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Abstract  
 

Chronic kidney disease (CKD) is a significant global health issue that requires urgent attention. 

Unfortunately, patients in the early stages of CKD may not exhibit any noticeable symptoms, 

leading to delayed diagnosis and treatment. Recent advancements in Machine Learning (ML) offer 

an effective tool for clinicians to detect the disease early and provide prompt treatment. A 

significant amount of research has been conducted on this topic. In this thesis, we propose a model 

for CKD prediction based on Ensemble Learning (EL) concepts. Five well-known supervised 

learning algorithms, three of which are based on the EL techniques of bagging and boosting, are 

used as components to form an ensemble model applying the EL stacking strategy. A CKD dataset 

from the University of California Irvine (UCI) machine learning repository is used for 

experimental validation of the model. The dataset had many missing values, which were handled 

using iterative imputation. The Random Forest Feature Importance (RF-FI) is used to select the 

most relevant features and reduce the feature vector dimensionality for the prediction task. The 

ensemble model achieved an average accuracy rate of 99% after running 10-fold cross-validation. 

The experimental procedure mentioned previously was also applied to a dataset related to 

cardiovascular diseases, which is discussed in the experimental section. Our study revealed that 

our model can be beneficial in the early detection of CKD and other diseases, leading to prompt 

treatment of affected patients. 

 

Keywords: Chronic Kidney Disease, Machine Learning, Ensemble Learning, Classification, 

Boosting, Bagging, Stacking, Imputation, Feature Importance, Hyper-Parameter Tuning 
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Chapter 1: Introduction 

 
1.1 Introduction 

Chronic Kidney Disease (CKD) is a significant health concern worldwide due to its insidious 

nature during the initial stages. The challenge lies in the silent progression of CKD without 

apparent symptoms, leading to delayed diagnoses and delayed treatment initiation. Early detection 

methods are crucial to identifying CKD in its preliminary stages, underscoring the need for 

comprehensive and routine health screenings [1]. Timely intervention is essential, as it can 

significantly slow or impede the progression of the disease. The importance of early intervention 

strategies cannot be overstated, as healthcare professionals can effectively mitigate the decline in 

kidney function caused by CKD through meticulous monitoring and appropriate medication [2]. 

Poorly managed CKD can lead to dire consequences, potentially leading to kidney failure, where 

the therapeutic options often narrow down to life-altering treatments such as dialysis or kidney 

transplantation [3],[4]. 

Recent advancements in machine learning and computational capabilities have sparked 

optimism in the diagnosis of CKD [5]. The precision, cost-effectiveness, and adaptability of 

machine learning, coupled with evolving information technology and electronic health data, make 

it a promising candidate for determining various health statuses [6],[7]. Its application in diverse 

medical domains showcases its remarkable potential in deciphering complex health conditions, 

from diagnosing heart diseases to addressing acute kidney injuries [8]. Our research focuses on 

leveraging ensemble learning techniques in machine learning to improve the accuracy of chronic 

kidney disease (CKD) prediction models. The objective is to refine disease prediction models by 

utilizing diverse data patterns and complex relationships within the dataset. 

 Our study focuses on machine learning-based disease prediction techniques, potentially 

bringing timely interventions and enhanced management strategies for CKD. Using multiple 

models and ensemble techniques ensures a more reliable and precise approach to CKD diagnosis. 

By aggregating predictions from numerous models, our approach enhances CKD predictive 

capabilities, ensuring accurate diagnosis and providing healthcare professionals with a valuable 

toolset to improve patient care. We chose the ensemble approach as ensemble methods work on 

the principle of combining diverse models, which, when aggregated, can provide more accurate 

predictions than any single model alone [9]. This approach leverages the strengths of various 

models while mitigating their weaknesses. For instance, some models might excel in capturing 

specific patterns or relationships within the data, while others might be better suited for different 

aspects. Combining these models, ensemble learning aims to create a more robust and 

comprehensive predictive model. 

