QC1

a1Pa1S1H2(S4)
and S →

QC1

a1Pa1S1H3(S4)
, respectively. In a successful derivation these components will rewrite to this communi-

cation request in Step 13 of the derivation. If this rewriting rule is used in any other step the derivation will
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block; more precisely if this rule is nondeterministicallychosen in Step 1 it results in a circular query and

the derivation will block immediately. If it is used in Step 3it will receive the string< I > which will

rewrite to [x, q, Z, Z, e1, e2] or x[y, q, Z, Z, e1, e2]. We however have no rewriting rule for either of these

strings and so we will block. Finally, if these rules are usedin Step 9 the components will receive the string

u[x′, q, Z, Z, e1, e2], for which no rewriting rules exist so once more the system will block.

P c1
GMS1H2(S4)

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S1H2(S4)

, S → Qc1
a1Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
GMS1H3(S4)

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S1H3(S4)

, S → Qc1
a1Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
GMS1(S2)

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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P c1
GMS1(S3)

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

We only need oneP c1
2 component. The grammar below will simulate rules from the master grammar and

will work indirectly with P c1
2OriginalS2

holding intermediate strings. The labels in the communication rules

have been modified to ensure that the correct component grammars are queried during a derivation.

P c1
GMS2

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Similar to theP c1
2 we only need oneP c1

3 . The helper below contains modified rules from the new master

grammar. This grammar will work indirectly withP c1
3OriginalS3

, holding intermediate strings. The labels in

the communication steps reflect the labeling of component grammar it will work with during a derivation.

P c1
GMS3

= {S → [I], [I] → C} ∪N = {C → Qc1
a1Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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The following7 helper grammars imitatePa1 . The first5 work with P c1
1original

and four of its helpers, while

the remaining 2 work withP c1
2original

andP c1
3original

holding intermediate strings during derivations. A new

rule has been added to these components; this rule allows thegrammars to reset themselves by querying their

new helper component defined later in the “reset” section.

P c1
GMPA1S1

= {S → [I], [I] → C} ∪N = {C → QResetGM
Pa1

c1
S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
GMPA1S1H2

= {S → [I], [I] → C} ∪N = {C → QReset
GM

c1
Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
GMPA1S1H3

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c1
Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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P c1
GMPA1S1(S2)

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c1
Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
GMPA1S1(S3)

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c1
Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
GMPA1S2

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c1
Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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P c1
GMPA1S3

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c1
Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 5 helper grammars simulate rules from the new master. Each component defined below is

designed to work with a different component in theP c2
1 family, including theP c2

1OriginalS1
and its4 helpers.

The first one works indirectly withP c2
1original

as it does in the original construction but communication step

labels have been modified to ensure that each component queries the right grammar.

P c2
GMS1

= {S → [I], [I] → C} ∪

N = {C → Qc2
a1Pa1S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Note that the following two grammars have a new communication stepS → Qc2
a1Pa1S1H2(S4)

andS →

Qc2
a1Pa1S1H3(S4)

respectively. In a successful derivation this communication step will be used in Step 13 of

the derivation. If this rule is introduced in any other step the system will block. More specifically if this rule

is used in Step 1 it results in a circular query and blocks; if it is used in Step 3 it will receive the string< I >

which will rewrite to [x, q, Z, Z, e1, e2] or x[y, q, Z, Z, e1, e2] for which no rewriting rule exists; finally if it

is used in Step 9 theP c2
GMS1H2(S4)

orP c2
GMS1H3(S4)

component will receive the stringu[x′, q, Z, Z, e1, e2], for
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which it has no rewriting rule.

P c2
GMS1H2(S4)

= {S → [I], [I] → C} ∪

N = {C → Qc2
a1Pa1S1H2(S4)

, S → Qc2
a1Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c2
GMS1H3(S4)

= {S → [I], [I] → C} ∪

N = {C → Qc2
a1Pa1S1H3(S4)

, S → Qc2
a1Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c2
GMS1(S2)

= {S → [I], [I] → C} ∪

N = {C → Qc2
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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P c2
GMS1(S3)

= {S → [I], [I] → C} ∪N = {C → Qc2
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

There is only oneP c2
2 as in the original system and the below master helper works indirectly with it. The

query labels are modified to ensure that the correct component grammars are queried during the derivation.

P c2
GMS2

= {S → [I], [I] → C} ∪N = {C → Qc2
a1Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Similarly, there is only oneP c2
3 , as in the original system and the below master helper will work indirectly

with it. The labels of the query symbols have been modified in order to ensure that the correct component

grammars are queried during the derivation.

P c2
GMS3

= {S → [I], [I] → C} ∪N = {C → Qc2
a1Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}



CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 29

The following7 grammars work with theP c2
a1

components; the first 5 work with theP c2
1 helper grammars,

and the other2 work with P c2
2OriginalS2

andP c2
3OriginalS3

holding intermediate strings to ensure successful

derivations. A new rule has been added to these grammar components which allows them to reset themselves

by querying their matching reset component (defined later).

P c2
GMPA1S1

= {S → [I], [I] → C} ∪N = {C → QReset
GM

c2
Pa1S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c2
GMPA1S1H2

= {S → [I], [I] → C} ∪N = {C → QReset
GM

c2
Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c2
GMPA1S1H3

= {S → [I], [I] → C} ∪N = {C → QReset
GM

c2
Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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P c2
GMPA1S1S2

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c2
Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B},

e′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c2
GMPA1S1S3

= {S → [I], [I] → C} ∪

N = {C → QReset
GM

c2
Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B},

e′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c2
GMPA1S2

= {S → [I], [I] → C} ∪N = {C → QReset
GM

c2
Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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P c2
GMPA1S3

= {S → [I], [I] → C} ∪N = {C → QReset
GM

c2
Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′1, c
′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}}∪

{< x, q, c′1, c
′
2, e

′
1, e

′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c

′
1, c

′
2, e

′
1, e

′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′1, c

′
2 ∈ {Z,B}, e′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

P c1
1originalS1

contains the same rewriting rules and communication steps as the componentP c1
1 in the

original system [7]. Some labels in the rewriting rules havebeen modified to ensure that the components

query their corresponding helper grammars in the other sections of the system. Note that theP c1
1 component

has4 new helper grammars in this construction; these helper grammars are required to ensure thatP c1
2 , P c1

3 ,

andP c1
4 have their own unique component grammars to communicate with.

