PARALLEL COMMUNICATING GRAMMAR SYSTEMS WITH
CONTEXT-FREE COMPONENTSARE REALLY TURING COMPLETE

by

MARY SARAH WILKIN

A thesis submitted to the
Department of Computer Science
in conformity with the requirements for

the degree of Master of Science

Bishop’s University
Canada

November 2014

Copyright© Mary Sarah Wilkin, 2014

To Loretta Saunders, a Saint Mary’s University Master'sistot who was tragically taken from
this world too soon. | pray that her death raises awarenes#e cause she was so passionate

about; the numerous cases of disappearance and murder oiggtal women in Canada.

Abstract

Parallel Communicating Grammar Systems (PCGS) were inted as a language-theoretic treatment of
concurrent systems. A PCGS extends the concept of a gramraasttucture that consists of several gram-
mars working in parallel, communicating with each othed an contributing to the generation of strings.
PCGS are generally more powerful than a single grammar addhee type. PCGS with context-free com-
ponents (CF-PCGS) in particular were shown to be Turing detapHowever, this result only holds when
a specific type of communication (which we call broadcastmamication, as opposed to one-step commu-
nication) is used. We expand the original construction #fetwed Turing completeness so that broadcast
communication is eliminated at the expense of introducisgaificant number of additional, helper com-
ponent grammars. We thus show that CF-PCGS with one-stemooination are also Turing complete. We
introduce in the process several techniques that may béeusatither constructions and may be capable of
removing broadcast communication in general.

We also show how an earlier result proving that CF-PCGS oahegate context-sensitive languages is
incorrect. We discover that this proof relies of coveraypitrees for CF-PCGS, but that such coverability
trees do not contain enough information to support the prdd&f are also able to conclude that coverability
trees are not really useful in any pursuit other than the dmeady considered in the paper that introduces

them (namely, determining the decidability of certain d&m problems over PCGS).

Acknowledgments

I would like to thank the Computer Science department atdi&hUniversity for giving me the opportunity
to pursue a Master’s degree. | would like to underline thepsup patience and guidance received from Dr.
Stefan D. Bruda, without him none of this would have been iptss

Thank you to Stefan Fournier, Joshua Blanchette, Nancy eladd all of my colleagues at Global Excel
Management for supporting this endeavor, | will be forewateful.

Thank you to both Peter Godber, and Dr. John Emerson for eagimg me to return to school; without
their encouragement | would not have pursued this degree.

Thank you to my family, for their enduring love and supporddelieving in me when | did not believe
in myself

A special thank you to Dr. Kai Salomaa from the School of Cotimguat Queen’s University for his
thorough review and suggestions regarding the conteniofitanuscript.

Most importantly thank you to Eric Gagnon for his continuipgtience, understanding and support

throughout this entire process.

Contents

1 Introduction
2 Preliminaries

3 Previous Work

3.1 Broadcast Communication and the Turing Completene€§d?CGS

3.2 Coverability Trees and How CF-PCGS Are LinearSpace

4 CF-PCGS Are Really Turing Complete

4.1 A PCGS that Simulates a 2-Counter Turing Machine

4.2 The Simulation of the 2-Counter Turing Machine

5 Why CF-PCGS Are Not Linear Space
6 Conclusion

Bibliography

10
13
16

18
19
40

59

65

69

List of Figures

2.1 The Chomsky hierarchy. e 5
3.1 A CF-PCGS with broadcast communication that simula&saunter Turing machine [7]. . 15
4.1 Compact representation for configurations in our CF-B8@@t simulates a 2-counter machine. 42
4.2 PCGS simulation of a 2-counter Turing machine: Step bdeterministic). 43
4.3 PCGS simulation of a 2-counter Turing machine: Step1.. 44
4.4 PCGS simulation of a 2-counter Turing machine: Stepsdan. 45
4.5 PCGS simulation of a 2-counter Turing machine: Stepsban. 46
4.6 PCGS simulation of a 2-counter Turing machine: Step 6deterministic). 47
4.7 PCGS simulation of a 2-counter Turing machine: Step6.. 48
4.8 PCGS simulation of a 2-counter Turing machine: Step7.. 50
4.9 PCGS simulation of a 2-counter Turing machine: Step8.. bl
4.10 PCGS simulation of a 2-counter Turing machine: Step9.. 52
4.11 PCGS simulation of a 2-counter Turing machine: Step1Q.. 53
4.12 PCGS simulation of a 2-counter Turing machine: Step11.. 54
4.13 PCGS simulation of a 2-counter Turing machine: Step12.. 55
4.14 PCGS simulation of a 2-counter Turing machine: Step13.. 56
4.15 PCGS simulation of a 2-counter Turing machine: Step14.. 58
5.1 The coverability tree ofthe sample PCES 60
5.2 The run of the Turing machine simulation of the sample B&g that inadvertently accepts

A0 64

Chapter 1

Introduction

Parallel Communicating Grammar Systems (PCGS for shov® baen introduced as a language-theoretic
treatment of concurrent (or more general, multi-agentjesys [21]. A PCGS extends the concept of a
grammar to a structure that consists of several grammaisgoin parallel and contributing to the generation
of strings.

In a PCGS one grammar component is considered the mastee sfyftem and the other component
grammars are called helpers or slaves; they all participatiee derivation but may or may not have a di-
rect impact on the generation of the final string producedhigysystem. The master grammar controls the
derivation which is considered complete as soon as it preslacstring of terminals regardless of the state
of the strings in the other components (hence the name hetmtave component). In order for the helper
components to contribute to the derivation, communicatteps (sometimes called query steps) are required.
In essence a communication step allows the different coepisnin the system to share strings with one an-
other: A grammar proceeds with a communication step bydutcong in its string a request for a string from
another grammar. Once a communication step has been intddall rewriting steps are put on hold until
the communication is complete, meaning they are put on holil the requesting grammar(s) receive the
string from the queried component(s).

The location of communication steps in a PCGS will determihether a system is centralized or non-
centralized; if the master is the only component that costguery symbols then the system will be con-
sidered centralized; if on the other hand, there are quepya®ts in other components of the system it will
be considered non-centralized. Regardless of whethey#ters is centralized or non-centralized they com-
municate in one of two ways: returning or non-returning. Ineturning system, once a communication

request has been completed the queried component retuta®t@inal axiom and continues the derivation

CHAPTER 1. INTRODUCTION 2

from there; conversely if a system is non-returning the congmt string remains intact and the derivation
continues to rewrite that string [5, 23].

The co-ordination of derivation steps within a system caméfined to progress in a synchronized or
unsynchronized manner. If a system is synchronized, a capmianust use exactly one rewriting rule per
derivation step unless it has a terminal string. If a systemoin-synchronized a component grammar can
chose to wait or rewrite at each derivation step. As with aysfesn there are circumstances that can lead a
PCGS to block; such a block happens if a non-terminal in a @smapt grammar does not have a correspond-
ing rewriting rule, or if a circular query is introduced. Id@rivation blocks then no string will be generated
by that derivation [5, 23].

Our main area of interest is the generative capacity of P@Gfas been shown that a PCGS with com-
ponents of a certain type are more powerful than single grarmof the same type; we will summarize some
results in this respect in Section 3 on page 10. There hawdakn other attempts to associate the generative
power of PCGS with additional representations, includiacsp trees [2] and coverability trees [19, 24].

We focus here on PCGS with context-free components (CF-PfoGShort). Significant findings in
this area include a proof that non-returning PCGS with cdrftee components can generate all recursively
enumerable languages [16]. Combined with the fact thatreturning systems can be simulated by returning
systems [10] based on an earlier result [17], this resuétbdishes that returning PCGS with context-free
components are also computationally complete. An altema&tvestigation into the same matter consists
in the development of a returning PCGS with context-free ponents that simulates an arbitrary 2-counter
Turing machine (yet another complete model [11]), thus m@that this kind of PCGS are Turing complete
[7]. On close examination of the derivations of this PCGSuating a 2-counter machine [7] we noticed
that the returning communication steps used are of a p&atikind [22]. In this PCGS multiple components
guery the same component at the same time, and they all egbeigame string from the queried component;
only then does the queried component returns to its axiomouighout the document we will refer to this
style of communication asroadcast communicatiorLater work used a different definition, stating that the
gueried component returns to its axiom immediately aftesr dommunicated [5]; we will refer to this type
of communication asne-step communicatiorccording to this definition one querying component would
receive the requested string and all the other componertyiqg the same component would receive the
axiom. One consequence is that the CF-PCGS simulation of@u@ter Turing machine [7] will not hold

with one-step communication, for indeed the proposed systi#l block after the first communication step.

CHAPTER 1. INTRODUCTION 3

Another line of investigation contradicts the result dése above. Some authors expected that languages
produced by a CF-PCGS would be recognizabléXfy) space-bounded Turing machines [3]; if proved to
be true this would lead to the conclusion that context-frE&Bs generate only context-sensitive languages,
and that context-free PCGSs are weaker than context-sengiammars. This was all subsequently proved
[1]. However if the findings mentioned above [7, 16] are tiuent CF-PCGS are computationally complete,
a contradiction.

In this paper we set out to elucidate the contradiction betwihe results mentioned above. We first
wonder whether the 2-counter Turing machine simulation lmamodified so that it works with one-step
communication. The answer turns out to be affirmative. Weaegmein Section 4 on page 18 a PCGS that
observes the one-step communication definition and at tihe siane simulates a 2-counter Turing machine
in a similar manner with the original construction [7]. Thanstruction turns out to be substantially more
complex. We eliminate broadcast communication using estraponents (so that the original broadcast
communication is replaced with queries to individual comguats), which increases the overall number of
components substantially. The number of components hawewmeains bounded. We thus conclude that
CF-PCGS are indeed Turing complete regardless of the typernfmunication used.

Having established the computational power of CF-PCGS wintfind what is wrong with the contra-
dicting proof [1]. We discover that the reasoning behindgtaof is sound, but the result is correct only if the
concept of coverability tree [24] has certain propertiagctBa coverability tree imposes a finite structure over
an arbitrary derivation in a context-free PCGS. Howevas, finite structure cannot guarantee certain limits
on the number of nonterminals throughout the derivationicivim turn invalidates the aforementioned proof
[1]. Essentially coverability trees can represent some@nies of CF-PCGS derivations but we demonstrate
that essential information required for a successful @tion will be lost in the coverability tree depiction.
We present details on the matter in Section 5 on page 59, wierese a counterexample to show how the
original proof fails.

The issue of Turing completeness for CF-PCGS was until noavddward matter. Indeed, some proofs
that establish Turing completeness modify (silently) tagrdtion of PCGS, while some proofs of the contrary

also exist. Our work establishes in a definitive manner tHi&PCGS are indeed Turing complete.

Chapter 2

Preliminaries

The symbok will be used to denote the empty string, and only the empiggtiGiven a stringr and a set
A we denote the length of by |o|, while |o| 4 stands the length of the stringafter all the symbols not idl
have been erased from it. We often wijité,, instead ofio |, for singleton setsl = {a}. The word *iff”
stands as usual for “if and only if".

A grammar [15] is a quadrupl€ = (T, N, S, R). T is a finite nonempty set; the elements of this set
are referred to as terminal®/ is a finite nonempty set disjoint froffi; the elements of this set are referred
to as nonterminalsS € N is a designated nonterminal referred to as the start symbakiom. R is a
finite set of rewriting rules, of the form — S wherea € (T U N)*N(T U N)* andg € (T'U N)*

(« and 8 are strings of terminals and nonterminals bhulhas at least one nonterminal). Given a grammar
G, the=-¢ (yields in one step) binary operator on strings from the algtlV’ = (T"U N)* is defined as
follows: T1 ATy =¢ Thulz ifandonly if A — v € RandT; ,T> € (T U N)*. We often omit the subscript
from the yields in one step operator when there is no ambyigdihe language generated by a grammar
G = (T,N,S,R)is L(G) = {w € T*|S =¢ w}, where={, denotes as usual the reflexive and transitive
closure of=¢.

The Chomsky hierarchy defines four classes of grammarspdamgon the form of the rewriting rules.

LetG = (3,V, S, R) be a grammar; then:

1. G without any restriction is called a type-0 or unrestrictedmgmar. Exactly all the languages gener-
ated by this type of grammar are semidecided by Turing mashibhanguages generated by a type-0

grammar are referred to as recursively enumerable, or Rghfant [15].

2. Gis called a type-1 or context sensitive grammar if each tévgirulea — S in R satisfieda| < |3].

CHAPTER 2. PRELIMINARIES 5

Recursively enumerabl
Context sensitive
Context free

11

Figure 2.1: The Chomsky hierarchy.

This type of grammar can have a rewriting rule of the fd&fm» ¢, as long as is not on the right-hand
side of any rewriting rule. The languages generated by fypeammars are referred to as context

sensitive, or CS for short [15].

3. G is a type-2 or context-free grammar if every rewriting rale» § in R satisfiega| = 1 (meaning
that« is a single nonterminal). A special type of context free graars are linear grammars where
no rewriting rule is allowed to have more that one non-teghiymbol on its right hand side.The lan-
guages generated by type-2 grammars are referred to axcivageor CF for short, and the languages

generated by the linear grammar subtype are referred tona@sait.or LIN [12, 14].

4. GG is a type-3 or regular grammar, if their rewriting rules hawe of the following forms:A — ¢B,
A — ¢, A— g,0r A — BwhereA,B are nonterminals andis a terminal. The languages generated
by a type-3 grammar are referred to as regular, or REG fotsAdanguage is semi-linear iff it is letter
equivalent to a regular language. Two languages are catezt kequivalent whenever the languages
are indistinguishable from each other if we only look at thlative number of occurrences of symbols

in their words, without regard to their order [15].

The four language classes are arranged in a hierarchy, RiBG the smallest and RE the largest class. This
is illustrated in Figure 2.1.

A Parallel Communicating Grammar System (or PCGS) providésoretical prototype that combines
the concepts of grammars with parallelism and communigati®his allows for the examination of the
properties of parallel systems. The structure of a PCGShiflagi to a basic grammar in the sense that all
components of a PCGS have the characteristics that allow thébe classified in the Chomsky hierarchy.
The major difference between a grammar and a PCGS is that &R€&Bures more than one component
grammar, and the component grammars of a PCGS work togetigenerate the resulting language instead

of generating languages on their own [5, 23].

CHAPTER 2. PRELIMINARIES 6

Definition 1 PARALLEL COMMUNICATING GRAMMAR SYSTEM [5]: Letn > 1 be a natural number. A
PCGS of degree is an (n + 3) tupleT’ = (N, K,T,Gq,...,Gn) whereN is a nonterminal alphabefl’

is a terminal alphabet, an& is the set of query symbol&; = {Q1,Q2,...,Q,}. The setdV, T, K are
mutually disjoint; letVr = NUKUT. G; = (NUK,T,R;,S;),1 <1i < n are Chomsky grammars. The
grammarsG;,1 < i < n, represent the components of the system. The indlices, n of the symbols i

pointtoGy, . .., Gy, respectively.

A derivation in a PCGS consists of a series of communicati@hrawriting steps. A rewriting step is
not possible if communication is requested (which happemsnever a query symbol appears in one of the

components of a configuration).

Definition 2 DERIVATION IN A PCGS [5]: LetT" = (N,K,T,G4,--- ,Gn) be a PCGS as above, and
(@i, T2y .-, xn) @NA (Y4, Y2, - . ., ypn) be two n-tuples withy;, y; € V¥, 1 < i < n. We write(z;, ..., z,) =

(yi, - - ., yn) iff one of the following two cases holds:

1. |z;|k = 0,1 <14 <mn,andforeach,1 < i <n,wehaver; =¢, y; (inthe grammalG,), orx; € T*

andxi = Y;-

2. There exists, 1 < i < n, such that|z;|x > 0. Then, for each such, we write z; =
ZlQilz2Qi2 ---ZtQitZt+ly t>1, fOij S Vl“*’ |Zj|K =0,1<53<t+1. If |xij|K =0,1<75<¢,
theny; = 214, 20m4, ... 2¢75, 241 [ANdy;; = S;;,1 < j < t]. When, for somg,1 < j < ¢,

lzi; |, # 0, theny; = ;. Forall 4,1 < i < n, for whichy; is not specified above, we haye= x;.

The presence dlandy;;, = S;;,1 < j < t] in the definition makes the PCG8turning The PCGS is
non-returningf the phrase is eliminated.

We use= for both component-wise and communication steps, but voeusis (sparingly)g for commu-
nication steps whenever we want to emphasize that a comatiomd¢akes place. A sequence of interleaved

rewriting and communication steps will be denotedsY, the reflexive and transitive closure &f.

In other words, am-tuple (z1, ..., x,) yields(y1, . .., yn) if:

1. If there is no query symbol in,... x,, then we have a component-wise derivatian &, vi,
1 <4 < n, which means that one rule is used per compo&htunlesse; is all terminals ¢; € T*)

in which case it remains unchanged & x;).

CHAPTER 2. PRELIMINARIES 7

2. If we have query symbols then a communication step is requiwWhen this occurs each query sym-
bol Q; in z; is replaced byc;, if and only if z; does not contain query symbols. In other words, a
communication step involves the query symiygl being replaced by the string;; the result of this
replacement is referred to 5 beingsatisfiedby ;). Once the communication step is complete the
grammaiG; continues processing from its axiom, unless the systemrisreturning. Communication
steps always have priority over rewriting steps; if not alegy symbols are satisfied during a commu-
nication step, they will be satisfied during the next commation step (as long as the replacement

strings do not contain query symbols).
The derivation in a PCGS can be blocked in two ways [5, 18, 3D, 2

1. if component; of the current:-tuple(z1, . . ., z,,) does not contain a nonterminal that can be rewritten

in G;, or

2. if a circular query appears; in other word€df, queries®;,, G;, queries;,, and so on until7;,
queries;, andG;, queriesR);,, then a derivation will not be possible since the commuitcettep
always has priority, but no communication is possible bseanly strings without query symbols can

be communicated.

Definition 3 LANGUAGES GENERATED BY PCGS [5]: The language generated by a PCG$s L(T') =

{weT*:(S1,52,...,) =" (w,09,...,00),0; € VF,2 <i<mn}.

The derivation starts from the tuple of axionfts;, Ss, ..., S.). A number of rewriting and/or communi-
cation steps are performed urdl, produces a terminal string (we do not restrict the form ofpdeed care
about the rest of the components of the final configuration).

As with any model certain behaviors have been defined in seeri@nms to simplify their description.

These terms will be used frequently in what follows.

Definition 4 PCGS &MANTICS [23]: A PCGSI is called centralized if there is a restriction that only
the first component gramm&#; can control the communication, meaning that o@ly can introduce query
symbols. If on the other hand any component gram@acan coordinate communications steps, meaning
any component grammar can introduce communication symthas the system is non-centralized.

A returning system refers to the component grammars retgrto their respective axiom after a com-

munication step. If on the other hand the component gramiharsot return to their respective axioms but

CHAPTER 2. PRELIMINARIES 8

continue to process the current string after communicattiregn the PCGS is considered to be a non-returning
system.

A system can be synchronized whenever a component gramesaaxactly one rewriting rule per deriva-
tion step (unless the component grammar is holding a terhsiniag, case in which it is allowed to wait). If
a system is non-synchronized then in any step that is not acmigation step the component may chose to
rewrite or wait.

The family of languages generated by a non-centralizedymaig PCGS withn components of type
X (whereX is an element of the Chomsky hierarchy) will be denoted by(RQ. The language families
generated by centralized PCGS will be represented by GRG. The fact that the PCGS is non-returning
will be indicated by the addition of alv, thus obtaining the classes NRCX') and NCPG,(X). Let M be a
class of PCGSM € (PC,CPC, NPC,NCPC(C), then we define:

M(X)=M.(X)= | M.(X)
n>1
Communication steps play an obviously integral role in thecfioning of a PCGS. We therefore define a

measure for communication.

Definition 5 [23] Consider a PCG$' and a derivation irT":

D: (SlaS27"' 7Sn) = (wl,lvwl,Qv"' 7w1,n) =
(w1, w22, ywan) =% (W1, W2, Wkn)
. ki=
We define Co(rﬁwi,l, Wi 2, " ,wim)) = Z?:l |wi,j|K and COI'TQD) = Zi:ll COfT((wi,l,’wi,g, ce ,wi,n)).