To achieve our research goal, we employ various models, including Random Forest (RF), 

Gradient Boosting (GB), ADA Boosting (ADA), Support Vector Machines (SVM), and Artificial 

Neural Networks (ANN). Out of five models, three are based on ensemble bagging (RF) and 

boosting techniques (ADA and GB), while the two left, SVM and ANN, are chosen as they provide 

a different approaches than ensemble learning. Our ensemble models are based on decision trees, 

which serve as the foundational base learner. 
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Our approach involved the stacking ensemble learning technique to synthesize a model and 

then using max voting to produce our final proposed CKD classification model, providing a precise 

and reliable approach to CKD diagnosis. We stacked RF, SVM, GB, ADA, and ANN, followed 

by 10-fold cross-validation, which increased the reliability of our model, and compared our results 

for the stacked model with the other five component models. Our methods also address missing 

data using iterative imputation techniques in conjunction with decision tree-based models, 

significantly enhancing accuracy. We used random forest feature importance scores to identify the 

most impactful subset for classifying CKD problems. This helped us to develop a comprehensive 

methodology that culminates in a reliable and efficient diagnostic tool for early CKD detection 

and diagnosis.  

 

1.2 Thesis Outline 

Chapter 2 delves into an in-depth discussion of the related work undertaken in this field and 

explores concepts necessary for developing our models. It provides a clear and concise elucidation 

of the background and reasoning behind our selection of specific techniques and models. Chapter 

3 comprehensively elaborates our methodology, which employs robust data processing and 

strategic use of ensemble methods to enhance predictive performance. The culmination of our 

thesis is presented in Chapter 4, where we showcase our experimental work and in-depth analysis. 

Lastly, Chapter 5 delivers conclusive findings that set the stage for future research endeavors.
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Chapter 2: Literature Review 

 
This chapter holds great importance as it delves into the related literature and serves as the 

foundation for the research methodology that will be expanded upon in Chapter 3. Section 2.1 

covers the previous work done in this area, followed by Section 2.2 which provides an in-depth 

overview of ensemble learning and its primary strategies. In Section 2.3, we introduce the machine 

learning classifiers that have been utilized in this study. Additionally, Sections 2.4 and 2.5 offer a 

comprehensive account of the feature selection method and the missing data imputation strategy 

employed in this research. 

 

2.1 Related Work 

Nephropathy, or kidney damage, is called kidney disease. People with kidney disease have kidney 

failure, which can lead to kidney failure if not treated quickly. According to the National Kidney 

Foundation, chronic kidney disease affects 10% of the world’s population, and millions of people 

die each year due to inadequate treatment. Recent advances in ML and DL-based kidney disease 

testing may bring hope to countries that cannot manage kidney disease testing.  

Bemando et al. [10] investigated the relationship between blood-related diseases and their 

features using Gaussian Naive Bayes, Bernoulli Naive Bayes, and Random Forest classifier 

methods. These three algorithms anticipate and offer statistical findings in a variety of ways. In 

this experiment, we discovered that Naive Bayes estimated accuracy was higher than other 

algorithms.  

Kumar and Polepaka [11] devised a technique for illness prediction in the medical field. 

They employed Random Forest and CNN as well as other machine learning methods. These 

algorithms deliver better results for illness dataset classification, precision, recall, and F1-score. In 

this experiment, Random Forest outperformed different algorithms regarding accuracy and 

statistical performance. 

Singh et al. [12] developed a technique for predicting medical-related illness datasets. For 

improved prediction, they utilized a support vector machine classifier. The accuracy ranged from 

73 to 91 percent, and the author eventually improved accuracy to 91 percent [13]. Desai et al. 

devised a technique for illness prediction in the medical field. The author employed back-

propagation NN and LR classification algorithms in this study. These two strategies provide 

distinct outcomes, with statistical analysis and logistic regression yielding a more accurate model 

than other algorithms. 