P c1
1originalS1

= N = {S1 → Qc1
GMS1

, S1 → Qc1
4S1original

, C → Qc1
GMS1

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪

{[I] → [I]′, [I]′ → AC}

The following twoP c1
1 helper grammars work with their respective helper grammarsas defined in their

rewriting rules; their definition contains a ruleC → W , which will be used in Step 13 during successful

derivations. If this rule is used at any other step the systemwill block (just like in the similar situations

discussed earlier).

P c1
1S1H2(S4)

= N = {S1 → Qc1
GMS1H2(S4)

, S1 → Qc1
4S1H2(S4)

, C → QGMS1H2(S4)
, C → W} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} ∪ {[I] → [I]′, [I]′ → AC}

P c1
1S1H3(S4)

= N = {S1 → Qc1
GMS1H3(S4)

, S1 → Qc1
4S1H3(S4)

, C → QGMS1H3(S4)
, C → W} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} ∪ {[I] → [I]′, [I]′ → AC}



CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 32

The following twoP c1
1 helper grammars will ensure the proper derivation ofP c1

2OriginalS2
andP c1

3OriginalS3
.

They work by communicating with their corresponding helpergrammars and their designated special helper

in theP c1
4 section.

P c1
1S1(S2)

= N = {S1 → Qc1
GMS1(S2)

, S1 → Qc1
4SpecialHelper1S1S2

, C → QGMS1(S2)
,

S4 → S
(1)
4 , S

(1)
4 → QP

c1
1S1H2(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}∪

{[I] → [I]′, [I]′ → AC}

P c1
1S1(S3)

= N = {S1 → Qc1
GMS1(S3)

, S1 → Qc1
4SpecialHelper1S1S3

, C → Qc1
GMS1(S3)

,

S4 → S
(1)
4 , S

(1)
4 → QP

c1
1S1H3(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}∪

{[I] → [I]′, [I]′ → AC}

Component grammarP c1
2 remains similar to the original system without any additional helper gram-

mars. It has been renamed and labels have been modified to ensure that it works with its matching helper

components.

P c1
2OriginalS2

= N = {S2 → Qc1
GMS2

, S2 → Qc1
4S2

, C → Qc1
GMS2

, A → A} ∪

{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I] → [I]|x ∈ Σ, q ∈ E,

c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component grammarP c1
3 is again similar to the original definition and it does not need any helper gram-

mars in this construction. Its name has been modified to identify that it was part of the original construction

and the labeling in the communication steps has been modifiedto ensure the correct helper components are

queried.

P c1
3OriginalS3

= N = {S3 → Qc1
GMS3

, S3 → Qc1
4S3

, C → Qc1
GMS3

} ∪

{[x, q, Z, c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}
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ComponentP c1
4OriginalS4

, needs extra helper grammars to ensure that components defined in other sections

have their own uniqueP c1
4 component to query. The rules in the original grammar are forthe most part

unchanged, the only difference is the labeling.

P c1
4OriginalS4

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪

N = {S
(2)
4 → Qc1

P1S1
} ∪ {A → a}

A new nondeterministic step has been added to the following two helpers in theP4 section, specifically:

S
(2)
4 → S

(2)
4 . This rule was added to avoid a circular query in Step 12 of thederivation. This being said this

rule could be used whenever the non terminalS
(2)
4 appears, but if it is used in any other step there is a chance

that the matchingP1 component queries it and receivesS
(2)
4 , but sinceP1 does not contain a rewriting rule

for S(2)
4 the derivation would block. The only successful use of this rewriting rule is in Step 12.

P c1
4S1H2(S4)

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪

N = {S
(2)
4 → Qc1

P1S1H2(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A → a}

P c1
4S1H3(S4)

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪

N = {S
(2)
4 → Qc1

P1S1H3(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A → a}

P c1
4S2

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪

N = {S
(2)
4 → Qc1

P1S2
} ∪ {A → a}

P c1
4S3

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪

N = {S
(2)
4 → Qc1

P1S3
} ∪ {A → a}

P c1
4SpecialHelper1S1S2

= N = {S4 → S4}

P c1
4SpecialHelper2S1S3

= N = {S4 → S4}

P c2
1OriginalS1

contains similar rules as inP c2
1 except it has new labels. It also need4 new helper grammars.

P c2
1OriginalS1

= N = {S1 → Qc2
GMS1

, S1 → Qc2
P4S1

, C → Qc2
GMS1

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1]′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪ {[I] → [I]′, [I]′ → AC}

The following twoP c2
1 have a new rule added to them that will be used in Step 13 of the derivation:C → W .
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If this rule is used at any other step the system will block forthe same reason as above.

P c2
1S1H2(S4)

= N = {S1 → Qc2
GMS1H2(S4)

, S1 → Qc2
P4S1H2(S4)

, C → Qc2
GMS1H2(S4)

, C → W} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1]′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}∪ {[I] → [I]′, [I]′ → AC}

P c2
1S1H3(S4)

= N = {S1 → Qc2
GMS1H3(S4)

, S1 → Qc2
P4S1H3(S4)

, C → Qc2
GMS1H3(S4)

, C → W} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1]′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}∪ {[I] → [I]′, [I]′ → AC}

The following two P c2
1 helper grammars are components that will help ensure the proper derivation of

P c2
2OriginalS2

andP c2
3OriginalS3

by holding intermediate strings throughout the derivation.

P c2
1S1(S2)

= N = {S1 → Qc2
GMS1(S2)

, S1 → Qc2
4SpecialHelper1S1S2

, C → Qc2
GMS1(S2)

,

S4 → S
(1)
4 , S

(1)
4 → QP

c2
1S1H2(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1]′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}∪ {[I] → [I]′, [I]′ → AC}

P c2
1S1(S3)

= N = {S1 → Qc2
GMS1(S3)

, S1 → Qc2
4SpecialHelper1S1S3

, C → Qc2
GMS1(S3)

,

S4 → S
(1)
4 , S

(1)
4 → QP

c2
1S1H3(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1]′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}∪ {[I] → [I]′, [I]′ → AC}

Component grammarP c2
2 is the same as in the original system, except that it has been renamed and the

communication rewriting rules have been modified to match the correct helper components.

P c2
2OriginalS2

= N = {S2 → Qc2
GMS2

, S2 → Qc2
P4S2

, C → Qc2
GMS2

} ∪ {A → A} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2], [I] → [I]|x ∈ Σ,

q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component grammarP c2
3 contains similar rules with the original construction. Similarly to P c2

2OriginalS2

it does not require any helper grammars. Its name has been modified to reflect that it was part of the original
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construction and its communication rules have been modifiedto reflect the labeling of the proper helper

components.