For x € L(T") we further define cofm,T') = min{com((Sy, Sz, - ,Sn) =* (r,a2, -+ ,an))}. Then,
comT") = sup{com(z,T")|x € L(I')}, and, for a languagd. and a classX, X € {PC,CPC NPC NCPC},
comy (L) = inf{comI')|L = L(I"),T € X}.

The notion of coverability trees [24] is central to one of tiesults [1] that we will analyze later in the
paper. We now present briefly this construction.

We order the selV of nonterminals of a PCGB such thatV = {A;,..., A, ym} With 41 = 54, ...,
A, = S,. For a configuratiom = (w1, ...,w,) of I'let M, = ((Jw1|x,,-- -, |wi|xen i) (wnlx,,
e Jwnl o i), WhereX; = A;, 1 < i < m+m, andXpimy; = Q5,1 < § < n. M,(i,5) de-
notes the elemeriv;| x, of M,,. We introduce a phantom rewriting rule in each componeritdbas not
change the string and that can be applied only to terminiagstr A rewriting step ifl* is then am-tuple

t = (r,...,m), Wherer; denotes either a rule af, or the phantom rule. For uniformity we say that

CHAPTER 2. PRELIMINARIES 9

communication steps are produced by a special transkiohet TR(T") be the set of alt = (r1,...,7y)
together withA. A transitiont € TR(T') is enabled in a certain configuration if the correspondingitang
or communication step can be applied in that configuratiba tiansitiont is enabled for a configuratian

. t . t . .
of I" then we wnteMw—F». We further writeM,, e M,,» wheneveny' is result of aplying onw.

Definition 6 COVERABILITY TREES[24]: A labelled treeT = (V, E,l;,l2) is a coverability tree for
I'=(N,K,%,Gy,...,G,)if (V,E)isatree/; : V — (N2"t™)" js the node labelling functiort; : £ —
TR(T) is the edge labelling function, and the following hold (witle setds(v1, v2) including exactly all the

nodes on the path fromy to v in the tree7):

1. Theroot, denoted by, is labeled byM,,,, wherexy = (54, ..., S,) (initial configuration).

2. The number of outgoing edges | ofv € V' is
e 0 if either no transition is enabled dt (v) or there exista’ € dr(vo, v) such thatv # v" and

ll(’U) = ll(v’), and

e the number of transitions enabled/alv) otherwise.

3. Foranyv € V, |[v™| > 0 and any transitiort enabled af; (v), there exists’ € V such that(v,v") €

E,l3(v,v") =t,andl;(v") is determined as follows:

Letl;(v) —;» M. If M contains queries theh (v') = M. Otherwise foralll < i < nandl <
Jj < 2n + m: if there existsv* € dr(vg,v) such that; (v*) < M andiy(v*)(i,7) < M(,5), then
I1(v")(i,j) = w, otherwisel;(v')(i,5) = M(i,j). The introduction of anv label is called anw

breakpoint

The coverability tree for any CF-PCGS is always finite and bareffectively constructed.

Chapter 3

Previous Work

We start by summarizing the existing results regarding #reegative capacity of the most commonly studied
PCGS. One will notice that not all structural variationsdébeen studied in this respect. Most of the existing
results are about centralized systems, and even then not #ike centralized variants have been studied
thoroughly. As mentioned previously PCGS are more powdntah grammars of the same type.

CS and RE are the two most powerful PCGS and grammar typegri@ogly their behavior is quite
similar, as shown below. We start with the immediate findingtta RE grammar is just as powerful as a
PCGS with RE components. Due to this the PCGS of this type mwitbmponents are not very interesting
since they are just as powerful as a PCGS with one componemther words a PCGS with unrestricted
components are Turing equivalent and are just as powerfREagrammars: RE= Y,,(RE) = Y. (RE),
n>1,foral Y € {PC,CPC,NPC,NCPC} [5].

The same holds to some degree for PCGS with context-sensitinponents versus context-sensitive
languagesC'S = Y,,(CS) =Y.(CS),n > 1,forY € {CPC, NCPC} [5]. Note that this result describes
the centralized case. We would expect that the non-cergdhliase to be more powerful, so presumably
this result does not hold in the non-centralized case. Onaldmote that PCGS with CS components are
computationally expensive, which limits their usefulness is the case with normal grammars, the most
useful classes are the simple ones. The results in the aR@®S with regular or context-free components
are therefore much more interesting.

The following result shows that the class of languages gaediby a centralized returning PCGS with
regular components is a subset of the class of languagesagetiéy a non-centralized, returning PCGS with
regular components. This indicates that the generativeepofia PCGS is greater than of a single grammar

component, and that the more communication facilities wes lilhe more powerful the resulting system is:

10

CHAPTER 3. PREVIOUS WORK 11

CPC,(REG) ¢ PC,(REG),n > 1[23].

A similar result was found for PCGS with context free compasghowever in this case increased com-
munication may not make the system more powedPC,.(CF) C PC,(CF) [9].

We note in general that the centralized variant is a pagicahse of a non-centralized PCGS. Indeed,
that centralized qualifier restricts the initiation of thenemunication to the first grammar in the system. As
a consequence the class of languages generated by a ezettfdlLGS of any type can be generated by a
non-centralized PCGS of the same tygeéPC, (X) C PC,(X) for anyn > 1. This indicates that the
fact that the generative power of a PCGS is greater that afgdlesgrammar component is largely due to the
introduction of the parameter com. Once the parametertdaees!, the generative power is also restricted.

Another example in this respect is that a certain subclasemtfalized PCGS with regular components
can generate at most the class of CF languageE:idfa regular, centralized or non-centralized, returning
PCGS such that coffi) = 1, then£(T") is context free [23]. Even though this kind of regular PCGS &aa
higher generative capacity than a regular grammar, itligsstricted to the class of context-free languages.

The following two results further demonstrate that theeelanitations to the generative power of PCGS.
When we have only two regular components the languages afexdy centralized PCGS are all context

free. Even the non-centralized variant is limited to getiegecontext-free languages.
e CPCy(REG) C CF, [5].
e PC5(REG) C CF [5].

Another way to increase the generative power of a systemiizctease the number of components in the
system. We have shown that this does not change the gemerapwacity in the RE and (to some degree) CS
case. However if we examine classes that are lower in tharcigy we notice that an increase in the number

of components generally increases the generative capcig system [5].

1. There exists a language generated by PCGS with 2 or mored@B@onents that cannot be generated

by a linear grammary,, (REG) \ LIN # (forn > 2,Y € {PC,CPC,NPC,NCPC}.

2. There exists alanguage generated by a PCGS with 3 or m@eBiEponents that cannot be generated
by a context free grammai¥;, (REG) \ CF # (for n > 3 (andn > 2 for non-returning PCGS),
Y e {PC,CPC,NPC,NCPC}.

3. There exists a language generated by a PCGS with 2 or mes lcomponents that cannot be gener-

ated by a context free grammaf;, (LIN) \ CF# 0,n > 2,Y € {PC,CPC,NPC,NCPC}.

CHAPTER 3. PREVIOUS WORK 12

4. There exists a language generated by a non-returning RGBSR or more regular components that

cannot be generated by a context free grammafREG) \ CF# 0, n > 2,Y € {NPC, NCPC}.

Obviously an increase in the power of the components willegalty increase the power of a PCGS.
This holds strictly in the centralized case for REG versul kersus CF components? PC,, (REG) C
CPC,(LIN) € CPC,(CF), n > 1, [5]. Presumably the same relationship would hold for the-no
centralized case, but this has not been investigated.

We already mentioned the number of components as an impéatdar in the generative power of PCGS.
It therefore makes sense to consider the hierarchies geddmathis factor. Some of these hierarchies are in
fact infinite, namelyC PC,,(REG) andCPC,,(LIN), n > 1 [5].

Some hierarchies however collapse. We have already mewtithvatC' PC,,(C'S) and NCPC,,(CS),

n > 1, do not give infinite hierarchies, for all of these classeadde withC'S. Lower classes also produce

collapsing hierarchies; for instance non-centralizedREFsS with 11 components can apparently generate

the whole class of RE languages [7]:
RE = PC1:CF= PC,.CF. (3.1)

A later paper found that a CF-PCGS with only 5 components eaeigte the entire class of RE languages
by creating a PCGS that has two components that track the @usfibon-terminals and use the fact that for
each RE languaggé there exists and Extended Post Correspondence praBI§iB] such thatl.(P) = L.

[6]:
RE= PC5CF= PC,CF. (3.2)

There have also been other papers that have examined theosigexity of returning and non returning
CF systems even further. It has been shown that every regelygnumerable language can be generated
by a context fee returning PCGS, where the number of nontedsiin the system is less than or equal to a
natural numbek [4]. It has also been shown that non-returning CF-PCGS caargée the set of recursively
enumerable languages with 6 context free components bylaimgia 2-counter Turning machine [8].

We will show however in Section 3.1 on the next page that trevalvesults [4, 6, 7] usbroadcast
communicatiowhich modifies the power of a system when compareahte-step communicatioiVe will
also show (Section 4 on page 18) that the hieraehy CF does collapse irrespective of the communication
model being used (though not necessarily at 11 orn = 5).

Turing completeness was also shown for non-returning Bysti@, 16]. In particular, ift > 2 and

L C{ay,...,a;}T isarecursively enumerable language, then there exists-agtorning CF-PCGS without

CHAPTER 3. PREVIOUS WORK 13

e-rules (meaning without rules of the forrh — ¢) that generates [8]. If we consider that non-returning
systems can be simulated by returning systems via the hedgsi§tance grammars holding intermediate
strings [10], these results [8, 16] also apply to returniygiesms (though the number of components necessary

for this to happen does not remain the same).

3.1 Broadcast Communication and the Turing Completeness otF-
PCGS

Recall that two different types of communication for reingiPCGS were introduced in Section 1 on page 1:
broadcast and one-step communication. In broadcast coratiom the queried component retains its string
until all components requesting that string have receivaules of it. Once this process is complete the
gueried component returns to the axiom. This is differemifa one-step returning system where the queried
component returns to the axiom immediately after beingigderegardless of the number of components
that are requesting a copy of its string.

Evidently, the type of communication step used in returgiystem has a direct impact on the generative
power of a PCGS. Consider for example a PCG®Ith the following sets of rewriting rules for the master

and the two slave components, respectively:

{8 —=aS,8— Q2,8 — Q3,5 = b,5%—=c¢,S—c}
{Sl —>bSl,Sl —)Qg,SQ —)C}

{SQ — CSQ, SQ — QQ,Sl — b}
The following is an example of a possible derivation withdmoast communication if:
(S, Sl, Sg) = (CLS, bSl, CSQ,) = (GQQ, bbSl, CQQ) é\> (abbSl, Sl, CbbSl) = (abbb, bSl, Cbbb),

(recall that the superscrigt denotes a communication step). We note that in this exarhpleg¢cond com-
ponent is queried by both the other two components. Bothyingecomponents receive copies of the same
string and then the second component returns to its axiom.

Here is another example of a possible derivatiof biut this time using one-step communication:
(S, Sl, SQ) = (QS, bSl, CSQ,) = (CLQQ, bbSl, CQQ) 2} (aSl, Sl, CbbSl) = (ab, bSl, Cbbb)

In this last case the third component was nondeterminliitichosen to be the initial component to receive

CHAPTER 3. PREVIOUS WORK 14

a string from the second componebt{;). Once communicated, the string of the second component was
reset to the respective axiom, which was then communicatébtfirst component (which thus receives.

The derivation that used broadcast communication steper gt the stringbbb, whereas the derivation
that followed the rules of a returning system generatiedThe different strings were obtained despite the
use of the same rewriting rules, and same rewriting steps thierefore clear that the use of different styles
of communication has a direct impact on the strings genétatea PCGS that is, the languages produced by
the system.

This difference in communication steps is what causes ualtinto question the result shown in Equa-
tion 3.1 on page 12 [7]. Indeed, the proof that led to thisltdenges on the use of broadcast communication
steps. This approach to communication was also used in mladed papers [4, 6], though we will focus on
what was chronologically the first result in this family [7The sets of rewriting rules of the PCGS used in
the proof of this result [7] are shown in Figure 3.1 on the rpade.

A derivation in this system begins with the initial configtioa described below, then takes its first step

which results in a nondeterministic choice.
(Sa 517 521 S37 541 Sl7 521 S37 541 Sa S) = ([I]7u17u27u31 Szil)a ulla U/Q,Ué, 541 Qma 5(3))

As explained in the original paper, uz, us are eitherQ,,, or Q3' anduj, u,, us are either,, or Q3. At

this stage if any of the symbols af¥* or Q3* the system will block, so the only successful rewriting sgep

(S, 51, 52, 83,54, 51,52, 53,54, 5,5) = (11, Qs Qs Qs S Qs Qrrs Qo S5, Qo S

We will now proceed with the broadcast communication steqtidé that all occurrences of the symlig),
are replaced with the symbfl], and all of the components that rece[Jé have a corresponding rewriting

rule for it:

([), Qus Qs Qs 57 Qs Qrs Qe S5 Quy S@) = (S, 110, 11, [1), 857, 110, 111, 11, 85V, 1], 5@))

Should we have used one-step communication the behavibedfytstem would have been quite different.
The initial Q,,, symbol (chosen nondeterministically), would be replacét the symbol/] from the master
grammar, and all the other components that communicatethatimaster would receive axiomsince the

master will return to the axiom before any of the other congrds had a chance to query it.

(1), Qs Qo Qs S5 Qs Qs Qo S, Qo SO = (8,110, 5,5, 5. 8, 8,5, 8V, 5, 5®)

CHAPTER 3. PREVIOUS WORK 15

PGMOm‘gmaz = {S - [”7 [I] - C,C— Qal} U
{<I>>x,q,2,Z,e1,e2]|(x,q0,Z,Z,e1,€2,0) € R,z € 2} U
{<I>>zly,q,Z,Z,e1,e|(x,q0,Z, Z,q,e1,e2,+1) € R,z,y € X} U
{< z,q,cy,ch,el,eh >= [z, ,c1,c2,e1,ea]|(z,q,c1, c2, ¢, €1, €2,0) € R,
x €X,ch,ch €{Z B}, ey, es € {—1,0,+1}} U
{< z,q,c),ch,el,eh > [y, q , c1,c2,e1, €3], < x,qF, C}, Ca, €1, €5 >— x|
(x,q,c1,¢2,q ,e1,e2,+1) € R,cy,ch € {Z, B},
er,es € {—1,0,+1},z,y € ¥},

Pt = {51 = Qm,S1 — Q% C — Qun}U
{[z,q,c1,c2,e1,e2] = [e1]’, [+1] — AAC,[0] — AC,[-1] — C|
z€X,q€ E c1,c0 € {Z,B},e1,e2 € {—1,0,+1}} U
{1 — 1), 1] — AC},

Pt o= {8 = Qm,5 - Q3 C— Qm,A— A} U
{[z,q,Z,ca,e1,e2] = [2,q9,Z,ca,e1,e2], [I] = [I]|lz € Z,q € E,
c2 € {Z,B},e1,e2 € {—1,0,+1}}

Pt = {83 Qm, % = QF",C = Qu}U
{[z,q,Z,c2,e1,e2] = a,[z,q, B,ca2,e1,e2] = [x,q, B, 2, e1, €3]

[I] = [z € 8,q € E,c2 € {Z,B},e1,e2 € {—1,0,+1}}

P = {Si— SW 8 8?5 QoA a)

P2 = {5 = Qm,5% = Q3,C = Qm}U
{[z,q,c1,c2,e1,e2] = [e2]’, [+1] — AAC,[0] — AC,[-1] — C|
x€X,q€ E,c1,c2 € {Z,B},e1,e2 € {—1,0,+1}} U
{1 = 1], 1] = AC}

P2 = {8 = Qm,5 - Q32C— Qm,A— A} U
{[z,q,c1,Z,e1,e2] = a,[x,q,c1,B,e1,e2] = [x,q,c1, B, e1,ez],

] = [I]lx € 8,q € E,
cl € {Z,B},e1,e2 € {—1,0,+1}}

Py = {S5— Qm, S5 — Q{*,C = Qn}U
{[z,q,¢c1,Z,e1,e2] = a,[x,q,c1,B,e1,e2] = [x,q,c1, B, e1, €3]

] = [Illx€X, g€ E,cl € {Z,B},e1,e2 € {—1,0,+1}}

Pz = {Si— S0, 80 = 8% 8P QA a)

P,y = {S—=Qn,[I]=><I>z,qc1,c2,e1,e2] < x,q,¢1,C2,€1,€2 >,
< z,q,c1,c2,e1,e2 >—=< T,q,c1,C2,e1,e2 >,,] >>< I > |z €L,
q€ E,c1,c0 € {Z,B},e1,e2 € {—1,0,+1}}

Po, = {8—8%8" 5™ s g® & g
59 - Qi QE QST

Figure 3.1: A CF-PCGS with broadcast communication thatiktes a 2-counter Turing machine [7].

CHAPTER 3. PREVIOUS WORK 16

We see again a notable difference in the different commtinicenodels. Indeed, if broadcast communication
steps are not used then the derivation blocks since thenregucommunication step yields a configuration
where all but one of the compone®*, Py*, Py*, P;*, Pi?, Py?, Py?, andP;? get a copy of the master
grammar axiomsS, yet none of them have a rewriting rule f8t Since we also know that if any of the
components rewrite t@)3' or Q3? the system will block, it becomes clear that broadcast conication
steps are essential for the original proof [7] to hold.

This being said, we will discuss in Section 4 on page 18 howra fof this result does hold even in the

absence of broadcast communication.

3.2 Coverability Trees and How CF-PCGS Are Linear Space

Considere-free!, synchronized, non-returning CF-PCGS witltomponents. There exists a proof that the
languages generated by such PCGS can be accepted in liaear[$p It follows that all these languages are
context-sensitive [15].

The construction that establishes the proof is a Turing iima@clf’ with input o that maintains a configu-
rationw = (ws, ..., w,) which is repeatedly rewritten according to the PCGS beimukited. For clarity
of the presentation we assume without loss of generality Mhdasn work tapes and each component
is kept by M on a separate such a tape. Those stringthat are shorter than the inpaitare kept in clear,
since they may be queried and find their way iatidself. Components; longer thars will not participate
directly in the production of, but they may still affect the derivation through varioudeseffects. These
side effects however depend only on the kind and number dienavinals in the string, and so these strings

are maintained in the following form:
w; = @m1X1 NN ijjmj+1Q1 SN ijerk (33)

A special symbole ¢ N U X U K introduce such stringsXy, ..., X; andQ, ..., @ are all the distinct
nonterminals and query symbolsn, respectively. The number of occurrences of each nontalroirguery
symbol inw; is given bymy,, 1 < h < j + k. All the strings are then rewritten in the usual fashion Kwit
obvious modifications for those strings of the form shown gqué&tion 3.3) untils is produced by the first
component or the derivation is blocked [1].

The whole construction uses storage space linear with cespéo| as long as an upper bouma,, ..

exists for the values of the counters, from the strings of the form shown in Equation 3.3, in the sehat

1Recall that a grammar or PCGSsidree whenever rules of the forst — ¢ are not used.

CHAPTER 3. PREVIOUS WORK 17

either X;, cannot exceeth,,.,, Or oncem,, .« is exceeded then the counter will be always able to maintain
itself abovem,,,.x in a successful derivation (case in which the valuergf is for all practical purposes
equivalent tav and can be marked as such). The boung.,. should further be either independentef or

at most linear ifjo|.

Such a bound is immediate for query symbols, which are rethagesoon as they are introduced (since
gueries have priority) and so their bound can be determimdEfiendently of by just inspecting the rewriting
rules of the system. There is however no obvious bound fotanorinals.