Patil et al. [14] created a database for cardiovascular-related medical conditions. On a 

disease dataset, the authors employed machine learning approaches such as a Support Vector 

Machine and Cuckoo search optimized Neural Network, and the support vector machine estimated 

94.44 percent improved accuracy. They observed the illness dataset for statistical analysis by Liu 

et al. [15]. They estimated superior findings for specificity, sensitivity, and positive and negative 

predictive values using machine learning approaches such as support vector machines. Acharya et 

al. [16] reviewed the medical-linked illness dataset for better statistical analysis outcomes; they 

employed several machine learning techniques, such as CNN, and applied machine learning 

algorithms to the ECG dataset, achieving a classification accuracy of 94 percent. 
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Wasle et al. [17] devised a statistical analysis technique to examine the chronic kidney 

disease dataset; the authors employed a variety of machine-learning approaches. They used Naive 

Bayes, Decision Trees, and Random Forest to improve prediction, and they discovered that 

Random Forest computed greater classification accuracy than the other algorithms. Nithya et al. 

[18] developed a categorization and cluster-based analysis method on the kidney disease dataset. 

They calculated 99.61 percent classification accuracy using Artificial Neural Networks for Kidney 

Disease Image Prediction. 

Al Imran et al. [19] examined machine learning techniques to analyze datasets for chronic 

renal disease. For statistical analysis such as F1-score, Precision, Recall, and AUC, the authors 

employed Logistic Regression and Feedforward Neural Networks and generated better results than 

previous algorithms. Navaneeth and Suchetha [20] devised a method for predicting chronic renal 

disease using a dataset. They employed machine learning methods such as CNN and SVM. The 

authors estimated greater accuracy, sensitivity, and specificity findings after the prediction.  

Brunetti et al. [21] used a system or method for chronic kidney disease datasets. The 

authors used the CNN machine learning technique and calculated 95% classification accuracy for 

the disease dataset. Hodneland et al. [22] used image registration to detect renal morphologic 

changes in CKD diagnosis. Vasquez-Morales et al. [23] established a classifier based on the neural 

network using large-scale CKD data, and the model's accuracy on their test data was 95%. In 

addition, most previous studies utilized the CKD data set obtained from the UCI machine learning 

repository.  

Chen et al. [24] used k-nearest neighbor (KNN), support vector machine (SVM), and soft 

independent modeling of class analogy to diagnose CKD; KNN and SVM achieved the highest 

accuracy of 99.7%. Aljaaf et al. [25] used a fuzzy rule-building expert system, fuzzy optimal 

associative memory, and partial least squares discriminant analysis to diagnose CKD, and the 

range of accuracy in those models was 95.5%-99.6%. Their studies have achieved good results in 

the diagnosis of CKD.  

Nishant et al. [26] used MLP, SVM, KNN, C4.5 decision tree, and random forest (RF) to 

diagnose CKD, and the RF achieved an accuracy of 100%. In the models established by Boukenze 

et al. [27], MLP achieved the highest accuracy of 99.75%. The studies focus mainly on setting 

models and achieving an ideal result. However, a complete process of filling in the missing values 

is not described in detail, and no feature selection technology is used to select predictors. Rady et 

al. [28] used SVM and neural networks to diagnose CKD, and the accuracy of the models was 

97.75% and 99.75%, respectively. In the models established by Gunarathne et al. [29], zero was 

used to fill out the missing values, and the decision forest achieved the best performance with an 

accuracy of 99.1%. 

The mean imputation fills in the missing values in the above models and depends on the 

samples' diagnostic categories. As a result, their method could only be used when the diagnostic 

results of the samples are known. In reality, patients might miss some measurements for assorted 

reasons before diagnosing. In addition, for missing values in categorical variables, data obtained 

using mean imputation might have a significant deviation from the actual values. For example, for 

variables with only two categories, we set the categories to 0 and 1, but the mean of the variables 

might be between 0 and 1. 

 

2.2 Ensemble Learning 

Ensemble Learning is a Machine Learning technique that makes predictions by combining the 

results of several machine learning models, also known as base learners. This approach can be 
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advantageous when individual models are prone to overfitting or need help recognizing the 

underlying data's complexity [30]. Although various strategies can combine machine learning 

models, including simple ones such as Majority Voting and Averaging, the Bagging, Boosting, and 

Stacking techniques are most commonly used in practice. Their popularity is due to their ease of 

implementation and success on various predictive modeling problems.  