P c2
3OriginalS3

= N = {S3 → Qc2
GMS3

, S3 → Qc2
P4S2

, C → Qc2
GMS3

} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

ComponentP c2
4OriginalS4

, requires 6 additional components to ensure a successful derivation. The name

of the grammar has been modified and the rules in the grammar have had their labeling updated to match the

respective helper grammars.

P c2
4OriginalS4

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪N = {S

(2)
4 → Qc2

P1S1
} ∪ {A → a}

A new nondeterministic step has been added to the following two helpers for the originalP4 component. The

ruleS
(2)
4 → S

(2)
4 was added specifically to avoid a circular query in Step 12 of the derivation, but this rule

could be used whenever the non terminalS
(2)
4 appears. If it is used in any other step there is a chance that the

matchingP1 component requests its string and receivesS
(2)
4 . Thankfully the matchingP1 component does

not have a corresponding rewriting rule and thus the derivation will block. In a successful derivation this rule

will thus be used only in Step 12.

P c2
4S1H2(S4)

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪N = {S

(2)
4 → Qc2

P1S1H2(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A → a}

P c2
4S1H3(S4)

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪N = {S

(2)
4 → Qc2

P1S1H3(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A → a}

P c2
4S2

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪N = {S

(2)
4 → Qc2

P1S2
} ∪ {A → a}

P c2
4S3

= {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪N = {S

(2)
4 → Qc2

P1S3
} ∪ {A → a}

P c2
4SpecialHelper1S1S2

= N = {S4 → S4}

P c2
4SpecialHelper2S1S3

= N = {S4 → S4}

The originalPa1 grammar remains as it was in the original system. In order forcomponent grammars in

sectionsP c1
1 , P c1

2 ,P c1
3 ,P c1

4 , P c2
1 , P c2

2 ,P c2
3 , andP c2

4 to derive correctly 14 additionalPa1 helpers have been
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added to the system. Their names and labels reflect the components they will work with during a derivation.

Pa1Original = N = {S → QGMoriginal
} ∪ {[I] →< I >,

[x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c1
a1GMS1

= N = {S → Qc1
GMPA1S1

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c1
a1GMS1H2(S4)

= N = {S → Qc1
GMPA1S1H2(S4)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c1
a1GMS1H3(S4)

= N = {S → Qc1
GMPA1S1H3(S4)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c1
a1GMS1(S2)

= N = {S → Qc1
GMS1(S2)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c1
a1GMS1(S3)

= N = {S → Qc1
GMS1(S3)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}
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P c1
a1GMS2

= N = {S → Qc1
GMPA1S2

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c1
a1GMS3

= N = {S → Qc1
GMPA1S3

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c2
a1GMS1

= N = {S → Qc2
GMPA1S1

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c2
a1GMS1H2(S4)

= N = {S → Qc2
GMPA1S1H2(S4)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c2
a1GMS1H3(S4)

= N = {S → Qc2
GMPA1S1H3(S4)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c2
a1GMS1(S2)

= N = {S → Qc2
GMS1(S2)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}
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P c2
a1GMS1(S3)

= N = {S → Qc2
GMS1(S3)

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c2
a1GMS2

= N = {S → Qc2
GMPA1S2

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

P c2
a1GMS3

= N = {S → Qc2
GMPA1S3

, C → C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

The original component grammarPa2 remains unchanged and works as it did in the original system,but

we will refer to it asPa2Original
in order to remain consistent with the naming of the other original components

in the system. The communication rule has also been modified to reflect the new names of the component

grammars.

Pa2Original
= {S → S3, S(1) → S(2), S(2) → S(3), S(3) → S(4)} ∪

N = {S(4) → Qc1
P2originalS2

Qc1
P3originalS3

Qc2
P2OriginalS2

Qc2
P3originalS3

S(1)}.

Now we define the grammars that are used to reset thePa1 helpers. They will send the non-terminal

< I > to their matching component grammar, which will allow theirderivation to restart. These components

and their rewriting rules are not part of the original system.

ResetGM
c1
Pa1S1

= N = {S →< I >,< I >→< I >}

ResetGM
c1
Pa1S1H2(S4)

= N = {S →< I >,< I >→< I >}

ResetGM
c1
Pa1S1H3(S4)

= N = {S →< I >,< I >→< I >}

ResetGM
c1
Pa1S1(S2)

= N = {S →< I >,< I >→< I >}

ResetGM
c1
Pa1S1(S3)

= N = {S →< I >,< I >→< I >}

ResetGM
c1
Pa1S2

= N = {S →< I >,< I >→< I >}
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ResetGM
c1
Pa1S3

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S1

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S1H2(S4)

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S1H3(S4)

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S1(S2)

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S1(S3)

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S2

= N = {S →< I >,< I >→< I >}

ResetGM
c2
Pa1S3

= N = {S →< I >,< I >→< I >}

The components below will be used to resetP c1
1S1H2(S4)

, P c1
1S1H3(S4)

, P c2
1S1H2(S4)

, andP c2
1S1H3(S4)

in Step 13

of the derivation. This reset allows queried components to be reset to their axioms which in turn allows the

derivation to restart. These components were not part of theoriginal system definition.

ResetP c1
1S1H2(S4)

= N = { U → U1, U1 → U2, U2 → U3,

U3 → U4, U4 → U5, U6 → U7, U7 → QP
c1
1S1H2(S4)

U4}

ResetP c1
1S1H3(S4)

= N = {U → U1, U1 → U2, U2 → U3,

U3 → U4, U4 → U5, U6 → U7, U7 → QP
c1
1S1H3(S4)

U4}

ResetP c2
1S1H2(S4)

= N = {U → U1, U1 → U2, U2 → U3,

U3 → U4, U4 → U5, U6 → U7, U7 → QP
c1
1S1H2(S4)

U4}

ResetP c2
1S1H3(S4)

= N = {U → U1, U1 → U2, U2 → U3,

U3 → U4, U4 → U5, U6 → U7, U7 → QP
c1
1S1H3(S4)

U4}

The following, new grammar components will be used to resetP c1
4S1H2(S4)

, P c1
4S1H3(S4)

, P c2
4S1H2(S4)

, and

P c2
4S1H3(S4)

in Step 14 of a successful derivation. The reset components allows the system to restart the

derivation process.