One such a bound was apparently found in the original prdddtfrting from the coverability tree of the
PCGS being simulated. Specifically, it is immediate fromabastruction of this tree in conjunction with a
pumping argument that given a configuratiorsuch that\,, (¢, j) = w for some component; and some
nonterminalX ; then the number of occurrencesXj in thei-th component can be made arbitrarily large. It
is tempting to conclude (and indeed it has been so concludekioriginal proof) that oncé/,, (i, j) = w
then X ; cannot be totally removed by any successive derivatiorsdteyn x;. If this is so then the bound
mmax Can be determined by constructing the coverability treediwkboes not depend on the inpgt and
taking the maximum numbé\/,, (i, j) # w therein asn,,... We will further discuss this approach (and how

it fails) in Section 5 on page 59.

Chapter 4

CF-PCGS Are Really Turing Complete

We are now ready to show that PCGS with context-free compsraea Turing complete even when broadcast
communication is replaced with one-step communication.dissussed earlier (Section 3.1 on page 13),
broadcast communication steps are critical in the constmg used in earlier proofs of this result [4, 6,
7]. If we attempt to use the same construction with one-stéégrming communication the derivation will
block. Nonetheless we are able to modify the original cammsion and eliminate the need for broadcast
communication. The resulting system is considerably moregiex and so our result is slightly weaker, but
it shows that the result holds regardless of the commuwicatiodel used.

Overall we have the following:
Theorem 1 RE = L(PCy;CF) = L(PC,CF).

The remainder of this chapter is dedicated to the proof obfém 1. Specifically, we show the inclusion
RE C L(PCy5CF). Customary proof techniques demonstrate thaPC.CF) C RE and consequently
L(PCysCF) C L(PC.CF) C RE. We describe first the PCGS simulating the Turing macHssetion 4.1
on the next page) and we then describe how the simulationigdaut (Section 4.2 on page 40).

The proof is comparable to the one developed earlier [7]hat tve use a CF-PCGS to simulate an
arbitrary 2-counter Turing machine. We use all of the congmt® used originally in their construction,
but with modified labels. However, we follow the definition ofie-step communication, so we have to
ensure that the components can work together under oneatemunication without stumbling over each
other. In order to do this we add many copycat componentg)@ihem new labels and slightly different
rewriting rules than the original component grammars;rtfa is to create and hold intermediate strings

throughout the derivation. For the most part the intermedi&rings that these components hold are replicas

18

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 19

of the original component strings, which allows every comgrt grammar to communicate with its own
respective copycats, and so receive the same string as ritfinal construction even in the absence of
broadcast communication. We also add components to thensyghose job is to fix synchronization issues
by resetting their matching helpers at specific points irddm@vation. Finally in order to avoid the generation
of undesired strings we use blocking to our advantage byrergsthat any inadvertent communication that
does not contribute to a successful simulation will introelmonterminals that will subsequently cause that

derivation to block.

4.1 A PCGS that Simulates a 2-Counter Turing Machine

Let M = (X U {Z, B}, E, R) be a 2-counter Turing machine [11] that accepts some largliagl/ has

a tape alphabet U {Z, B}, a set of internal state®E with ¢, gr € E and a set of transition ruleB.
The 2-counter machine has a read only input tape and two ermuthtat are semi-infinite storage tapes. The
alphabet of the storage tapes contains two symbBaisd B, while the input tape has the alphabet) { B}.
The transition relation is defined as follows:(if, ¢, c1,c2, ¢, e1,¢e2,9) € Rthenz € YU {B}, q,¢ € FE,
c1,¢2 € {Z,B}, e1,e5 € {—1,0,+1}, andg € {0,+1}. The starting and final states 8f are denoted by
qo andgg, respectively.

Intuitively, a 2-counter Turing machine has an input tapécWiis read only and unidirectional, as well
as two read-write counter tapes. The counter tapes (justtesihenceforth) are initialized with zero by
placing the symba¥ on their leftmost cell, while the rest of the cells contaia fymbolB. A counter stores
an integeri by having the head of the respective tape movedsitions to the right of the cell containing
the Z symbol. A counter can be incremented or decremented by mdkanhead to the right or to the left,
respectively; it is an error condition to move the head toléfieof a cell containingZ (that is, decrement
a counter which holds a zero value). One can only test wheitleecounter holds a zero value or not by
inspecting the symbol currently under the head (witl ifor a zero and3 otherwise).

A transition of the 2-counter machire, ¢, ¢1,co, ¢, e1,e2,9) € R is then enabled by the current state
q, the symbol currently scanned on the input tapend the current value of the two countegsand co
(which can be eithe# for zero orB for everything else). The effect of such a transition is thatstate of
the machine is changed 6, the countetk € {1,2} is decremented, unchanged, or incremented whenever
the value ofe;, is —1, 0, or 41, respectively; and the input head is advanced & +1 and stays put if

g = 0. When the input head scans the last non-blank symbol on the tape and the machind is in the

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 20

accepting stater then the input string is accepted by the machifigl/) be the language of exactly all the
input strings accepted by/.
We will now construct the following grammar system with 9%qmonents that generatésy simulating

the 2-counter Turing machine that accepts it:

C C C
I' = (N.KSU{a}.Cmpyorurr- - Gy G .G G G GE .
C c c 14 4 4
GPlls ’ GP22’ GP23 ’ Gpal R GP¢1115 G¢12’ GresetG]\Jpal ’ GresetP1 s GresetP4)
where
N = {[l',q,01,02,€1,€2],[61]/,[62]/,[1],[I]l,<I>,<l’,q,01,02,€1,€2> |

x €N, q€ E,Ci,c0 € {Z,B},e1,e2 € {—1,0,+1}} U

{Sa Sla 527531 S475§1)7S§2)7S(1)7S(2)1 S<3)a 5(4)} U {Aa C}

and the rewriting rules sets are defined later. Note thatfath@ component definitions from the original
system have the wormtiginal in their label in order to differentiate them from the helgeammars that were
added in order to accommodate the requirements of a on stemanication (returning) system. In order
for our construction to hold it is enough for the grammars tpresent the original components to terminate
the derivation with the same strings as in the original 1dyonent derivation. The components defined as
“original” will work with the Turing machineM simulating the steps a¥f in their derivation. The system
will change its configuration in sync with the state/df and according to the value of the string derived so
far in the master component (which will correspond at the @fnithe derivation with an input accepted by
M).

We now describe the rewriting rules of the component graremakle use the symbol§; as usual
to identify communication requests, but for clarity thedhbwill no longer be purely numerical. Most
components are modifications of components in the origitaddmponent construction, so we group the
newly introduced rules in sets labell&l. In most cases new rules have label(s) modified to match the
components they are designed to work with; in some casegwréing rule themselves are changed. Those
components that do not have an equivalent in the originadtcoation have all their rules in the @t

The new master contains the same rewriting rules and conuations steps as it had in the original
construction [7]. The primary role of the master is to maimtiés relationship with theP,, component
grammar. The other component definitions that follow the nmeagter ardelper grammarslesigned to copy

the functionality of the master; they have been added toyktm to handle queries frof*, Py*, Ps*,

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 21

Pt P2, Py?, P52, andP;? (these components will all be described in detail later)essence we ensure
that every componentgrammaf*, Py*, Ps*, Py, P2, Py?, Py?, or P;? that can query the master grammar
in the original broadcast construction has a matching hejpmmar that can handle their communication

requests.

PoMoriginag = 1S = U] = C,C— Q4 }U
{<I>=r,q,Z,Z e1,e)|(x,q0,Z,Z,€1,€2,0) € R,z € B} U
{<I>>2ly,q,Z,Z, er1,ea]l(x,q0,2,7Z,q,e1,e2,+1) € R,x,y € X} U
{<z,q,c), ¢4 €, eh > [x,¢,c1,c0,e1,ea]|(z,q,c1,02,¢ , e1,€2,0) € R,
r e X, cy,cye{Z B} e, e5 € {-1,0,+1}}U
{<z,q,c),ch el el > z[y,q,c1,c0,e1, €3], < T, qr, c}, ch, €}, e >— x|
(,q,c1,c0,q ,e1,ea,+1) € R, ¢}, ch € {Z, B}, e, eh € {-1,0,+1}, 2,y € &}

The following 5 helper grammars simulate rules from the neagter but each componentis designed to work

with different components i, including theP;* grammar and its four newly defined helpers. The

originalSq

components below work with thB* grammars as the single grammar version would have in thénatig

construction but the labels of the query symbols have beetifiad to reflect the labels of their matching

component grammar.
Py, = {S—= LI = CHUN={C—Qp ¢ }U

{<I>>1z,q,Z,7Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,z € ¥} U
{<I>=1ly,q,Z,Z, e, el(x,q0, 2, Z,q,€1,e2,+1) € R,x,y € X} U
{<z,q,c),ch el e > [x,q,c1,c0,e1,ea]|(,q,c1,¢2,¢ , e1,€2,0) € R,
r € X, c),che{Z B} e, e5 e {-1,0,+1}}U

{<z,q,¢),ch, el e >— z[y,q, c1,c0,e1,ea], < T, qr, c}, cy, €}, e >— x|
(z,q,¢1,¢2,q s e1,e2,+1) € R, ¢}, ¢ € {Z, B},

el,eh e {—1,0,+1},z,y € I}

Ch

a1 Pay S Ha(S4) and S —

The following two grammars have new communication steps — @
Qacllp Sy Ha(S1)" respectively. In a successful derivation these companeiit rewrite to this communi-
ay

cation request in Step 13 of the derivation. If this rewgtile is used in any other step the derivation will

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 22

block; more precisely if this rule is nondeterministicatlyosen in Step 1 it results in a circular query and
the derivation will block immediately. If it is used in Stepit3will receive the string< I > which will

rewrite to [z, q, Z, Z, e1, ea] Or [y, q, Z, Z, e1, e2]. We however have no rewriting rule for either of these
strings and so we will block. Finally, if these rules are use8tep 9 the components will receive the string

ulz’, q, Z, Z, e1, 3], for which no rewriting rules exist so once more the systethiMack.

c1

PGMSlH2(s4) = S22 U= Crun={C~ Q211Pa151H2(54)’ §— lelpal 51H2(54)} Y
{<I>>12,q,Z,7Z,e1,es)|(x,q0,Z,Z,€1,€2,0) € R,z € L} U
{<I>=1ly,q,Z, Z, e, es|(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{< x,q,c'l,cé,ell,eé >— [waqla01702761,62]|($=Qa01702=q/=€176270) €R,
x € 3,cl,ch € {Z,B}, ey, ey € {~1,0,+1}} U
{< xv‘]acllvcéve/laeé >— 'r[yaq/701702761762]7 < vaFacllvc/%e/lve/Q >— ZC|

(I7q7013627q/5617627+1) € R7 0/156/2 € {ZaB}ae/lae/Q € {_1707+1}7I7y € E}

2 = (S —=Clum={C—Q

c1 C1
GMs1m3(s4) a1 Pgy S1H3(S4)’ S = Qalpal 51H3(54)} U

{<I>>12,q,Z,7Z,e1,es)|(x,q0,Z,Z,€1,€2,0) € R,z € L} U
{<I>>2ly,q,Z,Z e1,eal(x,q0,Z,Z,q,€e1,e2,+1) € Ryx,y € X} U
{<z,q,c, ¢4 €, e5 > [, c1,c0,e1,ea]|(z,q,c1,02,¢ , €1, €2,0) € R,
reX d,cye{Z B} e, e5 € {-1,0,+1}}U

{<z,q,c),ch, €l e5 > z[y, ¢, c1,co,e1,ea], < T, qF, C}, Ch, €], €5 >— 1

($7Q7cluc2uqluelae2u+1) € R7clluc/2 € {ZuB}uellueé € {_1707+1}7$7y€ E}

Pl = 1S (00> CHUR= {0 @0 g o)
{<I>=z,q,Z,7, e1,es)|(x,q0, 2, Z,e1,e2,0) € R,z € X} U
{<I>=zly,q,Z,Z e1,e|(x,q0, 2, Z,q,e1,e2,+1) € R,z,y € B} U
{<z,q,c),c5, ¢, e5 > [x,q ,c1,c,€1,€2)|(m,q,¢1,c0,q , €1,€2,0) € R,
x e X, d,dye{Z B}, e, e5 € {-1,0,+1}}U
{<z,q,c),ch, e, e5 > x[y,q ,c1,ca,e1, €3], < T, qp, C, Ch, €], €5 >—

($7Qaclvc27qlvelae2v+1) € RacllaC/Q € {ZvB}vellveé € {—1,0,+1},.§C,y € Z}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 23

Pg:lMSl(sg) = {S=,[Il—-Ctun={C~— Qzllpalsl(sg)} U
{<I>=>2,q,Z,Z,e1,es)|(x,90,Z, Z,€1,€2,0) € R,x € Z} U
{<I>>2ly,q,Z,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{< 'rvq’C/hC/Qaellveé >— ['rvqla61;62;61762”(:67Qaclvc%qlvelae%o) € Rv
r €%, ¢, ¢ €{Z, B}, el e5 € {~1,0,+1}} U
{< CC,q,Cll,C/2,6/1,€/2 >— I[yvq/aclaCQaeheQ]v < IaqFacllaCéae/lveé >— I|
(‘T7q7017027q/7617627+1) € Ruclluc/2 € {ZvB}vellveé € {—1,0,+1},l’,y € E}

We only need onés* component. The grammar below will simulate rules from thetelagrammar and

will work indirectly with Ps*

20riginal S2

have been modified to ensure that the correct component gaesrare queried during a derivation.

holding intermediate strings. The labels in the commuidcatules
Povs, = {S=ULU = CYUN={C— Qg p, s}V
{<I>>12,q,Z,Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,z € B} U
{<I>=1ly,q,Z, Z, e, es)l(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € X} U
{<z,q,c),ch e, e > [x,q,c1,c0,e1,ea]|(,q,c1,¢2,¢ , e1,e2,0) € R,
r e X, c),cye{Z B} e, ey e {-1,0,+1}}U
{<z,q,c),ch el e >— z[y,q, c1,ca,e1,ea], < T, qr, c}, cy, €], €5 >— 1
(z,q,c1,c0,q s e1,ea,+1) € R, ¢}, ¢y € {Z, B}, e, e € {-1,0,+1}, 2,y € &}
Similar to theP," we only need oné’;™. The helper below contains modified rules from the new master

grammar. This grammar will work indirectly witRs*

30riginalS3 !

holding intermediate strings. The labels in

the communication steps reflect the labeling of componearhgrar it will work with during a derivation.
Péye, = 1S—=1UL[I—=Clun={C— chzllPalsa} u
{<I>=1,q,Z,Z,e1,e3)|(x,q0, Z, Z,e1,€2,0) € R,z € £} U
{<I>=>2ly,q,Z,Z e1,eall(x,q0,Z,7Z,q,e1,e2,+1) € R,x,y € X} U
{<z,q,c),ch € ey > [, ,c1,c0,e1,ea)|(,q,c1,02,¢ , e1,e2,0) € R,
r e X, c),cye{Z B} e, e5 e {-1,0,+1}}U
{<z,q,c),ch el el > z[y,q,c1,c0,€1,ea], < T, qr, c), cy, €}, e >— x|

(I,q,cl,CQ,q/,€1,€2,+1) € RacllaC/Q € {ZaB}aellaeé € {_1703+1}3Iay € E}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 24

The following 7 helper grammars imitatg,, . The first5 work with Pfjrigml and four of its helpers, while

the remaining 2 work withPy* and Py?

original 307"Lginal

holding intermediate strings during derivations. A new
rule has been added to these components; this rule allovgsahemars to reset themselves by querying their

new helper component defined later in the “reset” section.

PélMpAlSl = {S - [I]a [I] - O} U = {C - QResetGMP } U

€1
@151

{< I1>— [Iaqua Z7€1562]|(I5q05Z7256176250) S R,ZZ? € E}U
{<I>>2ly,q,Z,Z,e1,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{< x,q,c'l,clg,ell,eé >— [x7ql,cl,02,61762”(.%',q,cl,CQ,ql,el,eg,O) € R,

reX d),che{Z B} e, e, e {—1,0,+1}}U

{ A / b
<x7‘]561562581762>—>I[y7Qa61;CQ;81762]7<IaqFaclaCQaeDSQ>—>I|

(x7Qa617027q/761;827+1) € RacllaCIQ € {ZvB}vellveé € {—1,0,+1},.§C,y € E}

Pivionicims = 1S—= UL = ClUuM={C— QResethgalSle(“) tu
{<I>>12,q,Z,7Z,e1,es)|(2,q0,Z, Z,€1,€2,0) € R,z € L} U
{<I>=1ly,q,Z, Z, e, es)l(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{<z,q,¢),ch e, eh >— [x,q,c1,c0,e1,ea]|(x,q,c1,¢2,q , €1, €2,0) € R,
x € X, cy,che{Z B} ej,ehe{-1,0,+1}}U

/ / / / / / / / /
{< x7q561702761562 >— x[yaq 701702761762]7 < xqu561702761762 >— $|

($7Q7cluc2uqluelae2u+1) € Ruclluc/2 € {ZuB}ue/lueé € {_1707+1}7$7y€ E}

Pg = {S—[I,[I] = C}u

GMpaisias
‘ﬁ: {O_> QResetGMcl }U
Palgipgs(sa)
{<I>>1z,q,Z,7Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,x € L} U
{< I >— I[y7Qa Z7 Z761762]|(I5q07za Zan615627+1) € R,I,y € 2} U
{< x7qucllac/27€/176/2 >— [xuqlaCl7027elue?]l(xuQ7017027q/7617e270) S Ru
reX, c),cye{Z B} e, ey e {-1,0,+1}}U

/ / / / / / / / /
{< x,q,C1,Cy,€7,€9 >— x[yuq 701702761762]7 < T,qF,C1,Cqo,€7,€E9 >— 1'|

(I,q,Cl,CQ,q/,€1,€2,+1) € RacllaC/Q € {ZaB}aellaeé € {_1703+1}3Iay € E}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

P = {S—=[I,[{]—-C}U

GMpa1s1(52)

N = {C_> QResetGMcl }U

Palgy(sz)
{<I>>12,q,Z,Z,e1,es)|(x,90,Z, Z,€1,€2,0) € R,x € £} U
{< I>— ‘I[yaqua Z761762]|($7QO725 Zan617625+1) € R,I,y € 2} U
{< Iaqvc/lvcévellaeé >— ['rvq/;Cl;CQ;el;62]|(I5qvclaCQaq/aelveQaO) € Ra
S E70/170/2 € {ZaB}ae/lae/Q € {—1,0,—|—1}}U

/ / / / / / / / /
{< Z,q,Cy,Cq,€1,€E9 >— ‘T[yaq 701702761762]7< Z,qF,C1,Cq,€1,€E9 >— xl

(x7Q7017027q17617€27+1) € vallvcl2 € {ZuB}ueIheIQ € {—1,0,+1},$,y € E}

C1

= {S—=[I,[I]—=C}U

GMpa1s1(53)
N ={C = Qreset,,,,, Ju
Palgy(ss)
{<I>>12,q,Z,Z,e1,e3)|(x,90,Z, Z,€1,€2,0) € R,x € £} U
{<1I>>z2ly,q,7,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{<z,q,c),ch el ey > [x,q,c1,co,€1,€a]|(7,q,c1,c2,q , €1, €2,0) € R,
x € X, cy,che{Z B}, ey,ehe{-1,0,+1}} U
{<z,q,c, ¢4, €, e5 > [y, ¢ c1,ca, €1, €3], < T, qp,), Ch, €], €l >—]
(,q,c1,c0,q e1,ea,+1) € R, ¢y, ¢y € {Z,B}, e, ey € {—1,0,+1}, 2,y € 3}
Porpas, = 5= UL —=CHU

N = {C—> QResethglalsz}U

{< I>— [Iaqua Z,€1,62]|(I,QO,Z, 256176250) € R,ZZ? € E} U
{<I>>2ly,q,Z,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{< xaqucllucéuellaeé >— [x7qlucluc27617e2]|(x7q7017027q17617€270) S R7
reX d),che{Z B} e, e,e{—1,0,+1}}U

/ / / / ’ / / ! /
{< T,q,C1,Ca,€1,E60 >— I[yvq 561562561762]7< T,qF,C1,Co,€1,60 >— I|

($7Qa617027q/7615627+1) € R,Cll,Cé € {ZvB}vellveé € {_1507+1}7$7y € 2}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 26

PéIJWPAng = {S — [I]’ [I] — C} U
N = {C — QReSEtGM}CDlMSg } U
{<I>=>2,q,Z,Z,e1,es)|(x,90,Z, Z,€1,€2,0) € R,x € £} U
{< I >— 'r[yaqua Z761782]|(Iaq07zv Zaq7617€27+1) € R,CC,y € E} U
{< 'rvq’C/hC/Qae/be/Q >— ['rvq/a61562381762”(:67Qaclvc%q/velae%()) € Rv
xeX d,cye{Z B} e, e, e{—1,0,+1}}U
{< xaqacllacéae/laeé >— ‘T[yaq/aclaCQaeheQ]a < (E,QF,Cll,C/Q,e/l,eé >— xl

(‘T7q1017027q17611627+1) € R,Cll,C/2 € {ZvB}vellve/Q € {—1,0,+1},l’,y € E}

The following 5 helper grammars simulate rules from the neaster. Each component defined below is

designed to work with a different component in tRg* family, including theP;?

loriginals

. and its4 helpers.
The first one works indirectly Witﬂ’fjwmz as it does in the original construction but communicati@pst

labels have been modified to ensure that each componenégulee right grammar.