 

Bagging 

Bagging is so named because it combines Bootstrapping and Aggregation to form one ensemble 

model. Given a collection of base learners and a dataset, the main idea consists of training each of 

them using a slightly different dataset generated by taking a bootstrap sampling of the original 

dataset, that is, by iteratively resampling with replacement of the dataset. The predictions of the 

base learners are then aggregated to form a more efficient predictor. When dealing with a 

classification problem, the base learner predictions are typically combined using plurality votes or 

by averaging the estimated class probabilities. Because of the aggregation process, bagging 

effectively reduces the variance of the individual base learners. Bagging works exceptionally well 

for unstable, high-variance base learners' algorithms whose predicted output undergoes significant 

changes in response to small changes in the training data [31]. A typical example of an ensemble 

learner obtained through bagging is the random forest classifier discussed in section 2.2.3. 

 

Boosting 

Boosting is a supervised machine learning strategy combining multiple base model predictions to 

generate a more efficient ensemble model. Unlike bagging, it focuses on successively training the 

basic models in a way that emphasizes misclassified samples from prior iterations. The goal is to 

prioritize samples incorrectly categorized in previous iterations, allowing the ensemble model to 

learn from its mistakes and improve its overall performance. Typically, the training dataset is left 

unchanged. Instead, the learning algorithm is modified to pay more attention to instances of the 

training data misclassified incorrectly by previously added ensemble members. 

The idea of combining many weak learners into a strong learner was theoretically 

proposed, and many algorithms were unsuccessful. Only when the Adaptive Boosting (AdaBoost) 

algorithm was developed was boosting demonstrated as an effective ensemble method [32]. 

Sections 2.2.4 and 2.2.5 present two machine learning prediction methods based on ensemble 

learning boosting strategy: the Adaboost and Gradient Boosting algorithms. 

 

Stacking 

Stacking involves training multiple models and combining their outputs using another model 

called the combiner or the second-level learner. The combiner model aggregates the predictions of 

the ensemble components to produce a more accurate result. In principle, any machine learning 

model can be the second-level learner. However, the rule of thumb is to generally let the model's 

complexity reside at the base models' level and use simple models as combiners. Stacking can be 

very effective when the base models are complementary in their strengths and weaknesses, as it 

can help to capture a broader range of information from the underlying data. The main advantage 

of stacking is that it can combine models with different types of architectures. This means it can 

combine models using different features or based on different algorithms. The diversity of the 

ensemble members is desirable since they are generally constructed in very different ways, 
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ensuring that they make different assumptions and, therefore, have fewer correlated prediction 

errors. 

2.3 Machine Learning Classification Algorithms 

This section discusses the fundamental machine learning algorithms that comprise the final model 

in Chapter 3. The decision tree algorithm (DT) is used as the base learner for bagging and boosting 

techniques, which reduce variance and improve accuracy—bagging forms the random forest (RF) 

classifier while boosting forms both Adaboost and GB models. Two complementary models, 

Support Vector Machine (SVM) and Artificial Neural Network (ANN), are included since they 

are built based on strategies different from ensemble learning. These algorithms are combined 

through stacking to improve the accuracy and performance of the model. 

 

2.3.1 Decision Tree  

Decision Tree is a classification technique based on the recursive partitioning of a dataset into 

distinct segments. This method constructs a tree-like structure by evaluating attributes and their 

values at each node, sequentially breaking down the dataset into smaller subsets [33]. The core 

principle involves identifying the most significant feature that best separates the data, creating 

branches that lead to subsequent nodes with refined criteria. This recursive process continues until 

a defined stopping criterion is met, such as reaching a certain depth or achieving purity in the 

subsets. Ultimately, the decision tree becomes a hierarchical flowchart where each internal node 

represents a feature, and each leaf node signifies the final classification outcome Fig 2.1. 

 
Figure 2.1 Decision Tree Flowchart [34] 

Decision Trees offer an interpretable and understandable representation of decision-making 

processes, providing insights into the most critical features influencing classification outcomes. 

The algorithms work based on splits, which are determined by the following: 

 

Entropy 

In Machine Learning, entropy measures the level of disorder or uncertainty in each data set. It can 

also be seen as quantifying the amount of information in the dataset [35]. Entropy is defined 

mathematically for random distributions and can be extended for any dataset 𝑆 consisting of 

𝑛 classes using the formula: 
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𝐻(𝑆) =  ∑ −𝑝𝑘𝑙𝑜𝑔2(𝑝𝑘)

𝑛

𝑘=1

 
(2.1) 

Here, 𝑝𝑘 represents the probability of class k occurring within the data set, which is the proportion 

of the data points that belong to a class 𝑘 to the total number of data points in 𝑆. 
 