ResetP c1
4S1H2(S4)

= N = {T → T1, T1 → T2, T2 → T3,

T3 → T4, T4 → T5, T6 → T7, T7 → QP
c1
4S1H2(S4)

T4}

ResetP c1
4S1H3(S4)

= N = {T → T1, T1 → T2, T2 → T3,

T3 → T4, T4 → T5, T6 → T7, T7 → QP
c1
4S1H3(S4)

T4}
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ResetP c2
4S1H2(S4)

= N = {T → T1, T1 → T2, T2 → T3,

T3 → T4, T4 → T5, T6 → T7, T7 → QP
c2
4S1H2(S4)

T4}

ResetP c2
4S1H3(S4)

= N = {T → T1, T1 → T2, T2 → T3,

T3 → T4, T4 → T5, T6 → T7, T7 → QP
c2
4S1H3(S4)

T4}

4.2 The Simulation of the 2-Counter Turing Machine

As in any PCGS the master grammar controls the derivation. The string[x, q, c1, c2, e1, e2] present in the

master component, wherex ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} means that the 2-counter

machineM is in stateq, the input head proceeds to scanx onto the input tape andc1, c2 on the two storage

(counter) tapes, respectively, and then the heads of the storage tapes are moved according to values ine1, and

e2. The number ofA symbols in the strings of thec1, c2 component grammars keep track of the value of the

counters ofM , meaning that these numbers should always match the value stored in the counters ofM or

else the system will block.

We used the “original” grammar system componentsP c1
i , P c2

i , 1 ≥ i ≥ 4 to simulate the changes

in the counters, as done in the original system [7]. All of theother component grammars included in our

construction enable the original components to work correctly using one-step communication throughout the

derivation.

The PCGSΓ first introduces[I] in the master grammar, then a number of rewriting steps occurin a

sequence that initializesΓ by setting the counters to0. Once these steps are completedΓ can then simulate

the first transition ofM by rewriting [I] to u[x′, q, Z, Z, e1, e2] where(x, q0, Z, Z, q, e1, e2, g) is a rule of

M . Hereu = x if g = +1 andu = ε, x′ = x if g = 0. In the case that the input head moves (g = +1),

the master grammar generatesx followed by[x′, q, Z, Z, e1, e2] which shows thatM is now scanning a new

symbol. If the input head does not move, the master grammar does not generate any terminals and the string

[x′, q, Z, Z, e1, e2] indicates thatM is still scanning the same symbol. At this pointP c1
2 , P c1

3 , P c2
2 , andP c2

3

verify the values stored in the counters ofM , and modify the values according toe1 ande2. Γ can then

determine if it can enter stateq by verifying and updating the counters before moving forward. In order to

simulate the next step the master grammar rewrites[x, q, c1, c2, e1, e2] to [x′, q′, c′1, c
′
2, e

′
1, e

′
2], u ∈ {x, ε}, if

M has a rule(x, q, c′1, c
′
2, q

′, e′1, e
′
2, g). Hereu = x if g = +1, andu = ε, x′ = x if g = 0. Γ then validates if

c′1, andc′2 have been scanned on the counter tapes and then updates thesetapes to reflect the values ine′1,and

e′2. If the input head moved(g = +1), the symbolx is added to the string of the master component, and so
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on.

We now present the process outlined above in more details. For the remainder of this section we use

the layout shown in Figure 4.1 on the next page to present the configurations ofΓ. The component strings

are identified in the figure by the names of the components inΓ; these names will be replaced by the actual

strings. As mentioned earlier the11 original grammars have the word ’original’ in their names.

We number the steps of the derivation so that we can refer to them in a convenient manner. Such a

numbering is shown parenthetically on top of the=⇒ operator.

The initial configuration ofΓ (having the respective axiom in each component) is rewritten as follows.

There are nondeterministic rewriting choices in several components as shown in Figure 4.2 on page 43. Here

u1, u2, u3, represent the originalP c1
1 , P c1

2 , P c1
3 components and their copycat grammars; they can either

rewrite to query components that simulate the rules in the master grammar or they can rewrite to query a

helper component in theP c1
4 section.u′

1, u
′
2, u′

3, represent the originalP c2
1 , P c2

2 , P c2
3 components and their

modified copy grammars; they can either rewrite to query helper grammars that contain rules similar to the

master grammar or they can rewrite to query helpers in theP c2
4 group. In this case if any of the components

rewrite to query theP c1
4 or P c2

4 helpers the system will block because none of the componentsrequesting

strings fromP c1
4 orP c2

4 have a rewriting rule forS4. Therefore, the only first step that will lead to a successful

derivation is the one shown in Figure 4.3 on page 44. We then continue as shown in Figures 4.4 on page 45

and 4.5 on page 46.

Now we have yet another nondeterministic rewriting choice in several components, as depicted in Fig-

ure 4.6 on page 47. Hereu1, u2, u3, represent the original and helper components forP c1
1 , P c1

2 , P c1
3 ; they

can rewrite and query their collaborating grammars that mimic either the rules in the master orP c1
4 compo-

nents.u′
1, u′

2, u′
3, represent the original and helper components forP c2

1 ,P c2
2 , P c2

3 ; they can rewrite and query

their matching component that simulate the master orP c2
4 rules. The master grammar and all of the helper

components have only one rewriting choice, to query their correspondingPa1 component, or to rewrite to

the non-terminalC. P c1
1 , P c1

2 , P c1
3 , P c2

1 , P c2
2 , andP c2

3 , could have rewritten to query their corresponding

component grammars in the master grammar helpers or could have rewritten to queryP c1
4 orP c2

4 . The former

choice would result in a blocked derivation due to the introduction of circular queries. This is the first step

that makes use of the reset queries in the section of grammarsthat copies the rules of the master. The only

possible step that will lead to a successful derivation is the one in Figure 4.7 on page 48.

It is at this point thatΓ can start to simulate the 2-counter MachineM . The configuration described above
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Figure 4.1: Compact representation for configurations in our CF-PCGS that simulates a 2-counter machine.
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Figure 4.2: PCGS simulation of a 2-counter Turing machine: Step 1 (nondeterministic).
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Figure 4.3: PCGS simulation of a 2-counter Turing machine: Step 1.
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Figure 4.4: PCGS simulation of a 2-counter Turing machine: Steps 2 and 3.
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Figure 4.5: PCGS simulation of a 2-counter Turing machine: Steps 4 and 5.
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Figure 4.6: PCGS simulation of a 2-counter Turing machine: Step 6 (nondeterministic).
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Figure 4.7: PCGS simulation of a 2-counter Turing machine: Step 6.
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represents the initial state ofM with 0 stored in both counters. IfM has a rule(x, q0, Z, Z, q, e1, e2, g), and

so can enter the stateq by reading inputx and the counter symbols are bothZ, then the master grammar can

chose to introduce the stringu[x′, q, Z, Z, e1, e2]. If the input head ofM changes tog = +1, thenu = x

and a new symbolx′ gets scanned onto the input tape, but if the input head does not move (g = 0), then

u = ε, x′ = x, and the symbolx is scanned on the input tape. We thus continue the derivationas shown in

Figures 4.8 on the next page and 4.9 on page 51.