Pous, = {S—=ULU—C}U
N={C— folpalsl} u
{<I>=r,q,Z,Z e1,e)|(x,q0,Z,Z,€1,€2,0) € R,z € B} U
{<I>=1ly,q,Z,Z, e, e)l(x,q0, 2, Z,q,€1,e2,+1) € R,z,y € X} U
{<z,q,c,ch e, e > [x,q,c1,c0,e1,ea]|(,q,c1,¢2,¢ , e1,e2,0) € R,
r € X, d),dye{Z B}, e, e5 € {—1,0,+1}}U
{<z,q,¢),ch el e >— z[y,q, c1,c0,e1,ea], < T, qr, c}, cy, €], e >— 1

(I7q7013627q/5617627+1) € Racllacé € {ZaB}ae/lae/Q € {_1707+1}7I7y € E}

Note that the following two grammars have a new communicasiep S — ngpalsle(&) andS —
QZiPalsng(s@ respectively. In a successful derivation this communacasitep will be used in Step 13 of
the derivation. If this rule is introduced in any other sthe system will block. More specifically if this rule
is used in Step 1 it results in a circular query and blocks;i& used in Step 3 it will receive the string I >
which will rewrite to [z, ¢, Z, Z, e1, e2] Or z[y, q, Z, Z, e1, e2] for which no rewriting rule exists; finally if it

is used in Step 9 the~2

C2 H H 1 !
M1 12(s4) OrPGA151H3<S4> component will receive the stringz’, q, Z, Z, e1, e2], for

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

which it has no rewriting rule.

Cc2
PGMSIH2(S4)

Cco
GMsi1H3(s4)

Cc2
GMsi(s2)

{S —[I],[I] = C}U

N={C— QZ?PG151H2(S4)’ S — QZ?Pa151H2(S4)} U

{<I>=r,q,Z,Z e1,e)|(x,q0,Z,Z,€1,€2,0) € R,z € B} U
{<I>=zly,q,Z, Z, e, es)|(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € X} U
{<z,q,c), ¢4 €, e5 > [x,q, c1,c0,e1,ea]|(z,q,c1,02,¢ , €1, €2,0) € R,
r € X, c),cye{Z B}, e, e5 € {—1,0,+1}}U

{<z,q,c),ch el ey > z[y,q ,c1,co, €1, €3], < T, qF, C), Ch, €], €5 >— x|

($7Q7cluc2uqluelae2u+1) € R7 01170/2 € {ZuB}uellueé € {—1,0,+1},(E,y € E}

{8 = [I],|[I] = C}U

N=A{C = Qaip, s,ms) = Qarp,, 81 Ha(s0)) Y
{<I>>12,q,Z,7Z,e1,es)|(2,q0,Z,Z,€1,€2,0) € R,z € L} U
{<I>>2ly,q,Z,Z,e1,eal(x,q0,Z,Z,q,e1,e2,+1) € Ryx,y € X} U
{<@,q,c),c5,ey,eh >= [2,¢,c1,c0,e1,e3]|(x,q,¢1,¢2,¢ , e1,e2,0) € R,
reX d,cye{Z B} e, e5 € {—1,0,+1}}U

/ / / / / / / / /
{< x,q,C1,Cy,€1,€9 >— x[yuq 701702761762]7 < TygqF,C1,Co,€7,€E9 >— JI|

(fE,q,Cl,Cg,q/,el,eg,—f—l) € R7cllac/2 € {Z,B},e'l,eé € {_1701+1}7I=y€ E}

{S = [I],[I] - C}U

N={C— QZiPalsl(Sz)} U

{<I>=>2,q,Z,Z,e1,es)|(x,90, Z, Z,€1,€2,0) € R,x € £} U
{<I>>2ly,q,Z,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{< 'rvq’cllac/Zaellve/Q >— ['rvqla01;02;61762”(:67Qa617027q176136270) € Rv
x €%, ¢, ¢ €{Z, B}, e, e5 € {~1,0,+1}} U

{< ':qu’cllacéae/lveé >— z[yvq/761762561762]7< zaqFacllacéae/lveé >— IZ?|

(:qu’cvaqu/velaer_'_l) € R,Cll,Cé € {ZvB}vellveé € {_1707+1}7$7y S E}

27

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 28

Cco
GMs1(s3)

{S= UL = CYuN={C = Qgp, s s}V
{<I>=>2,q,Z,Z,e1,es)|(x,90,Z, Z,€1,€2,0) € R,x € Z} U
{<I>>2ly,q,Z,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{<x,q,c),c5, e, e5 > [x,q,c1,c0,e1,ea]|(1,q,¢1,c0,q , €1,€2,0) € R,
x €N, cy,che{Z B} e, ehe{-1,0,+1}}U

/ / !/ / / / / / /
{< CC,q,Cl,C2,61,€2 >— 17[.%(] 761362361762]7< I,qF,Cl,C2,61,€2 >— I|

(‘T7q7017027q/7617627+1) € Ruclluc/2 € {ZvB}vellveé € {—1,0,+1},l’,y € E}

There is only oneP,? as in the original system and the below master helper worksgiatly with it. The

query labels are modified to ensure that the correct compignammars are queried during the derivation.

Cco
PG]WSQ

{S=[I,[I]=C}un={C— QZ";PQISQ} U
{<I>>12,q,Z,7Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,z € L} U
{<I>=zly,q,Z, Z, e, esl(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{<z,q,¢),ch el e >— [x,q,c1,c0,e1,ea]|(z,q,¢1,¢2,¢ , e1,e2,0) € R,
r e X d,cye{Z B} e, e5 € {-1,0,+1}}U

{<z,q,c), ¢4 €, eh > z[y,q,c1,c0,e1, €3], < x,qr, ¢}, ¢y, €}, ey >— x

($7Q7cluc2uqluelae2u+1) € R,C’l,Cé € {ZuB}ue/lueé € {_1707+1}7$7y€ E}

Similarly, there is only oné’, as in the original system and the below master helper witkvredirectly

with it. The labels of the query symbols have been modifiedridento ensure that the correct component

grammars are queried during the derivation.

Cc2
PGMss

= {(S=ULI = CYun={C—=Qgp, s}V

{<I>>12,q,Z,7Z,e1,es)|(x,q0,Z,Z,€1,€2,0) € R,z € L} U
{<I>=zly,q,Z, Z, e, es)l(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{<z,q,c),ch e, e > [x,q,c1,c0,e1,ea]|(,q,c1,¢2,¢ , e1,e2,0) € R,
r € X, c),ch €{Z, B} e, e5 € {-1,0,+1}}U

{< @, q,c),ch,el,eh >= zly, ¢, c1,ca,e1,ea], < @, qr, ¢}, ch, €}, €h >—

(I7q7013627q/5617627+1) € R,Cll,Cé € {ZaB}ae/lae/Q € {_1707+1}7I7y S E}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 29

The following 7 grammars work with thé’;> components; the first 5 work with the> helper grammars,

and the othef work with Ps? and Py?

207‘iginal52 307‘iginal53

holding intermediate strings to ensure successful
derivations. A new rule has been added to these grammar acempowhich allows them to reset themselves

by querying their matching reset component (defined later).

P&vipae, = 1S—= UL = CuN={C— QResetGM?uSl tu
{<I>—>z,q,Z, 7, e1,es)|(x,q0, 2, Z,€1,e2,0) € R,x € X} U
{<I>>2ly,q,Z,Z,e1,e|(x,90,Z,Z,q,e1,e2,+1) € R,z,y € L} U
{<z,q,c,c4,el,e5 > 2,4, c1,c,e1,€2)|(x,q,c1, 0,4, €1,€2,0) € R,
x € X, c),dy € {Z B}, ey, e5 € {-1,0,+1}}U

/ / / / / / / ! /
{< Z,q,C1,Cq,€1,€E9 >— ‘r[yaq 701702761762]7< Z,4qF,C1,Cq,€71,€E9 >— xl

(x7q7017027q17617627+1) € Ruclluc/Q € {273}76/176/2 € {—1,0,+1},£L’,y € E}

Pivio s = 1S—= UL = ClUN={C— QResethf,?al tu
S1H2(54)
{<I>>12,q,Z,7Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,z € L} U
{<I>=1ly,q,Z, Z, e, esl(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{<z,q,¢),ch e, eh >— [x,q,c1,c0,e1,ea]|(x,q,c1,¢2,q , €1, €2,0) € R,
x € X, cy,che{Z B} ej,ehe{-1,0,+1}}U
{<z,q,c), ¢4 €, e5 > z[y,q ,c1,ca, €1, €3], < T, qr, ¢}, ch, €], e >— x|
(z,q,c1,c0,q s e1,ea,+1) € R, ¢}, ¢y € {Z, B}, e, e € {-1,0,+1}, 2,y € &}
Poireoms = 18— LI = CHUR={C 5 Qneser,es }U

Palgipgs(sa)

{<I>>1z,q,Z,7Z,e1,es)|(x,q0,Z,Z,€1,€2,0) € R,x € ¥} U
{<I>=1ly,q,Z, Z, e, el(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{<z,q,c,ch e, eh > [x,q,c1,c0,e1,€]|(7,q,c1,¢2,q , €1, e2,0) € R,
r € X,), dye{Z B}, e, e5 € {—1,0,+1}}U

{<z,q,c),ch el ey > z[y,q ,c1,co,e1, €3], < T, qF, C), Ch, €], €5 >— x|

(I,q,Cl,CQ,q/,€1,€2,+1) € RacllaC/Q € {ZaB}aellaeé € {_1703+1}3Iay € E}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

P2

GMpaisis2

P2

GMpaisiss

)
PGMPA152

{5 = U= CYUN={C = Qreset

{8 = [I],[I] = C} U

m: {C%QResetGMchgl }U
@151(S2)

{<I>>12,q,Z,7Z,e1,es)|(2,q0,Z,Z,€1,€2,0) € R,z € L} U

{< I >— I[y7Qa Z7 Z,81,€2]|($,QO,Z, Zan615627+1) € R,I,y € 2} U

{< xv‘]acllvcévellaeé >— [IaqlvClv02761;62]|(I5qvclaCQaq/aelveQaO) € Ra

reX d,cye{Z B} e, es e {-1,0,+1}}U

{< x7qucllac/276/17€/2 >— J;[y,q/,Cl,CQ,el,eg], < xaqFac/lac/27ellue/2 >— JI|

(557%01,027(]/7@1762,"’1) S R7clluc/2 S {ZuB}u

el e5 €{-1,0,+1}, 2,y € T}

{S = [I],[I] = C} U
N={C— QResetGMc2 U
Palgy(gs)
{<I>>12,q,Z,7Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,z € L} U
{<I>=1ly,q,Z, Z, e, es|(x,q0, 2, Z,q,e1,e2,+1) € R,x,y € 2} U
{< @, q,c),c5,ey,eh >= [2,¢,c1,c0,e1,€3]|(,q,¢1,¢2,¢ , e1,e2,0) € R,
reX d,cye{Z B} e, ey e {—1,0,+1}}U
{<z,q,c), ¢4 €, e5 > zy,q c1,ca, €1, €3], < T, qr, ¢}, ch, €], e, >— x|
(,q,c1,c0,q ,e1,ea,+1) € R, cy,ch € {Z, B},

el e5 €{-1,0,+1}, 2,y € T}

YU

c2
GME o,

{<I>>2,q,Z,Z,e1,es)|(x,90,Z, Z,€1,€2,0) € R,x € £} U

{<I>>2ly,q,Z,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U

/ / ! / / /
{< x,q,C1,Cq,€1,E9 >— [957(1 ,Cl,Cg,61,62”(1',(],01,02,(] 76176270) € R7

v eX,d,dye{Z B}, el ey € {-1,0,+1}}U

/ / !/ / / / / !/ /
{< Z,q,Cq1,Co,€1,€E9 >— z[yvq 761762561762]7< Z,qF,C1,Cq,€1,€9 >— IZ?|

(:qu’cvaqu/velaer_'_l) € R,Cll,Cé € {ZvB}vellveé € {_1707+1}7$7y S E}

30

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 31

P&vipaes = 1S—= UL = CUN={C— QResetGM;zalSS Hu
{<I>=>2,q,Z,Z,e1,es)|(x,q0,Z, Z,€1,€2,0) € R,x € £} U
{<I>>1zly,q,Z,Z,ex,ed|(x,q90, 2, Z,q,e1,e2,+1) € R,x,y € L} U
{<x,q,c),c5, e, e5 > [x,q ,c1,c,e1,e2]|(1,q,¢1,c0,q , €1,€2,0) € R,

x €N, cy,che{Z B} e, ehe{-1,0,+1}}U
{<z,q,c),ch, e, e5 >= [y, ¢ c1,c0,€1, €], < T, qp,], Ch, €], €5 >—
(,q,c1,c0,q e1,ea,+1) € R, ¢y, ¢y € {Z,B}, e, ey € {—1,0,+1}, 2,y € &}

o contains the same rewriting rules and communication stepghecomponenP;™ in the

loTiginalSI

original system [7]. Some labels in the rewriting rules haeen modified to ensure that the components
query their corresponding helper grammars in the otheiosecof the system. Note that tH* component
has4 new helper grammars in this construction; these helper gramare required to ensure tigt', Py,

andP;* have their own unique component grammars to communicake wit

P& = ‘J‘(:{Sl—>Q8MS],Sl—>Q°1

loriginalsy 451 original’

C = QG U

{[x,q,c1,ca,€1,e2] = [e1], [+1] — AAC,[0] — AC,[-1]) — C]|

x€X,q€ F,c1,c0 € {Z,B},e1,e0 € {—1,0,+1}} U

{] = [11, [1) — AC}
The following two P;* helper grammars work with their respective helper gramraarslefined in their
rewriting rules; their definition contains a rui@ — 7, which will be used in Step 13 during successful

derivations. If this rule is used at any other step the systdlirblock (just like in the similar situations

discussed earlier).

PIC;1H2(S4) = M= {Sl - Q8M51H2(S4)’Sl - QZ}SHHz(SzL)? ¢— QGMsle(S4)’C - W} U
{[z,q,c1,¢2,e1,e2] = [e1], [+1] = AAC,[0] = AC,[-1] — C|

reX,qe B c1,c2 € {Z, B}, e1,e5 € {—1,0,+1}U{[I] = [I]',[I] = AC}

PIC;1H3(S4) = M= {Sl - Q8M51H3(S4)’Sl - QZ%]HS(SAL)’ C¢— QGM31H3(84)’C - W} U
{[z,q,c1, 2, €1, 2] = [e1], [+1] = AAC,[0] = AC,[-1] — C|

reX,qe B c1,c2 € {Z, B}, e1,e3 € {—1,0,+1}U{[I] = [I]',[I] = AC}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 32

The following two Pi* helper grammars will ensure the proper derivatiorPgf and Pst

riginalSo 30riginalSs "

They work by communicating with their corresponding helgermmars and their designated special helper

in the P;* section.

Pf;l (S2) = M= {Sl - QgMSl(Sz) ’ Sl - QZ}S‘pecialHelpeT151sg) C— QGM81(52)7
Sy — S, 880 = Q pen }u
151 Hy(84)
{[z,q,c1,c2,e1, €] = [en], [+1] = AAC, [0] — AC, [-1]' — C|
x€X,q€ F,c1,c0 € {Z,B},e1,ea € {—1,0,+1}}U
{1 = 1], [1] — AC}
Pf_;l (S3) = N= {Sl - Qngl(SS) ’ Sl - QZ}S‘pecialHelpeT151s3 ’ C— Q8M51(53)7
Sy — S 8 5 Qpe JuU
151 H3(84)

{[z,q,c1,¢2,€1,€2] = [ea]', [+1] = AAC, [0]' — AC,[-1] — C|
xr€X,q€ FE,c1,c0 € {Z,B},e1,ea € {—1,0,+1}}U

{1 = [, [1] — AC}

Component grammaP;* remains similar to the original system without any addiibhelper gram-
mars. It has been renamed and labels have been modified teedhatiit works with its matching helper

components.

C1 — _ c1 c1 c1
P3livimas, = M=A{5 = Qgus, 52 = Qis,, C = Qguys,, A — AU

{[‘T7Q7 Z,Cg,el,eg] — [‘T7Q7 Z,Cg,el,eg], [I] — [IHI’ € E7q S Eu

Cy € {Z,B},el,eg S {—1,0,+1}}

Component grammaP;* is again similar to the original definition and it does notaeey helper gram-
mars in this construction. Its name has been modified toiigehat it was part of the original construction
and the labeling in the communication steps has been modifiedsure the correct helper components are

queried.

Pg(l)rigmazss = N= {53 - Q8M537 53 - Qécli%,’ C— QEJIMS;),} U
{[«T7q, Z7 62761762] — a, [$7Q7Bac%elue2] — [x7Q7Buc2761762]

[I] — [I”CC € qu € Ech € {ZvB}7617€2 S {_1707+1}}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 33

Componenf;* needs extra helper grammars to ensure that componentsdiafiother sections

40riginalsa’

have their own uniqué®;* component to query. The rules in the original grammar aretfermost part

unchanged, the only difference is the labeling.

pPe = {8 = 8W s sy

4OTig1inalS4

N={5" = QfsU{d—a)

A new nondeterministic step has been added to the followigghelpers in theP, section, specifically:

Sf) — Sf). This rule was added to avoid a circular query in Step 12 ofiimévation. This being said this

rule could be used whenever the non term'ﬁfﬁ? appears, but if it is used in any other step there is a chance

that the matching® component queries it and receivﬁg), but sinceP; does not contain a rewriting rule

for Sf) the derivation would block. The only successful use of thigriting rule is in Step 12.

pe1 = {5, > 8M, 5 5 5@y

45y Hy(5g)

N = {8 = Q% 5, sy 55 = SPVHU{A = a}

pe = {5, > 8M, 5 5 5@y

45y Hz(54)

n={s? - Q% 5, Ha(sa):) A SUR

P = {5, — 80 s sy

4s,
N={S > Qu s} U{A—a}
P = {Si—) R AT

N={S = Q%sU{A—a)

Pl = ’)?:{54—>S4}

4Special Helperlsisa

Pl = ’)?:{54—>S4}

4Special Helper2s1s3

P2 contains similar rules as iR except it has new labels. It also needew helper grammars.

107‘iginal51

C2 — — Cc2 [} Cc2
PlOv‘ingalSl - m - {Sl - QGA’IS1781 - QP451 ? C - QGMsl} U

{[z,q,c1,¢2,€1,€2] = [ea]’, [+1] = AAC,[0] — AC,[-1] — C|

S an € EaclacZ € {273}761762 € {_1107+1}}U {[I] - [I]Ia [I]I — AC}

The following two P; have a new rule added to them that will be used in Step 13 ofdhieadion:C' — W.

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 34

If this rule is used at any other step the system will blocklfi@ar same reason as above.

C2

P151H2(S4) = N={%= Qngle(Sz;)’Sl - Qg451H2(S4)’ ¢ — Qngle(szx)’C - WU
{[x,q,c1,ca,e1,e2] = [ea], [+1] — AAC,[0] — AC, [-1] — O]

reX,qe E,c1,c0 €{Z,B},e1,e0 € {—1,0,+1}}U{[I] = [I]',[I]" = AC}

C2

PlslH?’(S“) = N={ho Qngle(Sz;)’Sl - Q§32451H3(S4)’ ¢— Q(nglHa(szx)’C - W}u
{[z,q,c1,¢2,e1,e2] = [ea]', [+1]" = AAC,[0] — AC,[-1] — C]|

reX,qe E c1,c0 €{Z,B},e1,e0 € {—1,0,+1}}U{[I] = [I]',[I]' = AC}

The following two P;? helper grammars are components that will help ensure thpeprderivation of

Pz andPy? by holding intermediate strings throughout the derivation
2Ongznang 3OT1gznalS3
P = M={8 = QZ S1 = Qfpeci C— Q¢
151(52) 1 GMsl(s2)’ 1 4SpecialHelperlsisa’ GM31(52)7
1 1
Sy — S, 90 = Qpeo Ju
151 Hy(84)

{[z,q,c1,¢c2,e1,€2] = [ea]', [+1] = AAC,[0] — AC,[-1] = C]|
reX,qe E,c,c2 € {Z,B},e1,e5 € {—1,0,+1}}U{[I] = [I],[I] = AC}
Pf:l(ss) = N= {Sl - Qngl(Ss)’Sl - Qz%pecialHelper15153’O - QézMSl(Sg;)’
Sy — S 8 5 Qpes YU
15 H3(S4)

{[z,q,c1,c2,€1,€2] = [ea], [+1] = AAC, [0] — AC,[-1] — C]|

reX, g€ E c1,c0 € {Z,B},e1,e0 € {—1,0,+1}}U{[I] = [I]',[I]' = AC}

Component grammar,? is the same as in the original system, except that it has leemed and the

communication rewriting rules have been modified to matetctirrect helper components.

Py = ’)1:{52—>QE§M52,52—>Q‘;2452,C—>QE§MSQ}U{A—>A}U

20riginalSy

{[z,q,¢1,Z,e1,e2] = a,[z,q,c1, B, e1,ea] = [x,q,¢1,B,e1,ea], [I| = [I]|z € &,

qc E,Cl € {ZvB}7617€2 S {_1707+1}}

Component grammak;? contains similar rules with the original construction. 8arly to P5?

QOTiginalSQ

it does not require any helper grammars. Its name has beetfieddd reflect that it was part of the original

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 35

construction and its communication rules have been moditiedflect the labeling of the proper helper

components.
P3C(2J'r'iginals3 = N= {S3 - QE?MS::,’ S3 - QCP2452’ C— Qg]WSg} U
{[x7qacla Z761162] —a, [‘T1Q70173761162] — [1’,(],01,3,61,62]
(Il = [Ilx € E,q€ E,cl € {Z,B},e1,e2 € {—1,0,+1}}
Componenﬂ{f;wmzszl, requires 6 additional components to ensure a successiuhtien. The name

of the grammar has been modified and the rules in the grammartaal their labeling updated to match the

respective helper grammars.

pe = {8 =S s 5 sPrum= {57 = QE sl U{A = a)

40riginalS4

A new nondeterministic step has been added to the followitogielpers for the originaP, component. The
rule Sf) — Sf) was added specifically to avoid a circular query in Step 1hefderivation, but this rule
could be used whenever the non termiﬁﬁl) appears. Ifitis used in any other step there is a chancetbat t
matchingP; component requests its string and receiggg. Thankfully the matching®, component does
not have a corresponding rewriting rule and thus the deoratill block. In a successful derivation this rule

will thus be used only in Step 12.

P o= {Si— S, 850 = SPHUN = {8 = Q% s, sy S5 = ST U{A = 0}
Pe L= {Si— S, 80 = SEHUN = {87 = Q% g, sy S5 = ST U{A = 0}
P = {Si— s s s sPrum= {5 - QR4 U{A—a)
P2 = {Si— 8,8 = sPrun={sP - Qi u{a—a)

co o
P4SpecialHelper15152 N= {54 — 54}

Co o
P4SpecialHelper25153 N= {54 — 54}

The original P,, grammar remains as it was in the original system. In ordecdonponent grammars in

sectionsPy!, Py, Pyt Pt Pr?, Py?,Py?, and P, to derive correctly 14 additiond?,, helpers have been

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 36

added to the system. Their names and labels reflect the camfsaihey will work with during a derivation.

Puo,origina = N={S = QcM,igina } U] =<1 >,
[,q,c1,c2,€1,e3] =< x,q,¢1,Ca,€1,€9 >,
< x,q,01,Ca, 61,62 >—< T, q,C1,Co,€1,63 >, < [> [> |z e,
q€ FE,c1,c0 € {Z,B},e1,e5 € {—1,0,+1}}
Pllous, = MN={5—=Q%ypas, C > C}IU
{[I] =< I>,[z,q,¢1,c2,€1,€2] =< ,q,c1,C2,€1,€2 >,
< x,q,c1,C2,€1,€3 >< T,q,C1,Ca, €1, >, < [>>< [> |z €3,
q€ E,c1,c0 € {Z,B},e1,e2 € {—1,0,+1}}
szlchslH2(s4) = N={5— QgMPA151H2(54)’ C—C}HU
{lI] =< I >,[z,q,c1,c2,€1,€2] =< x,q,¢1,C2,€1, €2 >,
< x,q,01,C2, 61,62 >< T, q,C1,Co,€1,63 >, < [> [> |z €,
q€ FE,c1,c0 € {Z,B},e1,e0 € {—1,0,+1}}
Plaovsimyisy = N=A5 = QGmpais mys,) ¢ = CHU
{[I] =< I>,[z,q,¢1,ca,€1,€2] =< T, q,c1,C2,€1,€2 >,
< x,q,c1,C2,€1,€3 >< T,q,C1,Ca, €1, >, < [>>< [> |z €35,
q€ FE,c1,c0 € {Z,B},e1,e0 € {—1,0,+1}}
Plomsisy = N={5—=Qgys, s, C = CHU
{I] =< I >,[z,q,c1,co,€1, €3] =< ,q,¢1,C2,€1,€2 >,
< x,q,c1,C2,€1,€3 >< T,q,C1,Ca, €1, >, < [> [> |z €3,
g€ E,c1,c0 € {Z,B},e1,e2 € {—1,0,+1}}
P‘fllGMsl(Ss) = N={5—- QCGIM51(53)7C —C}Hu
{lI] =< I >,[z,q,c1,c2,€1,€2] =< x,q,¢1,C2,€1, €2 >,
< x,q,01,C2, 61,62 >< T,q,C1,C,€1,63 >, < [> [> |z €,

g€ E,c1,c0 €{Z, B}, e1,e2 € {—1,0,+1}}

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

C1
alGMSQ

C1
Pal GMS';

C2
PalGMSl

c2
PalGM51H2(S4)

C2
PalGMs’l H3(S4)

c2
P a1 GM Sy (S2)

N={S = Qénpars, ¢ > CIU

{[I] =< I>,[z,q,¢1,ca,€1,€2] =< ,q,c1,C2,€1,€2 >,

< x,q,c1,02,€1,€3 >< T,q,C1,Ca, €1, >, < [>>< [> |z €3,
q€ FE,c1,c0 € {Z,B},e1,e0 € {—1,0,+1}}

N={5 = Qgmpais,, ¢ = CHU

{lI] =< I >,[z,q,c1,c2,€1,€2] =< x,q,¢1,C2,€1, €2 >,

< x,q,c1,02,€1,€3 >< T,q,C1,Ca, €1, >, < [>>< [> |z €3,

q€ E,c1,c0 € {Z,B},e1,e2 € {—1,0,+1}}

= ‘ﬁz{S—)QCG?MPAlSl,O—)O}U

{[I] =<1 >, [wv%clvc%elueﬂ —<x,q,C1,C2,€1,€2 >,
< x,q,c1,C2,€1,€3 >< T,q,C1,Ca, €1, >, < [>>< [> |z €3,

q€ E,c1,c0 € {Z,B},e1,e2 € {—1,0,+1}}

= N={S—> QgMPA151H2(54)’C - C}U

{[I] —< I >7 [I,q701702,€1,62] —< x,(q,C1,C2,€1,€2 >7
< x,q,01,C2, 61,62 >< T, q,C1,Co,€1,63 >, < [> [> |xe,

g€ E,c1,c0 €{Z, B}, e1,e2 € {—1,0,+1}}

= N={5 = Qcypais, mys.) C = CHU

{[I] =<1 >, [wv%clvc%elue?] —<x,q,C1,C2,€1,€2 >,
< x,q,c1,C2,€1,€3 >< T,q,C1,C, €1, >, < [>>< [> |z €3,

g€ E,c1,c0 € {Z, B}, e1,e2 € {—1,0,+1}}

= N={S—> QCGZM51(52)7C—> ctu

{[I] —< I >7 [I,q701702,€1,62] —< Z,(q,C1,C2,€1,€2 >7
< x,q,c1,C2,€1,€3 >< T,q,C1,Ca, €1, >, < [>>< [> |z €3,

g€ E,c1,c0 € {Z,B},e1,e2 € {—1,0,+1}}

37

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 38

Promsisy = N={9—=Qcus s, C = CHU

{[I] =< I>,[z,q,c1,ca,€1,€2) =< ,q,c1,C2,€1,€2 >,
< x,q,c1,C2,e1,63 >< T,q,01,Ca,€e1,e2 >, < [>< [> |z €3,
q€ E,c1,c0 € {Z,B},e1,e9 € {—1,0,+1}}

Proms, = N={5—=Q¢upas, C = C}U
{I] =< I >,[z,q,c1,c0,€1,€2] =< T,q,c1,C2, €1, €2 >,
< x,q,c1,C2,e1,63 >< T,q,01,Ca,€e1,e2 >, < [> [> |z €,
g€ E,c1,c2 € {Z,B},e1,e2 € {—1,0,+1}}

Provs, = N={5-Q%upas, C—CtU

{[I] —<1 >, [‘T7Q7cl702761762] —< Z,(q,C1,C2,€1,€2 >,
< x,q,C1,C2, 61,62 >—< T, (q,C1,C,€1,63 >, < [> [> |z e,
q€ E,c1,c0 €{Z,B},e1,e2 € {—1,0,+1}}

The original component gramma,, remains unchanged and works as it did in the original sysbein,

we will refer to it asP,

a20riginal

in order to remain consistent with the naming of the otheginal components
in the system. The communication rule has also been moddieefliect the new names of the component

grammars.

P = {§—55%90 583 5@ 5B g, gW1y

a20riginal
_ (4) c1 c1 C2 [(1)
n {S - QP?om'gmazsz QPSoriginalSS P20riginal$2 QPSoriginalSS S }
Now we define the grammars that are used to resefthehelpers. They will send the non-terminal
< I > to their matching component grammar, which will allow thagrivation to restart. These components

and their rewriting rules are not part of the original system

ResetGM}?alSl = N={S—o<I><I>><I>}

Resetg e = N={S=<I><I>><I>}
S1H2(S4)

Resetgye = N={S=<I><I>><I>}
S1H3(S4)

ResetGMlilalsusz) = N={S=<I><I>=><I>}

ResetGMfﬂilsl(sg) = N={S=<I><I>><I>}

Resetg e = N={S—=<I><I>><I>}

algg

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 39

Resetgye, = N={S=><I><I><1>}
alss
Resetgyez = N={S=><I><I><1>}
alsy
Reset gy ez = N={S=<I><I>=><I>}
Palgima(sa)
Reset ez = N={S=<I><I>><I>}
Palgipgs(sa)
Reset ez = N={S—=<I><I>><I>}
Palgy(s2)
Reset ez = N={S—<I><I>><I>}
Palgy(ss)
Resetgyez = N={S=<I><I><1>}
als2
Resetgyez = N={S=><I><I><1>}
alss
The components below will be used to res&t , Pt , P2 , and P2 in Step 13
S1H2(S4) S1H3(S4) S1H2(S4) S1H3(S4)

of the derivation. This reset allows queried componentstoelset to their axioms which in turn allows the

derivation to restart. These components were not part afiggnal system definition.

Reset per = N={U—=U1,U1 = Us,Us = Us,
1S, Ho(Sy)
U3—>U4,U4—>U5,U6—>U7,U7—>QPC1 U4}
151 Hy(Sy)
Reset per = N={U—U,U = Up,U; — Us,
1s1H3(S4)
Us = Uy, Uy — Us,Ug — Uz, Uz = Qper Us}
Lsy H3(S4)
Reset pe2 = N={U—U,Us = Uz, Uz = Us,
151 Hy(S4)
U3—>U4,U4—>U5,U6—>U7,U7—>QP61 U4}
151 Ho(Sy)
Reset pea = N={U—-U,U1 - Us,Us — Us,
1S, H3(Sy)
Us — Uy, Uy — Us,Us — Uz, Uy = Qper Uas}
151 H3(Sy)
The following, new grammar components will be used to re3gt = P o, P o, and

C2
dsy H3(54)

derivation process.

in Step 14 of a successful derivation. The reset compondiotssathe system to restart the

Reset pe = N=AT->T,T1 = Ts, T — T,
451 Ha(54)
Ts — Ty, Ty — T5,Ts — Tr, Tr — Qper Ty}
451 Ha(54)
Reset per = N={T->"T,T1 = Tp,To = T3,
451 H3(Sy)
T3—>T4,T4—>T5,T6—>T7,T7—>QPC1 T4}

451 H3(S4)

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 40

Reset pes = N={T->T1,T1y — T, T> — T3,
451 H2(S4)
T3 2 Ty Ta = T5,Te = T1, Tr = Qpgz -)T4}
142~
Reset pe2 = N={T—->T,T1 =Tz, T> — T,
451 H3(S4)
T3 = Ty, Ty = T5,Te = T1,T7 = Qpez s)T4}
1H3(~g

4.2 The Simulation of the 2-Counter Turing Machine

As in any PCGS the master grammar controls the derivatiore Sthing[z, ¢, ¢1, co, e1, e2] present in the
master component, whete€ X, g € E, ¢1,¢2 € {Z, B}, e1,e2 € {—1,0,+1} means that the 2-counter
machineM is in stateg, the input head proceeds to scaonto the input tape and , ¢, on the two storage
(counter) tapes, respectively, and then the heads of thegetdapes are moved according to values jrand

es. The number ofd symbols in the strings of the, coc component grammars keep track of the value of the
counters ofM, meaning that these numbers should always match the valtedlsn the counters a¥/ or
else the system will block.

We used the “original” grammar system componeRfs, P2, 1 > i > 4 to simulate the changes
in the counters, as done in the original system [7]. All of tileer component grammars included in our
construction enable the original components to work colyr@ising one-step communication throughout the
derivation.

The PCGST first introduced] in the master grammar, then a number of rewriting steps oiccar
sequence that initializ€s by setting the counters to Once these steps are complefedan then simulate
the first transition ofM by rewriting [I] to u[2’, q, Z, Z, e1, e2] Where(z, qo, Z, Z, q, €1, €2, g) is a rule of
M. Hereu = z if g = +1 andu = ¢, 2/ = z if ¢ = 0. In the case that the input head moves< +1),
the master grammar generate®llowed by 2/, ¢, Z, Z, e1, e2] which shows thafl/ is now scanning a new
symbol. If the input head does not move, the master grammes dot generate any terminals and the string
[*',q,Z,Z, e1, es] indicates thafl/ is still scanning the same symbol. At this poff*, Ps*, P52, and P;?
verify the values stored in the counters af, and modify the values according t¢ ande,. T' can then
determine if it can enter stateby verifying and updating the counters before moving fodvan order to
simulate the next step the master grammar rewfiteg, c1, ¢z, €1, e2] to [/, ¢', ¢}, ch, e}, €], u € {z, e}, if
M hasaruldz, q,ci,ch,q',el,eh, g). Hereuw = z if g = +1, andu = ¢, 2’ = z if g = 0. T then validates if
;. andd, have been scanned on the counter tapes and then updatesfiest reflect the valuesd,and

eh. If the input head move@ly = +1), the symbok is added to the string of the master component, and so

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 41

on.

We now present the process outlined above in more detailstheoremainder of this section we use
the layout shown in Figure 4.1 on the next page to presentghéigurations ofl’. The component strings
are identified in the figure by the names of the componenis these names will be replaced by the actual
strings. As mentioned earlier thié original grammars have the word ’original’ in their names.

We number the steps of the derivation so that we can refereim tim a convenient manner. Such a
numbering is shown parenthetically on top of the- operator.

The initial configuration ofl* (having the respective axiom in each component) is rewarii® follows.
There are nondeterministic rewriting choices in severaiponents as shown in Figure 4.2 on page 43. Here
u1, ug, ug, represent the origingb*, Py*, P;* components and their copycat grammars; they can either
rewrite to query components that simulate the rules in thstengyrammar or they can rewrite to query a
helper component in thB;* section.u}, us, us, represent the origind?;?, P,?, P> components and their
modified copy grammars; they can either rewrite to querydralpammars that contain rules similar to the
master grammar or they can rewrite to query helpers irAftegroup. In this case if any of the components
rewrite to query theP;* or P;? helpers the system will block because none of the compomeqteesting
strings fromP;* or P;* have a rewriting rule fo6,. Therefore, the only first step that will lead to a successful
derivation is the one shown in Figure 4.3 on page 44. We thatirage as shown in Figures 4.4 on page 45
and 4.5 on page 46.

Now we have yet another nondeterministic rewriting choicedveral components, as depicted in Fig-
ure 4.6 on page 47. Herg, ug, us, represent the original and helper componentsHpr, Py*, P;*; they
can rewrite and query their collaborating grammars thatimatther the rules in the master &;* compo-
nents.u, uy, ub, represent the original and helper component$igr, P;?, P;?; they can rewrite and query
their matching component that simulate the masteP@rrules. The master grammar and all of the helper
components have only one rewriting choice, to query theirespondingP,, component, or to rewrite to
the non-terminal’. P, Py, P5', Pr?, Py?, and P52, could have rewritten to query their corresponding
component grammars in the master grammar helpers or couddrbaritten to query’;* or P,;2. The former
choice would result in a blocked derivation due to the intretcbn of circular queries. This is the first step
that makes use of the reset queries in the section of granthrarsopies the rules of the master. The only
possible step that will lead to a successful derivationésathe in Figure 4.7 on page 48.