The originalP c1
1 , P c1

4 , P c2
1 , andP c2

4 , components modify the number ofA symbols in their respective

strings according toe1 ande2. P c1
1 andP c2

1 introduceAAC, AC, C whenevere1 ande2 are,+1, 0, or−1,

respectively, whileP c1
4 andP c2

4 remove anA. The system thus adjusts the counters and if they decrement

below0 the derivation blocks.

The original grammarsP c1
2 , P c1

3 , P c2
2 , andP c2

3 verify the number ofA symbols in their respective strings

to see if they agree withc1, c2. Γ now starts to validate the value stored in the first counter (the second counter

will be verified in exactly the same way). Ifc1 = Z, then we have the following stringα[x′, q, Z, c2, e1, e2]

in P c1
2 , P c1

3 , which means the number ofA symbols inα is 0. If this is not true the system blocks because in

the next stepP c1
3 would rewrite[x′, q, Z, c2, e1, e2] to a (a terminal symbol), and it does not have a rewriting

rule forA. If c1 = B then we have the following stringα[x′, q, B, c2, e1, e2], where the there is at least oneA

in the stringα. If there is noA then the system will block becauseP c2
2 does not have an applicable rewriting

rule for any other non-terminal.

In the following step (Figure 4.11 on page 53) we use the new rewriting ruleS1 → Q4SpecialHelper1 so

its role inP c1
1S1(S2)

, P c1
1S1(S3)

P c2
1S1(S2)

, andP c2
1S1(S3)

, components becomes apparent. This step ensures that

P c1
2S2original

, P c1
2S3original

, P c2
2S2original

, P c3
2S3original

receive the correct strings in Step 14.

The following step (Figure 4.12 on page 54) is a communication step. It allows two of theP c1
1 andP c2

1

helper grammars that are holding intermediate strings to communicate with the components that will be used

for the derivation of the originalP c1
2 , P c1

3 ,P c2
2 , andP c2

3 components. In the above step two of theP c1
4 , and

two of theP c2
4 helpers use the new rewriting ruleS2 → S2 in order to avoid the introduction of a circular

query. We continue as in Figures 4.13 on page 55 and 4.14 on page 56.

Similar to the first step in the derivation in Step 13 theP1, P2, andP3 original and helper components

have a nondeterministic choice. They could rewrite to either the original, or helper forms ofQm, or Qc1
4

andQc2
4 . If any of these symbols is notQm, then the system will block after the communication step. The

reset grammars now rewrite to request strings from there matching helper grammars that simulate rules in the
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Figure 4.8: PCGS simulation of a 2-counter Turing machine: Step 7.
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Figure 4.9: PCGS simulation of a 2-counter Turing machine: Step 8.
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Figure 4.10: PCGS simulation of a 2-counter Turing machine:Step 9.



CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 53









































































































S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

au[x′, q, Z, Z, e1, e2] au[x′, q, Z, Z, e1, e2]

au[x′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4 au[x′, q, Z, Z, e1, e2]

au[x′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4 S

(1)
4

S4 S4
au[x′, q, Z, Z, e1, e2] au[x′, q, Z, Z, e1, e2]

au[x′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4 au[x′, q, Z, Z, e1, e2]

au[x′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4 S

(1)
4

S
(1)
4 S

(1)
4

S4 S4
u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] u[x′, q, Z, Z, e1, e2]

u[x′, q, Z, Z, e1, e2] [I][I][I][I]S(3)

< I > < I >

< I > < I >

< I > < I >

< I > < I >

< I > < I >

< I > < I >

< I > < I >

U5 U5
U5 U5
T5 T5
T5 T5









































































































(10)
=⇒









































































































[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

au[e1]′ au[e1]′

au[e1]′ Q
c1
S1H2(S4)

Q
c1
S1H3(S4)

au[x′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4 S

(2)
4

S4 S4
au[e2]′ au[e2]′

au[e2]′ Q
c2
S1H2(S4)

Q
c2
S1H3(S4)

au[x′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4 S

(2)
4

S
(2)
4

S
(2)
4

S4 S4
u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > u < x′, q, Z, Z, e1, e2 >

u < x′, q, Z, Z, e1, e2 > [I][I][I][I]S(4)

< I > < I >

< I > < I >

< I > < I >

< I > < I >

< I > < I >

< I > < I >

< I > < I >

U6 U6
U6 U6
T6 T6
T6 T6









































































































Figure 4.11: PCGS simulation of a 2-counter Turing machine:Step 10.
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Figure 4.12: PCGS simulation of a 2-counter Turing machine:Step 11.
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Figure 4.13: PCGS simulation of a 2-counter Turing machine:Step 12.
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Figure 4.14: PCGS simulation of a 2-counter Turing machine:Step 13.
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master grammar. During the next step the query will reset thecomponents that haveGMPa1 in their labels

(see Figure 4.15 on the next page).

If αC andβC contain the same number ofA symbols as stored in the counters ofM , and if M is

in the accepting state (q = qF ), then the system can either rewrite to a terminal string by using the rule

< x′, qF , Z, Z, e1, e2 >→ x′ in Gm, or continue; otherwise the system has no chance but to continue the

derivation. If the system continues the derivation then theinput head ofM will move to the right, and the

symbolx′ will be left behind. Thenx′ will become part of the string generated byΓ by using the rule:

< x′, q, Z, Z, e1, e2 >→ x[y, q′, c′1, c
′
2, e

′
1, e

′
2]. If the scanned symbol does not change the input head will

not move, andGm can then use the following rule:< x′, q, Z, Z, e1, e2 >→ [x′, q′, c′1, c
′
2, e

′
1, e

′
2]. The tuple

(x, i, j) will represent the current state of the storage tapes ofM , wherei andj are integers that correspond

to the number ofA in the counters; these numbers will continue to increment and decrement according to the

values ofe1 ande2. The system will continue to loop and compare the number ofA symbols in its counters

to those in the grammar system indefinitely or can chose to stop (when permitted) as described above. We

conclude that every successful computation ofM has a matching successful derivation inΓ, and vice versa.

Note finally that this construction will not accept the emptystring even if this string is inL(M). In such

a caseΓ can be modified to accept the empty string simply by adding theruleS → ε to its master grammar.
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Figure 4.15: PCGS simulation of a 2-counter Turing machine:Step 14.



Chapter 5

Why CF-PCGS Are Not Linear Space

In section 3.2 on page 16, we discussed previous research related to coverability tree representations of CF-

PCGS [1]. Specifically, that research stated that languagesgenerated by CF-PCGS are accepted by linear

space-bounded Turing machines and therefore CF-PCGS generate only context-sensitive languages. This

work was based on the concept of coverability trees which is summarized in Section 2 (see Definition 6 on

page 9 and the preceding discussion).

The problem with this result is the existence of the limitmmax (so that a nonterminal whose number of

occurrences surpassesmmax can be considered available in an infinite supply and so its number of occur-

rences can be replaced withω). This limit was established using coverability trees. It would appear however

that such a limit does not in fact exist.

While it is true that the number of nonterminals can grow unbounded after anω breakpoint, this only

means that there will always besomederivation that makes them so; there is however no guaranteethat such

a derivation is the successful one. The unbounded growth of some nonterminal is thus not necessarily a

feature of a successful derivation. The following example will illustrate this:

LetE1 = ({S1, S2}, {Q1, Q2}, {a, b}, ({S1, Q2}, {a}, R1, S1), ({S2}, {b}, R2, S2)), where

R1 = {S1 → aS1, S1 → aQ2}

R2 = {S2 → S2S2, S2 → b}

This system will generate as manyS2 in the second component asa in the first. Then all theS2 symbols

in the second component will be rewritten asb while the first component keep generatinga symbols. Any

query introduced before all theS2 disappear will block the derivation. Finally one more step causes the first

component to query the second, so thatL(Γ) = {a2n+1bn+1|n ≥ 0}.
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Vector reference:((S1, S2, Q2), (S1, S2, Q2))

v0 : ((1, 0, 0), (0, 1, 0))

v6 : ((0, 0, 1), (0, 0, 0))

v7 : ((0, 0, 0), (0, 0, 0))

v4 : ((0, 0, 1), (0, 2, 0))

v5 : ((0, 2, 0), (0, 2, 0))

v1 : ((1, 0, 0), (0, ω, 0))

v2 : ((0, 0, 1), (0, ω, 0))

v3 : ((0, ω, 0), (0, ω, 0))

Λ

Λ

Λ

Figure 5.1: The coverability tree of the sample PCGSE1.

The coverability tree corresponding to this system is shownin Figure 5.1. In order to keep the figure

compact we have omitted the place corresponding toQ1 from all the vectors (since this number is always

zero) and we have also omitted the edge labels with the exception of Λ. In order to facilitate the reference to

the nodes of the tree we have given them the additional labelsvk, 0 ≤ k ≤ 7.

The pathsv0 → v4 → v5 and v0 → v6 → v7 are clear. They are caused by the first component

introducingQ2 in the first derivation step. The second component can use either its first or its second rule,

resulting in these two paths (the first blocked and the secondsuccessful).

The pathv0 → v1 → v2 → v3 is a bit more complicated, as it corresponds to all the other derivations in

the system. As long as the first component does not query, the second one is free to use its ruleS2 → S2S2

as many times as it wishes, hence the occurrence of an “ω breakpoint,” meaning thatω appears forS2 in v1.

This means that there is at least one derivation fromv1 that can increase arbitrarily the number of occurrences

of S2. While this is certainly true, we do note that any successfulderivation will nonetheless start at some

point to decrease the number of occurrences ofS2 (starting fromv3) in order to reach a terminal string.

The outcome of a successful derivation thus depends on the actual number of occurrences ofS2 even if this

number is no longer remembered in the coverability tree. Therefore this example shows that the coverability

tree does not contain enough information for reconstructing derivations.

Concretely the original proof [1] falls precisely into thispitfall, since in the particular example of the

system considered abovemmax will be set to 2 based on the coverability tree from Figure 5.1. Clearly, this

is too low a limit since the number of occurrences ofS2 can be arbitrarily large and yet significant for some
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derivation.

The problem is however illustrated by the example above onlyon an intuitive level. Indeed, in the simu-

lation ofE1 by a Turing machine as outlined in Section 3.2 no tape contentactually exceeds the length of the

input and so no component is ever rewritten in the form shown in Equation 3.3 on page 16 (which we will

call the “@ form” henceforth).

The reason for including the example above is two-fold. First, we believe that it illustrates the problem

with the original proof in an intuitive manner (even if it does not by itself invalidate that proof). Secondly, it

is instructive to compare the structure of the coverabilitytree ofE1 (Figure 5.1 on the previous page) with

the set of possible derivations inE1. We note that the tree does characterize to some degree all the possible

derivations in the system, but at the same time does not characterize them completely. In particular the

“downslope” of a successful derivation (when the number of occurrences ofS2 is decreased) does not have

any correspondent in the coverability tree. We believe thatthis shows in an eloquent manner the limitations

of these trees.

In order to establish an actual counterexample we consider the following, less intuitive but this time

complete example:

E2 = ({S,A,O, P,X, Y, Z, }, {Q1, Q2, Q3}, {a},

G1 = ({P, S,X,Q3}, {a}, R1, S),

G2 = ({O,X,Z}, {a}, R2, Z),

G3 = ({A,O, P,X, Y }, {a}, R3, A))

R1 = {S → S, S → Q3, X → a, P → a}

R2 = {Z → OX,X → XX}

R3 = {A → A,A → Q2, O → P,X → Y Y Y }

The masterG1 can wait indefinitely before it requests a string fromG3. In the meantimeG2 generates

an arbitrary number ofX symbols. During this timeG3 can also wait indefinitely, then query the string from

G2, then rewrite all the nonterminals from the string thus communicated (to non-rewritable nonterminals),

then block the derivation. At the same time the master rewrites its nonterminals into terminals, but does not

have the time (because ofG3) to complete this task. It turns out that no derivation in this system can be

successful.