Itis at this point thaf® can start to simulate the 2-counter Machivie The configuration described above

P
GMOriginal
=
GMgq
€1
GMg1H3(54)
€1

P

gMPA151H2

GMp A151(52)
€1

GMpa1s2
2
GMg,
cg
P
GMg1p3(54)
PEA
GMgq(s3)
P2
GMgs
PS2
GMpALS1H2
GMp 15152
PEA
SGMpais2
pCl
IOriginalsl
c1
18y H3(S4)
pClL
15, (S3)
Pl
30riginalS3
c1
4511;'2(54)
Pyt
S2
Pl
4SpecialHelperlgygo
P2
IOriginalsl
C
18y H3(S4)
P2
S1(S
co 1(S3)
30riginalS3
¢
45113'2(54)
P2
Sa
cg

P4SpecialHelpeT15152

Pal Original

Pel
a1 GMS1 Hp (Sq)
Pa1GMS1(S2)
Pl
) GMSo
P2
) GMSq
P
a3 GMS; H3(Sy)
Paygarsy (s3)
po2
a1 GMSs
Reset | ¢
Pay 51
Reset cq
GMp, | S1H3(S4)

c1
GMp,, s1(53)

ey
GMp,, 53
Resetg g o
Puls1H2(54)

c2
GMp,, s1(52)

ResetGA[Pal g2c2

Reset

Reset

Reset

Reset _cq

Ls1Hy(S4)
Reset _co

151 H(Sy)
Reset _cq

451 Hy(Sy4)
Reset _co

451 Ha(S4)

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

=
GMgiH2(54)
PCL
GMgq(s2)
=
GMgy
21
P
CGMpaist
Pl
gMPA181H2
GMp A151(S3)
Pl
SEMpaiss
2
GMgiH2(s4)
P22
GMgq(s2)
PC2
GMgy
co
P
SGMpaist
2
GQ/12PA1S1H3
GMgq(s3)
P22
GMpA153
Pl
S1H2(S4)
pCl
1g, (S2)
c1
20riginalSo
c
40riginalSy
c1
451 Hg(Sy)
Pl
45,
Pl
4SpecialHelper2gy g3
c
1561H2(S4)
pe2
1sy(89)
g 51052
20riginalSo
¢
40riginalS4
5]
451 Hg(Sy)
P2
4
S3

P2
4SpecialHelper2gy g3

Pl
a1 GM Sy Hp(Sy)
1
P
a3 GM S H3(54)
P
alg’lMsl(Ss)
Pajamsy
P2
alcC;MSle(SM
PayGnsy (Sy)
P2
a1 GMSq
Paz0riginat
Reset

c1
GMp,, s1H2(54)

c1
GMp,, s1(52)
Reset | ¢y
GMp,, 52

eset cg
G]WPG

Reset

R
R 151
eset cg
GM
Paq S1H3(S4)
Reset , co
GMp,, s1(53)
Resetcjwpcz
a1 S3
Reset _cq
151 Hz(Sy)
Reset _co
151 Hg(S4)
Reset _cq
" 451 H3(54)
set
ese P4€2
S1H3(S4)

42

Figure 4.1: Compact representation for configurations mQirPCGS that simulates a 2-counter machine.

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

I
I I
I I
I I
I I
I I
r s A I I
2 s I I
2 p I I
2 p I I
< S I I
s ! !
s s
I I
s s
S < I I
S S 1L1 u1
S S 1L1 u1
s S uq ug
s s ug s{P
s s o) e
s 8 4 4
sy S s{ s{
S1 S Sy Sy
Sy S2 u/} ui
SS S4 u u
S48y } }
S. S w1 w2
4 4 3
S4 S4 wh s%
S 51 (1) 1)
s HON e e
gl 22 Sy Sy
3 4 S S
Sg Sg
Sy Sy QGNIoTiginal e
1
SS4 Sy QGZ\/IPal 51
c1 c1
S Q Q
s s GMp,, 51Hy(Sy) GMp,, S1H3(S4)
c c
S8 Qcm Qcm
S s Paq S1(S2) Paq S1(S3)
S S ch ch
S 5 GMp, s, GMp, sq
s s Q°2 Q¢
s s GMpy, 51 GMp, | S1H5(54)
s s cg Q%
s s GMp,, 51 H3(54) Mpg,51(S2)
02 c
S s GMp,, 51(53) GMpg, So
s s Q2 s(3)
g g GMp, sq
oD <I> <I>
v o <I> <I>
a0 <I> <I>
T T <I> <I>
- - <I> <I>
<I> <I>
<I> <I>
Uy U,
Uy U,
i i
L Ty Ty .

Figure 4.2: PCGS simulation of a 2-counter Turing machiriep3 (nondeterministic).

43

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

nRRRRN NN NL RN RN hnnn®

HHCSCuLLnLhhhhhhnhhh’n

Figure 4.3: PCGS simulation of a 2-counter Turing machiriep3.

Nnhhhhhhhhhnhnhhn

HHCCunuhhhhhhhhhnhhnh®n

NN SRR NN NN NSNS NS

c
Qamg,
c1
Q
Gl\flsle(Sz;)
GMg, g4
c1
Qéamg,
s%l)
1)
54
Sa
co
Qémg,
QE
G1\£I251H3(S4)
GMg, g4
co
Qcmg,
s%l)
1)
54
Sa
QGMoriginal
c1
GMPal S1H2(S4)
Qdn
- Pay S1(S2)
Qcl
GMp, s,
c
Q
GMp, s,
co

NN SRR NN NN NSNS

Qdm
clsl Ho(S4)
GMg, So
s,

s{H
eD)

531)
Sa

(o)
GMs) Hy(Sy)
cg
Gcf‘gfsl S2
Q
GMg,
(1)
54
s%l)
1)
54
Sa
ey
Q
GMp, 5,
c1
Giv[Pal S1H3(S4)
1

Ram
Clpal S1(S3)

Q
GMPal 53

(o))
GMPal S1H32(S4)
c

ANNANNNANN
NN
VVVVVVV

44

[e e e

c
Qamg,
c1
Q
Gz\flsle(Sz;)
GMg, s,
c1
Camg,
e
5?11)
st
Qdmg,
QZ
Gz\f251H3(S4)
GMg, g4
ca
Qdmg,
JeS)
sil)
Sq
QGMo'rigina.l
c1
Giv[Pal S1H2(S4)
1

Q
GMPa1 S1(S2)
Qe
GMPa1 Sa
(o)
GMp,, sy
ca
GMPal S1H3(S4)
QE
GMPal S1(S3)
QE
GMp,, s3
I

ANANANNANNN
VVVVVVYV

I
I
I
I
I

Uy
Uy
Ty
T

[e e T Y e e Y e Ha Y e i

c1
ch\flsle(Sz;)
Qamg, Sa
s,
s{H
ey
5?11)

QZ o
GMsy Hy(S4)
QCG2MSIS2

QCG2M52
s{H
ey

sil)

Sq

. 2?lMpal S1

Gli\fPal S1H3(S4)

QGMPal S1(S3)

c1

Q
GMPa1 S3

eF
GMPa1 S1H2(S4)
cg

SRERNunnnnnnhhhhhnhnhn

0 W0
B~
=

——
SEs

ANANANNANNN
VVVVVVV

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

SRS nnnnnhhhhhhhhn

n u
PN
£

VVVVVVV

ANANNANNANNAANNANANN A

VVVVVVVV VVVVVV V

ANANNNANN G ANANNANNN
OSSNSO T N N N N N
VVVVVVV YVVVVVVV

SEES

Figure 4.4: PCGS simulation of a 2-counter Turing machinepS§2 and 3.

45

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

C e B W e M Y M B Y

—— e e
NN DRSS NSNS
RN N R

i’
1]

n W
O, —~
SRS

ANANANANNANN ANANANN A
VVVVVVVV VVVVVV V

.§.§§§---- O~~~

NSNS N NSNS S NN

R
o=

w
&

9] —— 9]
AN e
DY)

0
T
NN

E/J,zs.m
IS

ANANANNANN g ANAANANNN
s s D
VVVVVVV YVVVVVVYV

SFES

QQQQQQQQQQQaQQQQ

AC

c1

GMsy Hy(S4)
c1

Q

GMg,
Sq
AC
AcC

ANANANNAN NAANANANAN A
VVVVVVV VVVVVVV

g5QaaaqaaaaaqqaQq

)
——
=

o
GMg,

c1

CMs1 Hy (5,
c1

Q
GMg,
Sq
AC
AcC
CQ[I]

Q
GMg,

QZ

GMs, FHg(Sy)

)

ANANANANNANNAANNNAN A

2L2%2%000000000000000

VVVVVVVV VVVVVV V

Egli

)

ga2s2anqaqqaqaaaaqn

ANANANNNNA

VVVVVVVEVVVVVVYV

I
I
1
I
I
I
I

11
I
1
1
1
I
I
I

ANANANNANNN

SRSE

s(1)

Figure 4.5: PCGS simulation of a 2-counter Turing machinep§4 and 5.

46

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

ANANANANNANNAANNNAN A

Figure 4.6: PCGS simulation of a 2-counter Turing machiriep$ (nondeterministic).

2L 2a00000000000000

VVVVVVVV VVVVVV V

ANNANNNN

Eali

)

ANANANNANNN

I
1
1
1
1
1
I

Lol
1
I
I
1
I
I
I

S
w'w

ke

EE85900000000000000

VVVVVVVIEVVVVVVV

s(1)

QPal Original
QPa1 s1
QPal S1H3(S4)
QF, s1(s3)

i
QPal s3

QReset

GMp,, 51H2(54)

QRcsct

GMPa 51(S2)

Q
Resety
GMPQ1 S2

QPal s1
QP
Pa1 S1H3(S4)
QE s1(s3)
Lo
QPa1 53

QReset

GMPQ S1H2(S4)

QReset 2

GMp,, 51(52)

Q
Resety
GMPal s2

ANANANANNANN AANANNAN A
VVVVVVVV VVVVVV V

QPa151H2(S4)
QF. s1(52)
&
Qpals2

Q
Reset?
GMPa S1

QReset

GMp,, 5S1H3(54)

Resetol
GMPa1 S1(S3)

Q
Reset?
GMPa S3

c2
QPa151H2(S4)
QE s1(s2)
&
QPQ1 S2

Q
Reset?
GMPa1 S1

QRcsct

GMPa S1H3(S4)

Reset’
GMP 1 51(83)

QReset

ANNANNNN

=
=
N N

(1 s

ANANNANNANNNA
VVVVVVVEVVVVVVV

sS85

2

47

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

ANANANANNANNAANNNAN A

2L 2a00000000000000

VVVVVVVV VVVVVV V

QPal Original
QPa1 s1
QPal S1H3(S4)

QP%1 51(53)

QPal s3
c QResetGA[
c Pqq S1H2(S4)
c Q c1
Reset
c GMPa 51(52)
le} 2 1
c Resety
c GMPQ1 S2
pe QPal s1
c QP
pe Pa151H3(S4)
c QP s1(s3)
c L
c Qpalsa
S1
S Q
Resets
Sg GMPQ S1H2(S4)
AC Q
Ac Reset 2y,
AC Paq S1(52)
Sy Q
51 ResetG,MPa oo
S1 (6) w, 1
So —> 1
AC 1
AC “1
u3
‘gc aC
4 aC
s
<I> ot
<I> }
<I> “}
<I> u}
<I> K
<I> al
<I> aC
(s Sa
<I> <I>
<I>
<I> <I>
<I> <I>
<I> <I>
<I> <I>
<I> <I>
Us <I>
Us <1I>
Ty <I>
T3 d <I>
<I>
<I>
<I>
<I>
<I>
Uy
Uy
Ty
Ty

QPa151H2(S4)
QF. s1(52)
&
Qp,, 52

Q
Reset?
GMPa S1

QReset

GMp,, 5S1H3(54)

Resetol
GMPa1 S1(S3)

Q
Reset?
GMPa S3

c2
QPa151H2(S4)
QE s1(s2)
&
QPQ1 S2

Q
Reset?
GMPa1 S1

QRcsct

GMPa S1H3(S4)

Reset’
GMP 1 51(83)

QReset

ANNANNNN

=
=
N N

(1 s

ANANNANNANNNA
VVVVVVVEVVVVVVV

sS85

2

Figure 4.7: PCGS simulation of a 2-counter Turing machiriep$.

48

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 49

represents the initial state 8f with 0 stored in both counters. ¥/ has aruldz, q0, Z, Z, ¢, €1, €2, g), and
so can enter the stateby reading input: and the counter symbols are bdththen the master grammar can
chose to introduce the strindz’, q, Z, Z, e1, eo]. If the input head of\/ changes tg = +1, thenu = «
and a new symbat’ gets scanned onto the input tape, but if the input head daesoee (F = 0), then

u = ¢, 2’ = x, and the symbat is scanned on the input tape. We thus continue the deriva@iown in
Figures 4.8 on the next page and 4.9 on page 51.

The original P{*, P;*, P/, and Py, components modify the number df symbols in their respective
strings according te; andes. Pyt and Py? introduceAAC, AC, C whenevele,; ande; are,+1, 0, or —1,
respectively, whileP;* and P;> remove and. The system thus adjusts the counters and if they decrement
below0 the derivation blocks.

The original grammar®y*, Py, Py?, andPs? verify the number ofA symbols in their respective strings
to see if they agree withy, co. T now starts to validate the value stored in the first counter¢econd counter
will be verified in exactly the same way). ¢f = Z, then we have the following string[2’, ¢, Z, 2, €1, €3]
in Py*, Ps*, which means the number df symbols in« is 0. If this is not true the system blocks because in
the next stePs* would rewrite[z’, ¢, Z, c2, e1, e2] t0 a (a terminal symbol), and it does not have a rewriting
rule for A. If ¢; = B then we have the following string[z’, q, B, co, €1, e2], where the there is at least oAe
in the stringa. If there is noA then the system will block becau#¥? does not have an applicable rewriting
rule for any other non-terminal.

In the following step (Figure 4.11 on page 53) we use the newitiag rule S1 — QuaspecialHelper1 SO

its role in Pyt Prt P2 ,andP[2 _, components becomes apparent. This step ensures that
S1(S2) S1(53) S1(S2) S1(53)
C1 C1 C2 C3 i i i
Pag, svimar PaSaorisinar T28aursginar? F28s0rsgina: TECEIVE the correct strings in Step 14.

The following step (Figure 4.12 on page 54) is a communicadiep. It allows two of the’* and P;?
helper grammars that are holding intermediate strings tanconicate with the components that will be used
for the derivation of the originaP;*, Ps*,P5?, and Py components. In the above step two of g, and
two of the P;* helpers use the new rewriting rue — S in order to avoid the introduction of a circular
qguery. We continue as in Figures 4.13 on page 55 and 4.14 angfag

Similar to the first step in the derivation in Step 13 thg P, and P; original and helper components
have a nondeterministic choice. They could rewrite to eithe original, or helper forms af,,, or Q3'
andQ3?. If any of these symbols is n@},,, then the system will block after the communication stepe Th

reset grammars now rewrite to request strings from therehirag helper grammars that simulate rules in the

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

QPal Original
QP
Pal S1
QR
Pgy S1H3(S4)

QPlaCl 51(53)

1
Qpq, 53
1
RReset
C#GMp, s1H2(54)
Q Cl
Reset
GMp,, 51(52)
Q cy
Reset
GMp,, 52
QP
Pay 51

QY
Pqq S1H3(S4)
QP
Paq S1(53)
&
QPq, 53
QRcsctz;z]w
Paq S1H2(S4)

Q cs
Reset
GMp,, 51(52)

Q co
Reset
GMp, s2

ANANANNNANNANANNANN A
I I T R
VVVVVVVV VVVVVV V

QR

fo)e]
Paq S1H2(54)
(o))
Pga, S1(S2)
&
Qpg, 52
c

Q 1
Reset
GMPa1 S1

1
set
€#¢*GMp, S1H3(S4)
c1
Reset
GMp, s1(53)
Q cy
Reset
GMp,, s3
o
Q Py, S1H2(S4)
c3
Qpac1 S1(S2)
Q%2
Pa, 52

Q co
Reset
GMp, s1

QResett2

GMp, S1H3(54)

ca
Reset
GMp,, 51(53)

Q co
Reset
GZ\/IPal S3
uy
uy

VVVVVVV

([52

/\/\AAAAA%AAAAA/\/\
=

VVVVVVYV

ANANANAANANNNNNANNNNA

S8SSvunnnnnn nunnnn

VVVVVVVVVVVVVVV

ANNANANANNNNNNNANN

Ealeglt

VVVVVVVVVVVVVV

15

U)K/)KIHIHIHI)V)E [ORGRGRGRGRGRYY

SH5S

Figure 4.8: PCGS simulation of a 2-counter Turing machiriepS.

50

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

ANANNANNNNNNNNNNN

e e e 2 2 2
SSununnunnn unnnnn OARLENARNNNENE R © s m S

feie

VVVVVVVVVVVVVVV

ANNANANAANNNNNNANN

Ralesls

]
VVVVVVVVVVVVVV

11s(2)

(/)(/)(/)E/JE/JE/JE/JE [GRORGRGRORGRYY

SES

2

u[w:, q4,Z,7Z,eq, €3]
ulz', q, 2,2, ey, e2]
ulz’, q, Z, Z, eq, ea]
ulz!, q, Z, Z, ey, ea]
ulz’,q, Z, Z, e1, ea]
wulz!, q, Z, Z, eq, ea]
ulz’,q, Z, Z, e1, ea]
ulz’,q, Z, Z, e1, e2]
ulz’, q, Z, Z, eq, ea]
ulz’,q, Z, Z, e1, ea]
ulz!, q, Z, Z, eq, ea]
u[z:, q4,Z,Z, ey, eq]
ulz’, q, 2,2, ey, e2]
wlz’, q, Z, Z, eq, ea]
ulz’, q, Z, Z,e1, e2]
1
aQamg,
c1
aQ
GMg1H3(S4)
(1)
S4
c1
“RG Mg,
s%l)
1)
54
Sq
cg
aQG Mg,
e
aQ
GMg1H3(54)
S4
c
1RG Mg,
s%l)
1)
Sy
Sq
QGMoriginal

ey
GMg1H2(54)(Pay Helper)
€1
QGMSI(S?)(PCLI Helper)
c1
GMga(py, Helper)
QZ
GMg1(Py, Helper)
QZ
GMg1H3(54)(Pay Helper)
QZ
GMg1(53)(Pay Helper)

QZ
GMg1(53)(Pay Helper)
I

ANANANNANNN

NN~
VVVVVVYV

Us
Us
Ts
Ty

ey, e2]
e1,ez]
e1,ez]
ey, e2]
e1,ez]
ey, e2]
ey, e2]
el e2]
14, Z,Z,e1, e2]
4, 2, Z, e, eg]
14, Z,Z,e1, e2]
14, Z,Z,e1, e2]
x',q,2Z,2Z,e1,ea]
z',a,2,2Z, e, e2]

s
N
NNNNNNNN

fgggegeggegeggegeesd

1
a
QGMSIH2(S4)
1

54

c
aQGlZ\/Is2
s{Y
JHeS)

s{V
Sa
ca
aQGMs1H2(s4)
(1)

S4

c2
"Qc(ﬂld)sz
Sy
s%l)
1)
Sy
Sy
<1
Q
G]VISl(Pa1 Helper)
QY
GMs1H3(S4)(Paq Helper)
c1
QGMSl(sa)(Pal Helper)
€1
GMg3(Py, Helper)
QZ
GMg1H2(S4)(Pay Helper)
c2
Q
GMsg1(52)(Pq, Helper)
QZ
GMSZ(Pal Helper)
N ns®

I

ANANNNANNN

NN~
VVVVVVV

Figure 4.9: PCGS simulation of a 2-counter Turing machiriep 8.