Formally, the system can only proceed as follows up to the first communication step, for some arbitrary
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n ≥ 0:

(S,Z,A) ⇒∗ (S,OXn, Q2)

If the master queries beforeG3 then the derivation will block because the master does not have a rewriting

rule forA, hence we need to introduceQ2 in the second component rather thanQ3 in the first to have any

chance of completing the derivation. We then have:

(S,OXn, Q2)
Λ
⇒ (S,OXn, OXn) ⇒ (Q3, w, PXn)

OnceG2 has been queried its contribution to the derivation is complete. It will continue to generate an

additionalX with every derivation step, but it will never be queried or indeed participate in the derivation in

any other way. We will thus replace its content in what follows with a genericw, with the understanding that

thisw changes throughout the derivation yet its actual value is immaterial.

After the communication step aboveG3 can use either of the rulesO → P or X → Y Y Y . If the latter

rule is used then the derivation will eventually block. Indeed, the third component must be communicated to

the master for the derivation to have a chance to succeed, butthe master does not have a rule for rewritingY

and so at the moment of communicationY cannot appear inG3. The only was this can happen is forG3 to

rewriteO and for the master to introduceQ3 at the same time, as above. In such a case the derivation will

continue as follows:

(Q3, w, PXn)
Λ
⇒ (PXn, w, PXn) ⇒n (m,w, PY n×3) (5.1)

The third component does not have any rewriting rules for theremaining non-terminals, and so the derivation

stops here. The master string containedn+1 nonterminals to begin with (that is, just after the communication

step when it wasPXn) and then subsequent rewriting steps will rewriten of those toa, but will leave one

nonterminal in the string (either anX or aP ). This means that the resulting stringm cannot be inL(E2)

since it contains nonterminals; in other words the derivation blocks without producing a string inL(E2).

As argued throughout the description above no other derivation path has even the slightest chance of

succeeding. We thus conclude that no matter which derivation path is taken the system eventually blocks,

and soL(E2) = ∅.

Consider now the Turing machine simulation ofE2 as presented in Section 3.2 on page 16 and working

on inputak for somek > mmax + 2. Recall thatmmax does not depend on the input of the Turing machine

(since it is determined before any input is presented to the machine, based on the coverability tree) and so

such ak will always exist.
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Let the Turing machine simulate a derivation ofE2 as above withn = k − 1. We already know that

such a path is unsuccessful inE2 (because the third component blocks prematurely). However, in the Turing

machine simulation the third component string becomes longer thanak (this being caused by the application

of the ruleX → Y Y Y ), so it will be rewritten in the@ form, and so as we will see shortly it will fail to block

the derivation.

Recall that the string ofG3 evolves in the final stage of the derivation (that is, the⇒∗ phase from Equa-

tion 5.1 on the previous page) along the following line:

PXn ⇒ PY 3Xn−1 ⇒ PY 3×2Xn−2 ⇒ · · · ⇒ PY 3×iXn−i ⇒ · · · ⇒ PY 3×nX0 (5.2)

The occurrences ofX andY can actually be interleaved with each other, so the description above is not

strictly complete. However, this interleaving is immaterial from the point of view of the Turing machine

simulation, which will rewrite theG3 component in an@ form as soon asi = 1. Indeed, note thatn = k− 1,

so |PY 3×iXn−i| = 1 + 3i + k − 1 − i = 2i + k, and so|PY 3×iXn−i| > k for any i ≥ 1. The Turing

machine will therefore represent the derivation shown in Equation (5.2) on its respective (third) work tape as

follows:
PXn ⇒ @1P3Y (n− 1)X ⇒ @1P (3× 2)Y (n− 2)X ⇒ · · ·

⇒ @1P (3× i)Y (n− i)X ⇒ · · · ⇒ @1P (3× n)Y 0X

We would still obtain the same result: the number of occurrences ofX becomes zero, which blocks the

whole simulation. However, the simulation also uses the rewriting to ω of all those counters that exceed

mmax. One such a counter is the one forX . Indeed,k > mmax + 2, thereforen > mmax + 1, and so

n− 1 > mmax. The simulation above thus becomes1:

PXn ⇒ @1P3Y ωX ⇒ @1P (3× 2)Y ωX ⇒ · · · ⇒ @1P (3× i)Y ωX ⇒ · · · ⇒ @1P (3× n)Y ωX

Given this replacement the absence ofX in the third component no longer happens (for indeed recall that the

Turing machine simulation will never modify the value of a counter after that value reachesω). Therefore

the simulation no longer blocks and so the input stringak is inadvertently accepted. The counterexample is

therefore established.

On a more concrete note it may be worth noting thatmmax = 6 for E2. This value was computed based

on a large coverability tree, which contains more than 50 nodes and so it is not included in this manuscript2.

1Note in passing that the counter forY will also exceedmmax at some point, so the simulation will also replace it withω. Since the
values of this counter is immaterial to this discussion we have not performed such a replacement.

2It should be emphasized once more that a finite coverability tree exists by definition and that the actual value ofmmax is immaterial
for the validity of our counterexample. The absence of the coverability tree from this manuscript therefore affects neither the correctness
nor the completeness of our counterexample.
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Work tape 1: Work tape 2: Work tape 3:
S Z A ⇒
S OX A ⇒
S OXX A ⇒
S OXXX A ⇒
S OXXXX A ⇒
S OXXXXX A ⇒
S OXXXXXX A ⇒
S OXXXXXXX A ⇒
S OXXXXXXXX Q2 ⇒
S OXXXXXXXX OXXXXXXXX ⇒
Q3 @1OωX PXXXXXXXX ⇒
PXXXXXXXX @1OωX PXXXXXXXX ⇒
PaXXXXXXX @1OωX @1P3Y ωX ⇒
PaaXXXXXX @1OωX @1P6Y ωX ⇒
PaaaXXXXX @1OωX @1PωY ωX ⇒
PaaaaXXXX @1OωX @1PωY ωX ⇒
PaaaaaXXX @1OωX @1PωY ωX ⇒
PaaaaaaXX @1OωX @1PωY ωX ⇒
PaaaaaaaX @1OωX @1PωY ωX ⇒
Paaaaaaaa @1OωX @1PωY ωX ⇒
aaaaaaaaa @1OωX @1PωY ωX

At this point the content of the first work tape (corresponding to the master component grammar)
is identical with the content of the input tape and so the input is accepted.

Figure 5.2: The run of the Turing machine simulation of the sample PCGSE2 that inadvertently acceptsa9.

It follows that the input stringa9 is accepted by the Turing machine simulation (and so isak for anyk ≥ 9).

Indeed, Figure 5.2 shows how the three “component” work tapes of the Turing machine evolve during the

acceptance run fora9.

The counterexample above clearly shows that the use of the coverability tree to determine the value

of mmax is not adequate and so we conclude that the result that CF-PCGS only generate context-sensitive

languages [1] is incorrect. The above counterexample also suggests that no suchmmax exists, but we already

know this given our result from Chapter 4 on page 18 (which effectively shows that CF-PCGS cannot be

accepted in linear space, which would have been the case is somemmax existed).
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Conclusion

PCGS offer an inherently concurrent model for describing formal languages. It is precisely because of this

inherent parallelism that one of our longer term interest isto exploit this model in general (and CF-PCGS in

particular) in formal methods. Before this can even begin however several formal language questions need to

be addressed. One of them is the generative power of CF-PCGS

Recall that the result regarding the expressiveness of synchronized CF-PCGS makes them Turing com-

plete [7] while a different approach found that CF-PCGS generate only CS languages [1]. We noted that the

Turing complete proof used broadcast communication and notone-step communication and we were secretly

hoping that the second result is the correct one (since this would give CF-PCGS a better chance to be use-

ful in formal methods). This turned out in the end not to be thecase. Indeed, we showed that the Turing

completeness result is correct regardless of the communication style used, though the simulation that uses

one-step communication is substantially more complex thanwas originally thought.

We first examined one system designed earlier (using broadcast communication) to show Turing com-

pleteness [7]. We explained that such an interpretation of communication steps modifies the power of the

PCGS and hence this simulation does not work if one-step communication is used (Section 3.1 on page 13).

We then proceeded to design a system that uses a similar approach, except that we created an arrangement that

would allow one component to be queried by one and only one grammar during each communication step,

thus eliminating the need for broadcast communication. In order to do this we created a number of helper

components that act as support systems for the original component grammars; the role of the helpers was to

create and hold intermediate strings until they were requested from their corresponding original grammar. In

order to get the construction to work we used a number of different strategies, as follows:

1. A number of copycat components were created. They containrules similar to the original components.
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These components derive the same strings during the same steps as the original components, which

allows for each of the original grammars to request the same string at the same time without the need

to query the same component.

2. We introduced reset components, whose purpose is to resetsome of the copycat grammars at precise

steps in the derivation in order to fix synchronization issues.

3. We used waiting rules to ensure that communication steps would only be triggered at certain points in

the derivation.

4. We used selective rewriting rules in conjunction with blocking, thus allows certain rewriting rules to

be successful only at specific steps and ensures that no undesired strings are created.

Using these techniques we were able to construct a CF-PCGS capable of simulating an arbitrary 2-counter

Turing machine, and so show that CF-PCGS are indeed Turing complete using either style of communication

(Theorem 1 on page 18). Admittedly our construction is not ascompact or elegant as the ones used in similar

proofs [4, 6, 7], but it has the advantage of being correct according to the one-step communication model.

True, the result established in this paper is already known.Indeed, one other path of showing Turing

completeness of returning CF-PCGS exists: one can take one of the constructions that show completeness

of non-returning CF-PCGS [8, 16] and then convert such a construction into a returning CF-PCGS (a single

construction for this conversion is known [10]).

Even so, our result has several advantages. For one thing we are doing it more efficiently. Note first that

the conversion from non-returning to returning CF-PCGS [10] increases the number of components fromn

to 4n2 − 3n+ 1 [25]. One of the results showing Turing completeness of non-returning CF-PCGS [16] uses

a construction with an arbitrary number of components, so that it proves that RE= L(PC∗CF) instead of

our RE= L(PC95CF). The other proof of Turing completeness for non-returning CF-PCGS [8] provides a

PCGS with 6 components, which is equivalent to4 × 62 − (3 ∗ 6) + 1 = 127 components for the returning

case, so this shows RE= L(PC127CF) versus our RE= L(PC95CF). In both cases our result is tighter.

It is apparent that broadcast communication allows for a more compact CF-PCGS for certain languages.

Indeed, one could compare our 2-counter Turing machine simulation (featuring as many as 95 components)

with the broadcast communication-enabled simulation [7] (having only 11 components). A further study on

simulating non-returning CF-PCGS using the returning variant [25] also determined that the use of broadcast

communication (called this time “homogenous queries”) results in a PCGS with fewer components (though
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this time the number of components remain of the same order ofmagnitude in the general case). We now

effectively showed that this (reducing the number of components) is the sole advantage of broadcast com-

munication, which does not otherwise increase the power of CF-PCGS. It would also be interesting to see

whether our construction can be made even more concise, which we believe to be the case. Indeed, applying

the techniques from this paper to another proof using broadcast communication [6] (and resulting in a system

with only 5 components) is very likely to result in a smaller PCGS. We believe that our construction is general

and so can be applied in this way with relative ease.

Indeed, the discussion above suggests that the techniques used in our approach are applicable not only

to our construction but in a more general environment. That is, they appear to be useful for eliminating

broadcast communication in general. Whether this is indeedthe case and if so in what circumstances is an

interesting open question.

We identified in Section 5 on page 59 a limitation to the proof that all CF-PCGS languages are context

sensitive [1] and so we showed that this proof is incorrect (as expected given Theorem 1). In the process

we also identified the limitations of coverability trees forCF-PCGS. One could argue that coverability trees

offer a simple way of summarizing a complex system; however critical information is necessarily lost in a

coverability tree representation given its finite nature. Our work in Section 5 exposes this limitation, and so

we believe that coverability trees are not really useful in any pursuit other than the one already considered in

the paper that introduces them (namely, determining the decidability of certain decision problems over PCGS

[24]).

On a practical side we note that CF-PCGS being Turing complete makes them too complex for formal

methods (since nobody in their right mind will model a systemusing a formalism that is just as complex).

We also note that most actual systems do not run their concurrent threads of execution in a fully synchronized

manner. Therefore strong synchronization as implemented by synchronized CF-PCGS is unneeded.

Both the arguments above (complexity and the nature of real-life synchronization) suggest that overall

unsynchronized PCGS are more amenable to applications in formal methods, they being less powerful but

still expressive enough to model complex, potentially recursive systems. They seem better suited for the

particular task of system specification, as they are arguably closer to the way an actual concurrent system

works.

Unfortunately unsynchronized PCGS have received little attention: They have been found to be weaker in

terms of generative power compared to their synchronized counterparts, and then they have been effectively
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ignored. Substantial effort is therefore needed to study the language-theoretical properties of unsynchronized

CF-PCGS before being able to use them in formal methods (or indeed anywhere else).
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[5] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, AND G. PAUN, Grammar Systems: a Grammatical

Approach to Distribution and Cooperation, Gordon and Breach Science Publishers S.A., 1994.
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