51

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

]

ey, e2]
e1,ez]
ey, e2]
ey, e2]
e1, ez]
ey, e2]
e1, ez]
e1,ez]
ey, e2]
e1,ez]
ey, e2]
ey, e2]
e1,ez]
ey, e2]
e1,ez]

S NNNNNNNNNNNNNNN

0
iy

8

]

]

8

]

8

]

8

]

]

8

EEEEEEEREERERERER
8

a
CNNNNNNNNNNNNNNN

aQ

Q

c1
aQGMSlH3(S4)
e

c1
1RG Mg,
)
¢
s{H
Sy
c2
aQG’MSl
c2
GQGMSIH3(S4)
(1)

S4

c2
*QGnrgg
sf%l)
1)
S4
Sq
QGMoTiginal

Qd
GMg1H2(54)(Pay Helper)
Qd
GMg1(52)(Pey Helper)
Qd
GNISZ(Pal Helper)

QF
GZWSl(Pa1 Helper)

c2
GMg1H3(54)(Pay Helper)
QZ
GMg1(53)(Paq Helper)
QZ
GMg1(53)(Paq Helper)
<I>
<I>
<I>
<I>
<I>
<I>
<I>
Us
Us
Ty
L Ty

ulz’, q, Z, Z, eq, ea]
ulz’,q, Z, Z, e1, e2]
ulz’,q, Z, Z, e1, ea]
ulz’, q, Z, Z, eq, ea]
ulz’,q, Z, Z, e1, ea]
wulz’, q, Z, Z, eq, ea]
ulz!, q, Z, Z, ey, ea]
ulz’,q, Z, Z, e1, e2]
ulz’, q, 2, Z, eq, ea]
u[z:, q4,Z,Z, ey, eq]
ulz’, q, 2,2, ey, e2]
ulz’, q, Z, Z, eq, ea]
ulz’,q, Z, Z, e1, e2]
ulz!, q, 2, Z, eq, ea]
aQfl
GMg1H2(s54)
s{Y
c1
ARG Mg,
s{V
5D
s{V
Sg
e
aQ
GMg1p2(s4)
sV
e
QG Mg,
sV
s‘}l)
s{V
Sy
c1

GMg1(Py, Helper)
Qd
GMg1H3(54)(Pay Helper)
c1
Q
GMsg1(53)(Py, Helper)
Qd
GIMSS(PQ1 Helper)
QF
GMg1H2(54)(Pay Helper)
c2
GMgy(52)(Pay Helper)
QZ
GMg2(pPy, Helper)
(s

ANNNNANN
NN~~~
VVVVVVV

Us

Ts
Ts

nNhhnhhhhhhhhhnhhn

aulz’, q, Z, Z, eq, ea]
aulz’,q, 2, Z,e1, €3]
(1)
S4
aulz’,q, 2, Z,e1, €3]
s
)
Sy

S4

aula’, q, Z, Z, eq, 3]

aulz’,q, 2, Z,e1, €3]
sV

aulz’, q, Z, Z, eq, ea]

s

531)
S4

ulz!, q, Z, Z, ey, ea]

u[z/, q,Z,Z,eq,eq]
ulz’,q, Z, Z, ey, ea]
ulz’, q, 2, Z, eq, ea]
ulz!, q, Z, Z, ey, ea]
ulz’,q, Z, Z, ey, e2]
ulz!, q, Z, Z, eq, ea]

ulz’,q, Z, Z, ey, e2]

ANANANANANN

Nhnhhhhunhhhhhhhnn

ulz’, q, Z(I)Z e1,ea]
S

ulz’,q, Z, Z, ey, ea)
o
sgl)
1)
54
Sy
ulz’, q, Z, Z, ey, ea)
gD

4
ulz’,q, Z, Z, ey, ea)

(
S

e
pied

ulz’,q,Z, Z, ey, ea)
ule’, q, Z, Z, e1, ea]
ulz’,q,Z, Z, ey, ea)
ule!, q, Z, Z, e1, ea]
ulz’, q, Z, Z, ey, ea)
u[ﬂﬂ;, q4,Z,Z,e1,e2]
uf ,Z,e1,ea]
s ®
T

ANANANANNNAN

I
I
I
I
I
I

VVVVVYVV

Us
Us
Ts
Ts

Figure 4.10: PCGS simulation of a 2-counter Turing mach$tep 9.

52

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

Nhhnhhhhhhhhhnhhn

N
N

aulz’, q, Z,

1
s{H
s%l
s{Y

5

s{Y
aulz’, q, Z, Z,
(1
s
1
o
S4

ulz’, q, Z, Z,

ula’, q,

ulz’, q,

ANNNNANN G NN NN NN
e -
vvvvyvyyNNNNNNN

FEe

o

se1,ea]
aulz’,q, 2,2, e1, €3]

aulz’, q, Z, Z, eq, ea]

4
aulz’,q, 2,2, e1, €3]
aulz’, q, Z, Z, eq, ea]

ey, ez]

e1,e2]

e1,e2]
e1,e2]
ey, ez]
e1,e2]
ey, ez]
ey, ez]
e1,e2]

Nnhnhhhhhhnhhhnn

ulz’,q, Z, Z, e1, ea]
(1)

S4

ule!, q, Z, Z, eq, ea]

o(D)

pied

s{Y
Sy

ulz’,q, Z, Z, e1, ea]

54

ule!, q, Z, Z, eq, ea]

(1)
S

ped
s

(s

ANANNNNANN
N

>
>
>
>
>
>
>

Us
Us
Ts
Ts

(I:Og

g

g gggegegeg

F e e e B W o Y e e Y

uley]’
uley]’
c1
Rs1H3(54)

aua
s%z)

2
sy)

Sq
aulea]’
auleg]’

QP

S1H3(S4)

aua

5%2)

2

S§1)

< a! Z4Z
.4, Z,Z, ey,

<z ,q9,Z,Z,eq,
<xz',q,Z,Z,eq,
<w.,q,Z,2Z ey,
<
<
<

z',q,2,2Z, ey,

’

’

’
2, q, 2, 2, €1,
’
2',q,2,%, €1,

<a',q,Z2,Z, e,

\Y

VVVVVVV

gggegegege
ANNNNNNANN

[e o e e e Y W e Y

aufeq)’

c1
Rs1H2(54)

ulz’,q, 2,2, ey, e2]

5@
e
s{?

Sg
aulea]/

c
QA rra(s4)

ulz’, q, Z, Z, ey, ea)

e
e

5?12)

2',q,2,2Z,e1, e
%', q, 2,2, e1, e
2!, q,2Z,Z,eq1,eq
2',q,2,2,e1, e
2, q, 2,2, e1, e
I;,q,Z, Z,e1,e2
z',4q,2,2Z,e1,e2
(s

VVVVVVYV

I

I
I
I
I
1
1
I

ANANNANANNA
VVVVVVV

Ug
Ug
Te
Te

Figure 4.11: PCGS simulation of a 2-counter Turing mach8tep 10.

53

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

g
A

g gggegege
NANNNNANNN

2
N
NNNNNN

e e B e e B o o B Y e H

VVVVVVVN

S

&

e1, e

€1 €2
ey, ez
€1 €2
ey, ez
€1 €2
€1 €2
e, ez

\Y

VVVVVVV

ggggegee

z',4q,2,2Z,e1,e2
z',4q,2,2Z,e1,e2
x',q,Z,Z,eq1, e

2 a4, 4, %, e1,e2

x',q,Z,Z,eq1, e
z',4q,2,2Z,e1,e2

<wz',q,Z,Z,e1,e2

J1e4]!

ANNANNANN

ns@®

L
VVVVVVYV

VVVVVVYV

g
A

g gggeg e g
ANNNANNNNA

Q
GMg1H3(54)

co
QGMSIHS(S4)
BC

QQQQQQQaQaaQQQQq

Q
Q

aC
aua
gi;@)
Rg1(s2)
Sq

BC

aua
524(2)
Qsi(s2)
Sq
q,Z,Z,eq,

q, Z,
q, Z,
q, Z,
a, Z,
a, Z,
q, Z,
a, Z,

€1
ey,
€1
e,
ey,
€1
€1

ANAANANAA
NNNNNNN

jj$$NNNNNNN
VVVVVVV

Y

VVVVVVYV

QL egegggeg

QQQQQQQQQQQQQq

Q
GMg1p2(s4)
aC

aulz’, q,Z, Z, eq, ea]
cq
S1
gi;@)
Rg1(s3)
Sq
co
QGMSIH2(S4)
BC

aulz’, q, Z, Z,e1, e2]
Q

S1
S4(2)
Qs1(s3)°2
Sq
<a2'.q,Z,Z, ey, e
<a'.q,%Z,Z, ey, e
<z/,q,Z,Z,e1,e2
<a'.q,%Z,Z, ey, e
<z/,q,Z,Z,e1,e2
<z,,q,Z,Z,e1,e2
<Clz’,gi Z’cg’e%éw
Qg3R53Rg52Qg351
<>
<I>
<I>
<I>
<I>
<I>
<I>

NNCQ
NN

Figure 4.12: PCGS simulation of a 2-counter Turing mach$tep 11.

VVVVVVYV

54

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

e
A

g eggegegeg
ANNANNNANNA

QQQQQQaQQaQQQaq

2
Q

Qg
GMS1H3(S54)
aC

aua
§f(2)
Qs1(52)
Sa

BC

QZ2
GMS1H3(S4)

sC
aua
540
Qs51(s2)
5

S

9, 2,2, ey,

a, Z,
q, Z,
q, Z,

€1
e,
e,
€1
e,
€1
e,

_Q
AAAAAAA N
NNNNNNN

VVVVVVYV

FISE

€2

€2
e2
e2
€2
e2
€2
e2

\Y

VVVVVVYV

2L egggegece

QQQQQQaQQQQQQq

Qg
GMS1H2(S4)
aC

ulz’, q, ZC,IZY e1,ea]
@Qsi
5{1(2)
Qs1(s3)
Sy
QF
GMS1H2(S4)
sCc
ulz’, q, ZC,221 e1,ea]
Qg1
$4(2)
Q51(s3)
Sy

<a',q,2,Z, e1,ea >
<z’ q,Z Z ey, ez >
<a',q,2,Z, e1,eq >
<a',q,Z,Z, ey, eq >
<z’ q,Z Z ey, ea >
<’ q,2,Z, e1,en >
<Ca:’,g,Z,CZ,E%,E2 >
Q5hRs5R55Q35(M)

<I>

<I>

<I>

<I>

<I>

<I>

<I>

Uz

Uz

T7

T7

(12

g
A

geggegege
ANNNNNNN

2202000000 nwQAQQ0QQRAQ

S4(2)

2
ORZHEN-N

q, Z,

ANANANNANNN

NS G
FEF =~~~

S
3

NNNNNNN

VVVVVVV

€1

€1
ey,
ey,
€1
ey,
€1
€1

\

VVVVVVYV

g gge g
ANNNNNNANNAN

AAANANANZ
O~ ~

QQQQQQQQ®nQQQQQ®

\\\H\\\\
2
NNNNNN
VVVVVVVENNNNNNN

NCSQ
NN

S
3

Figure 4.13: PCGS simulation of a 2-counter Turing mach8tep 12.

e,
€1,
e,
e,
€1,
e,
ers

VVVVVYVYV

55

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

g

gegggeeg
ANNNNNANNA

220000 Qa®nQaQqQnaq

54(2)

?
Q2 Q

BB B B R R
=
NNNNNNN
NNNNNNN

ANAANNANNANN
$$---~
VVVVVVYV

el

€1,
ey,
€1,
ey,
eq,
el
ey,

QQQQQQQQ®nQQQQQn

o
N
Vv

€1, €2
€1, €2
e], e
€1, €2
e], e
e], e
€1, €2

gggegegee
ANNANNANA
UBURUR BB R
s
NNNNNNN
NNNNNNN

o
¥
VVVVVVYV

AANANANANNNZ
[L]
VVVVVVVE

SRS
NN

el

VVVVVVYV

(1:3;

QPal
Qpals1
]

QPq, 51(53)

€1
Qpq, 53
QResetGM
Py S1H2(54)
Q c
Reset
GMPa131(s2)
QReset
ese GMICD]‘
aq 52
ca
QPq, 51
w
2
Pq, S1(S3)
Q%2
Paq S3
Q
Reset’
GMPa S1H2(S4)
Q cg
Reset
GMPa151(S2)
Q
Reset’
GMPa S2
Qs451

QS4P4SpeczalHelper25153

Qlgs
S4(2)
aC
Sa
D)
Rsas1
w

QS4P4SpeczalHelper25153

Q&ga
S4(2)

g
A
8
s
N
N
%

e1, e

v a4, %, %, e1,€e2
1 a4, %, %, e1,€e2
2 a9, 4,2, e1,e2
v a4, %, %, e1,€e2
2 a4, 4,2, e1,e2
2q, 4,2, e1,e2
x',q,Z,Z,e1, e

gegggerece

ANANNANNANNN
8

VVVVVVV

Q81$1H2(S4)
Q81$1H2(S4)
QS4SIH2(S4)
Q c2
Sys1H2(s4) T

[1]
QPaClSI(S2)
QPa1 52

Q
Resetcjup st
QResetGM
Pgy S1H3(S4)
Q
Rcsct
GMPa S1(83)
Q
Reset
GMPal S3

w

e
QP,, 51(52)
QA10252

QResetGA{Pal o

QResetGM
Pq, S1H3(S4)
Q
ResetS
GMPa S1(S3)
Q
Reset’
GMPQ1 s3
w
QS4P4Spcc1achlpe7'ISIS2
Qlis2
aC
S4(2)
aC
Sq
w
QS4P4Spcc1achlpe7'ISIS2
co
Qsis2
BC
S4(2)
BC
Sq
uw<a' q 2, 2, e1,eq >
u < m/,qu,Z,el,eg >
u < m’,qu,Z,el,eg >
uw<a' q 2, 2, e1,eq >
u < m/,qu,Z,el,eg >
uw<a' q 2, 2, e1,eq >
uw<al q 2, 2, e1,eq >
~'s(2
<I>
<I>
<I>
<I>
<I>
<I>
<I>
Q5151H3(s4)
Q5151H3(s4)
Q52451H3(S4)
QS4SIH3(S4)

Figure 4.14: PCGS simulation of a 2-counter Turing mach$tep 13.

56

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE 57

master grammar. During the next step the query will resettimeponents that hav@M p,, in their labels
(see Figure 4.15 on the next page).
If aC and SC contain the same number of symbols as stored in the counters /df, and if M is
in the accepting statey (= ¢r), then the system can either rewrite to a terminal string &ipgithe rule
< x',qr,Z,Z,e1,e5 >— ' in G, or continue; otherwise the system has no chance but torcanthe
derivation. If the system continues the derivation thenitipeit head ofM will move to the right, and the
symbolz’ will be left behind. Them’ will become part of the string generated Byby using the rule:
<2',q,Z,Z,e1,ea >— zly, ¢, c, ch,), eh]. If the scanned symbol does not change the input head will
not move, and~,,, can then use the following rulez o', q, Z, Z, e1,e2 >— [2', ¢, ¢}, b, €}, e5]. The tuple
(x,1,7) will represent the current state of the storage tape¥/ pivherei and; are integers that correspond
to the number ofd in the counters; these numbers will continue to incremedtiatrement according to the
values ofe; andes. The system will continue to loop and compare the numbet eymbols in its counters
to those in the grammar system indefinitely or can chose o (sthen permitted) as described above. We
conclude that every successful computatiodbhas a matching successful derivatiofinand vice versa.
Note finally that this construction will not accept the emgtying even if this string is iC(M). In such

a casd’ can be modified to accept the empty string simply by addinguteS — ¢ to its master grammar.

Qpal
QY
Pay S1
(o)
Pa1 S1H3(S4)
Qpa S1(S3)
ch
Pa, S3
QResetGM
Pa; S1H2(54)

Q
Reset’
GMP 1 51(52)

Q
Resety
GMPal s2

QPa1 s1
QPal S1H3(S4)
QP%1 S1(S3)
QPa1 s3
QResetGMPa S1H2(S4)

Q co
Reset
GMPal S1(52)

Q
Resety
GMPQ1 S2

Q51
W

QS4P4SpﬁC1alHﬁlpe7‘2SIS3
Qdlss
S4(2)
aC
Sq

s
Qs4s1

QS4P4SpeczalHelper25153

u<a',q,2 2 e, eq >
u<a:’yqu,Z,el,62>
u<a' q 2 2 e, eq >
u<a:/yqu,Z,el,62>
uw<a',q Z Z e1,ea >
u<a',q 2 2 e, eq >
u < x ',q,Z,Z,e1,62>
<I>
<I>
<I>
<I>
<I>
<I>
<I>
Qsle(s4)
Q°2
5151H2(s4)
Qcl
S4SlH2(S4)
QP4SIH2(S4)

CHAPTER 4. CF-PCGS ARE REALLY TURING COMPLETE

€1
QPa151H2(S4)
QF. s1(s2)
&
QPQ1 S2

Q
Reset?
GMPa1 S1

QRcsctGM
Pqq S1H3(54)

Q
Reset’
GMP 1 S1(83)

Reset
GMPa S3

QPa151H2(S4)
QE s1(s2)
&
Q5 52

Q
Reset?
GMPa S1

QReseth
Pgqy S1H3(S4)

Q s
Reset
GMPa1 S1(S3)

? ResetC
ese
GMPa S3
w

QS4P4specmLHelperlsls2

Qg2
aC
S4(2)
aC
Sg
w

QS4P4specmLHelperlsls2

Qg2
e}
S4(2)

c

2',4,2,2Z,e1, e
2’ q, 2,2, ey, e
', q,Z,Z,eq1, e

' q,Z, Z, eq, ep
2’ q, 2,2, ey, e
z:, 94,2, Z,e1, ez
©',q,2,2Z,e1,e2

geggegeeer

ANNANNNA
8

VVVVVVYV

el
QP4SIH3(S4)
QP4SIH3(S4)

g gg e e
VVVVYV

g8 ege
N NN
VVV YV

V VYV

NNNNN~N~D L Wnnn
VVVVVVV

A AWARARARAYAS

1]
Sk
RESS

0
PN
N
<]

58

<a'.q,Z,Z ey, e
<m',q12 Z,e1,e2
<a',q,Z,Z, ey, eq

V VvV

<I
<I
<I
<I

NAVAVAVAVAL

€1, €2
e1, e
€1, €2

A
8
2
N
NN
VvV Vv

VVVV

N~~~ s~Rnnnnnn

AANNANANNZ
VVVVVVVE

1]
SIS
;EE

9]
N
i
L

Figure 4.15: PCGS simulation of a 2-counter Turing mach8tep 14.

Chapter 5

Why CF-PCGS Are Not Linear Space

In section 3.2 on page 16, we discussed previous reseaatbhadb coverability tree representations of CF-
PCGS [1]. Specifically, that research stated that languggeerated by CF-PCGS are accepted by linear
space-bounded Turing machines and therefore CF-PCGSajermly context-sensitive languages. This
work was based on the concept of coverability trees whichiisrearized in Section 2 (see Definition 6 on
page 9 and the preceding discussion).

The problem with this result is the existence of the limit,... (so that a nonterminal whose number of
occurrences surpasses,.x can be considered available in an infinite supply and so itsbar of occur-
rences can be replaced with). This limit was established using coverability trees. ¢tuM appear however
that such a limit does not in fact exist.

While it is true that the number of nonterminals can grow umzted after any breakpoint, this only
means that there will always Is®@mederivation that makes them so; there is however no guardmesuch
a derivation is the successful one. The unbounded growtlmisnonterminal is thus not necessarily a

feature of a successful derivation. The following exampileillustrate this:

LetE, = ({Sl, SQ}, {Ql, QQ}, {a, b}, ({Sl, QQ}, {a}, Rl, Sl), ({SQ}, {b}, RQ, SQ)), where

Rl = {Sl — aSl,Sl — GQQ}

Rs {SQ — SQSQ, SQ — b}

This system will generate as masy in the second component asn the first. Then all the5; symbols
in the second component will be rewritten taw/hile the first component keep generatingymbols. Any
query introduced before all th&, disappear will block the derivation. Finally one more stapses the first

component to query the second, so théf) = {a*>"*1p"Ttn > 0}.

59

CHAPTER 5. WHY CF-PCGS ARE NOT LINEAR SPACE 60

vo : ((1,0,0),(0,1,0))

v1 1 ((1,0,0),(0,w,0)) ve : ((0,0, 1)7 (0,0,0))
l vs : ((0,0,1),(0,2,0)) \A
vg : ((0,0,1),(0,w,0)) A vr + ((0,0,0), (0,0,0))

\A Us - ((05270)3(07270))
V3 ((vav O)? (vav O))
Vector reference((S1, S, Q2), (S1, 52, Q2))

Figure 5.1: The coverability tree of the sample PCE&S

The coverability tree corresponding to this system is showfigure 5.1. In order to keep the figure
compact we have omitted the place correspondin@tdrom all the vectors (since this number is always
zero) and we have also omitted the edge labels with the a@rcepitA. In order to facilitate the reference to
the nodes of the tree we have given them the additional lahels< k& < 7.

The pathsyy — vy — v5 andvy — vg — v7 are clear. They are caused by the first component
introducing@- in the first derivation step. The second component can ukerets first or its second rule,
resulting in these two paths (the first blocked and the sesandessful).

The pathvg — v1 — v2 — v3 is a bit more complicated, as it corresponds to all the otkewdtions in
the system. As long as the first component does not queryetttnd one is free to use its rufg — 525
as many times as it wishes, hence the occurrence abdiméakpoint,” meaning that appears foS, in v;.

This means that there is at least one derivation fogitinat can increase arbitrarily the number of occurrences
of S3. While this is certainly true, we do note that any successéuivation will nonetheless start at some
point to decrease the number of occurrencespf{starting fromuvs) in order to reach a terminal string.
The outcome of a successful derivation thus depends on thalawmber of occurrences 6% even if this
number is no longer remembered in the coverability treerdfoee this example shows that the coverability
tree does not contain enough information for reconstrgagrivations.

Concretely the original proof [1] falls precisely into thigtfall, since in the particular example of the
system considered abowe,,., will be set to 2 based on the coverability tree from Figure Elearly, this

is too low a limit since the number of occurrencesSgfcan be arbitrarily large and yet significant for some

CHAPTER 5. WHY CF-PCGS ARE NOT LINEAR SPACE 61

derivation.

The problem is however illustrated by the example above onlgn intuitive level. Indeed, in the simu-
lation of F; by a Turing machine as outlined in Section 3.2 no tape couientlly exceeds the length of the
input and so no component is ever rewritten in the form shawlBquation 3.3 on page 16 (which we will
call the ‘@ form” henceforth).

The reason for including the example above is two-fold. tFike believe that it illustrates the problem
with the original proof in an intuitive manner (even if it dorot by itself invalidate that proof). Secondly, it
is instructive to compare the structure of the coverabifiégg of £; (Figure 5.1 on the previous page) with
the set of possible derivations ity . We note that the tree does characterize to some degree gbtsible
derivations in the system, but at the same time does not cieaize them completely. In particular the
“downslope” of a successful derivation (when the numberafusrences ob; is decreased) does not have
any correspondent in the coverability tree. We believe tiiatshows in an eloquent manner the limitations
of these trees.

In order to establish an actual counterexample we considefdiowing, less intuitive but this time

complete example:

E, = ({SA4,0,P. XY, Z, },{Q1,Q2,Qs}, {a},
G1=({P, 5 X,Qs},{a}, R1,5),
Go = ({0, X,Z},{a}, R, Z),
Gs =({A4,0,P,X,Y},{a},Rs, A))

R, = {§—255—-2Qs5,X —aP—a}

Ry = {Z—-0X,X— XX}

Ry = {A—-AA—Q2,0—-PX—>YYY}

The mastel; can wait indefinitely before it requests a string frafg. In the meantimér, generates
an arbitrary number oK symbols. During this timé&'s can also wait indefinitely, then query the string from
G4, then rewrite all the nonterminals from the string thus camivated (to non-rewritable nonterminals),
then block the derivation. At the same time the master rewits nonterminals into terminals, but does not
have the time (because 6f;) to complete this task. It turns out that no derivation irsthystem can be
successful.

Formally, the system can only proceed as follows up to thedosxmunication step, for some arbitrary

CHAPTER 5. WHY CF-PCGS ARE NOT LINEAR SPACE 62

(Sv Za A) =" (Sa OXna QQ)

If the master queries beforé; then the derivation will block because the master does na# haewriting
rule for A, hence we need to introducg; in the second component rather th@p in the first to have any

chance of completing the derivation. We then have:
(S,0X™,Q2) & (S,0X™,0X™) = (Qs,w, PX™)

Once G2 has been queried its contribution to the derivation is catepl It will continue to generate an
additionalX with every derivation step, but it will never be queried cdéed participate in the derivation in
any other way. We will thus replace its content in what folbowith a generiev, with the understanding that
thisw changes throughout the derivation yet its actual value isaerial.

After the communication step abo@; can use either of the rul€g — P or X — YYY. If the latter
rule is used then the derivation will eventually block. Irdethe third component must be communicated to
the master for the derivation to have a chance to succeethdutaster does not have a rule for rewritlig
and so at the moment of communicatibrcannot appear iG/s. The only was this can happen is 16§ to
rewrite O and for the master to introducg; at the same time, as above. In such a case the derivation will
continue as follows:

(Qs,w, PX™) & (PX", w, PX") =" (m,w, PY™*3) (5.1)

The third component does not have any rewriting rules foréneaining non-terminals, and so the derivation
stops here. The master string containedl nonterminals to begin with (that is, just after the commatian
step when it wag® X ™) and then subsequent rewriting steps will rewriteof those toa, but will leave one
nonterminal in the string (either ai or a P). This means that the resulting string cannot be inC(E5)
since it contains nonterminals; in other words the demrahlocks without producing a string ifi(E>).

As argued throughout the description above no other désivatath has even the slightest chance of
succeeding. We thus conclude that no matter which derivataih is taken the system eventually blocks,
and soL(Es) = 0.

Consider now the Turing machine simulationfof as presented in Section 3.2 on page 16 and working
on inputa® for somek > muyax + 2. Recall thatm,, ., does not depend on the input of the Turing machine
(since it is determined before any input is presented to thehine, based on the coverability tree) and so

such ak will always exist.

CHAPTER 5. WHY CF-PCGS ARE NOT LINEAR SPACE 63

Let the Turing machine simulate a derivation8f as above witm = k£ — 1. We already know that
such a path is unsuccessfulify (because the third component blocks prematurely). Howevéne Turing
machine simulation the third component string becomesdotigana” (this being caused by the application
oftheruleX — YYY), soitwill be rewritten in thed form, and so as we will see shortly it will fail to block
the derivation.

Recall that the string of/s evolves in the final stage of the derivation (that is, h& phase from Equa-

tion 5.1 on the previous page) along the following line:
PX" = PY3X" ! = pPy32xn—2 o ... o pY3¥iX"i o ... o PY3XnX0 (5.2)

The occurrences ok andY can actually be interleaved with each other, so the degmnigtbove is not
strictly complete. However, this interleaving is immagifirom the point of view of the Turing machine
simulation, which will rewrite th&z; componentin am form as soon as= 1. Indeed, note that = k£ — 1,
SO|PY3*iX" | =1+3i+k—1—1i=2i+k, and soPY3*i X"~ > k for anyi > 1. The Turing
machine will therefore represent the derivation shown indipn (5.2) on its respective (third) work tape as

follows:
PX" = @lP3Y(n—1)X = QlPB3x2)Y(n—2)X = ---
= Q@IPBx)Y(n—)X = - = QlP3 xn)Y0X

We would still obtain the same result: the number of occuresrofX becomes zero, which blocks the
whole simulation. However, the simulation also uses theitig to w of all those counters that exceed
Mmmax. ONE such a counter is the one f&@r. Indeed,k > mmax + 2, thereforen > mua + 1, and so

n —1 > muaes. The simulation above thus beconhes
PX" = @QlP3YwX = QlPB3 x 2)YwX = --- = QIPB x))YwX = --- = Q1PB3 x n)YwX

Given this replacement the absenceXoin the third component no longer happens (for indeed releatithe
Turing machine simulation will never modify the value of auoter after that value reaches. Therefore
the simulation no longer blocks and so the input strifigs inadvertently accepted. The counterexample is
therefore established.

On a more concrete note it may be worth noting that,. = 6 for F». This value was computed based

on a large coverability tree, which contains more than 5Cesahd so it is not included in this manusctipt

INote in passing that the counter fBrwill also exceednm,ax at some point, so the simulation will also replace it withSince the
values of this counter is immaterial to this discussion weehzot performed such a replacement.

2|t should be emphasized once more that a finite coverahitity éxists by definition and that the actual valuegf . is immaterial
for the validity of our counterexample. The absence of theerbility tree from this manuscript therefore affectstinei the correctness
nor the completeness of our counterexample.

CHAPTER 5. WHY CF-PCGS ARE NOT LINEAR SPACE 64

Work tape 1: Work tape 2: Work tape 3:

S A A =
S OoX A =
S OXX A =
S OXXX A =
S OXXXX A =
S OXXXXX A =
S OXXXXXX A =
S OXXXXXXX A =
S OXXXXXXXX Qo =
S OXXXXXXXX OXXXXXXXX =
Q3 Q@10wX PXXXXXXXX =
PXXXXXXXX QlOwX PXXXXXXXX =
PaXXXXXXX QlOwX Q1P3YwX =
PaaXXXXXX Q@10wX Q1P6YwX =
Paaa XX XXX Ql1OwX QlPwYwX =
Paaaa X XXX Ql1OwX QlPwYwX =
PaaaaaX X X Q@10wX Ql1PwYwX =
PaaaaaaX X Q@10wX Ql1PwYwX =
PaaaaaaaX Q@10wX Ql1PwYwX =
Paaaaaaaa Ql1OwX QlPwYwX =
aaaaaaaad Ql1OwX QlPwYwX

At this point the content of the first work tape (correspogdimthe master component grammar)
is identical with the content of the input tape and so the fipaccepted.

Figure 5.2: The run of the Turing machine simulation of thegke PCGSF; that inadvertently accepts.

It follows that the input string.” is accepted by the Turing machine simulation (and sd ifor anyk > 9).
Indeed, Figure 5.2 shows how the three “component” workgagehe Turing machine evolve during the
acceptance run far.

The counterexample above clearly shows that the use of theraloility tree to determine the value
of muyax IS NOt adequate and so we conclude that the result that CFSR@y generate context-sensitive
languages [1] is incorrect. The above counterexample alggests that no such,, ., exists, but we already
know this given our result from Chapter 4 on page 18 (whickai¥ely shows that CF-PCGS cannot be

accepted in linear space, which would have been the casmisiag,,, existed).

Chapter 6

Conclusion

PCGS offer an inherently concurrent model for describingnfal languages. It is precisely because of this
inherent parallelism that one of our longer term intere$b isxploit this model in general (and CF-PCGS in
particular) in formal methods. Before this can even begindwe@r several formal language questions need to
be addressed. One of them is the generative power of CF-PCGS

Recall that the result regarding the expressiveness ohsgnized CF-PCGS makes them Turing com-
plete [7] while a different approach found that CF-PCGS gateconly CS languages [1]. We noted that the
Turing complete proof used broadcast communication andmeistep communication and we were secretly
hoping that the second result is the correct one (since thiddigive CF-PCGS a better chance to be use-
ful in formal methods). This turned out in the end not to be¢hee. Indeed, we showed that the Turing
completeness result is correct regardless of the comntioricstyle used, though the simulation that uses
one-step communication is substantially more complex tasoriginally thought.

We first examined one system designed earlier (using breadoanmunication) to show Turing com-
pleteness [7]. We explained that such an interpretatioroofraunication steps modifies the power of the
PCGS and hence this simulation does not work if one-step aamuation is used (Section 3.1 on page 13).
We then proceeded to design a system that uses a similarabpexcept that we created an arrangement that
would allow one component to be queried by one and only onegyar during each communication step,
thus eliminating the need for broadcast communication.réfeoto do this we created a number of helper
components that act as support systems for the original coerg grammars; the role of the helpers was to
create and hold intermediate strings until they were relg@desom their corresponding original grammar. In

order to get the construction to work we used a number ofiffestrategies, as follows:
1. A number of copycat components were created. They contkda similar to the original components.

65

CHAPTER 6. CONCLUSION 66

These components derive the same strings during the sapgeadehe original components, which
allows for each of the original grammars to request the sarirgst the same time without the need

to query the same component.

2. We introduced reset components, whose purpose is togeset of the copycat grammars at precise

steps in the derivation in order to fix synchronization issue

3. We used waiting rules to ensure that communication stepsdwonly be triggered at certain points in

the derivation.

4. We used selective rewriting rules in conjunction withdilimg, thus allows certain rewriting rules to

be successful only at specific steps and ensures that noitetlssings are created.

Using these techniques we were able to construct a CF-PQaBlesof simulating an arbitrary 2-counter
Turing machine, and so show that CF-PCGS are indeed Turimglete using either style of communication
(Theorem 1 on page 18). Admittedly our construction is natampact or elegant as the ones used in similar
proofs [4, 6, 7], but it has the advantage of being correcbating to the one-step communication model.

True, the result established in this paper is already knowdeed, one other path of showing Turing
completeness of returning CF-PCGS exists: one can take fothe gonstructions that show completeness
of non-returning CF-PCGS [8, 16] and then convert such atoectfon into a returning CF-PCGS (a single
construction for this conversion is known [10]).

Even so, our result has several advantages. For one thingawgming it more efficiently. Note first that
the conversion from non-returning to returning CF-PCGSY [dfreases the number of components from
to 4n? — 3n + 1 [25]. One of the results showing Turing completeness of retnrning CF-PCGS [16] uses
a construction with an arbitrary number of components, abitiproves that RE= £(PC.CF) instead of
our RE= L(PCy;CF). The other proof of Turing completeness for non-returnifgRICGS [8] provides a
PCGS with 6 components, which is equivalentite 62 — (3 * 6) + 1 = 127 components for the returning
case, so this shows RE L(PC42;CF) versus our RE= L(PCy5CF). In both cases our result is tighter.

It is apparent that broadcast communication allows for aenwompact CF-PCGS for certain languages.
Indeed, one could compare our 2-counter Turing machinelation (featuring as many as 95 components)
with the broadcast communication-enabled simulationidving only 11 components). A further study on
simulating non-returning CF-PCGS using the returningarmtrj25] also determined that the use of broadcast

communication (called this time “homogenous queries”uitssn a PCGS with fewer components (though

CHAPTER 6. CONCLUSION 67

this time the number of components remain of the same orderagfnitude in the general case). We now

effectively showed that this (reducing the number of congmts) is the sole advantage of broadcast com-
munication, which does not otherwise increase the poweePCGS. It would also be interesting to see

whether our construction can be made even more concisehwil@delieve to be the case. Indeed, applying
the techniques from this paper to another proof using bstdommunication [6] (and resulting in a system

with only 5 components) is very likely to result in a small&€®S. We believe that our construction is general
and so can be applied in this way with relative ease.

Indeed, the discussion above suggests that the technigedsmour approach are applicable not only
to our construction but in a more general environment. Thathey appear to be useful for eliminating
broadcast communication in general. Whether this is indeedase and if so in what circumstances is an
interesting open question.

We identified in Section 5 on page 59 a limitation to the proetttall CF-PCGS languages are context
sensitive [1] and so we showed that this proof is incorrestefgected given Theorem 1). In the process
we also identified the limitations of coverability trees foF-PCGS. One could argue that coverability trees
offer a simple way of summarizing a complex system; howeviical information is necessarily lost in a
coverability tree representation given its finite naturer @ork in Section 5 exposes this limitation, and so
we believe that coverability trees are not really usefulrig pursuit other than the one already considered in
the paper that introduces them (namely, determining thieldbitity of certain decision problems over PCGS
[24]).

On a practical side we note that CF-PCGS being Turing compietkes them too complex for formal
methods (since nobody in their right mind will model a systesing a formalism that is just as complex).
We also note that most actual systems do not run their cosreithreads of execution in a fully synchronized
manner. Therefore strong synchronization as implementeyfichronized CF-PCGS is unneeded.

Both the arguments above (complexity and the nature oflifeadynchronization) suggest that overall
unsynchronized PCGS are more amenable to applicationsrimafanethods, they being less powerful but
still expressive enough to model complex, potentially reive systems. They seem better suited for the
particular task of system specification, as they are arguabber to the way an actual concurrent system
works.

Unfortunately unsynchronized PCGS have received littkendibn: They have been found to be weaker in

terms of generative power compared to their synchronizedteoparts, and then they have been effectively

CHAPTER 6. CONCLUSION 68

ignored. Substantial effort is therefore needed to studyahguage-theoretical properties of unsynchronized

CF-PCGS before being able to use them in formal methods deeit anywhere else).

Bibliography

[1] S. D. BrRuUDA, On the computational complexity of context-free paral@heunicating grammar sys-
tems in New Trends in Formal Languages, G. Paun and A. Salomaa,\exl. 1218 of Lecture Notes

in Computer Science, Springer, 1997, pp. 256—266.

[2] S. D. BRUDA AND M. S. R. WILKIN, Parse trees for context-free parallel communicating granm
systemsin Proceedings of the 13th International Conference orodation and Information (ICAI

12), lasi, Romania, June 2012, pp. 144-149.

[3] L. CAIl, The computational complexity of linear PCGSomputers and Artificial Intelligence, 15
(1996), pp. 199-210.

[4] E. CsUHAJVARJU, On size complexity of context-free returning parallel caminating grammar
systemsin Where Mathematics, Computer Scients, Linguistics aindogy Meet, C. Martin-Vide and
V. Mitrana, eds., Springer, 2001, pp. 37—-49.

[5] E. CSUHAJVARJU, J. Dassow, J. KELEMEN, AND G. PAUN, Grammar Systems: a Grammatical

Approach to Distribution and Cooperatip@ordon and Breach Science Publishers S.A., 1994,

[6] E. CSUHAJVARJU, P. GHEORGHE AND G. VASZIL, PC grammar systems with five context-free com-
ponents generate all recursively enumerable languagésoretical Computer Science, 299 (2003),

pp. 785-794.

[7] E. CSUHAJVARJU AND G. VASZIL, On the computational completeness of context-free pawiia-

municating grammar systerriBheoretical Computer Science, 215 (1999), pp. 349-358.

[8] E. CSUHAJVARJIU AND G. VASZIL, On the size complexity of non-returning context-free PGrarear
systemsin 11th International Workshop on Descriptional Compligwrif Formal Systems (DCFS 2009),
2009, pp. 91-100.

69

BIBLIOGRAPHY 70

[9] J. Dassow, G. PaUN, AND G. ROZENBERG Grammar systemén Handbook of Formal Languages —

Volume 2: Linear Modeling: Background and ApplicationsriSger, 1997, pp. 155-213.

[10] S. DuMITREScU, Nonreturning PC grammar systems can be simulated by reigrsystemsTheoret-

ical Computer Science, 165 (1996), pp. 463-474.

[11] P. C. AscHER Turing machines with restricted memory acgekdgormation and Computation, 9

(1966), pp. 364-379.

[12] M. R. GAREY AND D. S. bHNSON Computers and Intractability A Guide to the Theory of NP-
Completenesdvacmillan Higher Education, 1979.

[13] V. GEFFERT, Context-free-like forms for the phrase-structure gramsner Mathematical Foundations

of Computer Science, vol. 324 of Lecture Notes in Comput&re, Springer, 1988, pp. 309-317.

[14] G. KATSIRELOS, S. MANETH, N. NARODYTSKA, AND T. WALSH, Restricted global grammar con-
traints, in Principles and Practice of Constraint Programming (0892, vol. 5732 of Lecture Notes in

Computer Science, 2009, pp. 501-508.

[15] H. R. LEwIs AND C. H. RAPADIMITRIOU, Elements of the Theory of ComputatidPrentice Hall,

2nd ed., 1998.

[16] N. MANDACHE, On the computational power of context-free PCGBeoretical Computer Science,

237 (2000), pp. 135-148.

[17] V. MIHALACHE, On parallel communicating grammar systems with contes¢-flomponentin Math-
ematical Linguistics and Related Topics, The Publishing$toof the Romanian Academy of Science,

1994, pp. 258-270.

[18] V. MIHALACHE, On the generative capacity of parallel communicating graneystems with regular

componentgech. rep., Turku Centre for Computer Science, Turkudfid] 1996.

[19] ——, On the expressiveness of coverability trees for PC grammstemsin Grammatical Models
of Multi-Agent Systems (Topics in Computer Mathematicsprén and Breach Science Publishers,

1999.

BIBLIOGRAPHY 71

[20] D. PARDUBSKA AND M. PLATEK, Parallel communicating grammar systems and analysis byatoin
by restarting automatgaech. rep., Deptartment of Computer Science, Comeniugddsity, Bratislava,

Slovakia, 2008.

[21] G. PAUN AND L. SANTEAN, Parallel communicating grammar systems: the regular ¢casealele

Universitatii din Bucuresti, Seria Matematica-Inforntatj 2 (1989), pp. 55—-63.

[22] G. PrUN AND L. SANTEAN, Further remarks on parallel communicating grammar systeimierna-

tional Journal of Computer Mathematics, 34 (1990), pp. P83~

[23] L. SANTEAN, Parallel communicating grammar systenBulletion of the EATCS (Formal Language

Theory Column), 1 (1990).

[24] F. L. TiIPLEA, C. ENE, C. M. IONESCU, AND O. PROCOPIUG Some decision problems for parallel

communicating grammar systenieoretical Computer Science, 134 (1994), pp. 365-385.

[25] G. VAszIL, On simulating non-returning PC grammar systems with rengrsystemsTheoretical

Computer Science, 209 (1997), pp. 319-329.