Information Gain 

Information gain is the measure of reduction in entropy resulting from a dataset split based on a 

specific attribute. We typically use it to determine the usefulness of a feature by partitioning the 

dataset into more homogeneous subsets concerning the class labels or  

target variable [36]. The higher the information gains, the more valuable the feature is in predicting 

the class label or the target variable. Given a data set 𝑆 and an attribute 𝐴, the information gain of 

𝐴 with respect to 𝑆 is defined as: 

𝐼𝐺(𝑆, 𝐴) =  𝐻(𝑆) − ∑
|𝑆𝜐|

|𝑆|
 

𝜐∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)

𝐻(𝑆𝜐) 
(2.2) 

where 𝜐 represents the possible values taken by the feature 𝐴, |𝑆𝜐| is the number of instances in the 

subset 𝑆  with the value υ for the attribute 𝐴. 

The attribute with the least entropy should be used to find the optimal decision tree with the best 

feature split. This can be obtained via information gain, which is the difference in entropy before 

and after a split of an attribute. 

 

Gini Impurity 

An alternative way of splitting a decision tree is via the Gini Index. The Gini Index or Impurity 

measures the probability of a random instance being misclassified when chosen randomly from a 

data set. The Gini index is calculated using the formula given below. 

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 =  1 − ∑ 𝑝𝑗
2

𝑛

𝑗=1

  
(2.3) 

Where 𝑝𝑗denotes the probability that a training instance belongs to a class, 𝑗, 𝑑, 𝑛 is the total 

number of classes. The value of Gini impurity ranges from 0 𝑡𝑜 1. Zero refers to the pure node, 

where all elements in the node belong to one single class, and 0.5 refers to the impure node, with 

elements in the node belonging to multiple classes. The optimal split is the one having the lowest 

Gini index. The simplicity of the decision tree method makes it a valuable tool for understanding 

and developing predictive models that are widely used in machine learning and data analysis [37]. 

 

2.3.2 Random Forest  

Random Forest is a supervised machine-learning algorithm introduced by Leo Breiman and Adele 

Cutler in 2001 [38]. It is an ensemble learning-based classifier obtained by bagging a set of 

decision trees built from the training data. Each decision tree forming a random forest is made 

unique by using a distinct random subset of data obtained from the bootstrap sampling of the 

original dataset, as illustrated in Figure 2.3. This results in a more accurate model than a single 

decision tree. For prediction problems, the majority vote of the base learners in a random forest is 

used to obtain the final prediction. 
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Figure 2.2 An illustration of bootstrap sampling in Random Forest [38] 

 

2.3.3 Support Vector Machines 

Support Vector Machine (SVM) is a supervised learning method useful for regression and 

classification. The original version of SVM was developed for linear separation of two classes 

[39]. This early limitation was later overcome by allowing non-separable classes and non-linearly 

separable classes. For binary classification in a d-dimensional space, the SVM, 

technique constructs a hyperplane described by an equation of the form that correctly separates 

two classes with a maximum margin, as illustrated in Figure 2.3. 

 
Figure 2.3 Maximum margin separating hyperplane for SVM [39] 

If the training data {(𝑥𝑖, 𝑦𝑖)} 𝑛
𝑖=1

 is linearly separable, the maximum margin can be defined by two 

parallel hyperplanes that separate the two classes of data, so that the distance between them is as 

large as possible. The maximum margin separating the hyperplane is the hyperplane that lies 

halfway between them. The equation of this hyperplane is found using a quadratic optimization 

procedure, and it is completely determined by the vectors 𝑥𝑖 that lie near the separation region. 

These vectors are called support vectors. A soft separation margin can be obtained when the data 

is not completely separable by a linear boundary, forcing the procedure to tolerate some 

classification errors. 

However, when the data requires a non-linear boundary separation in the original feature space, 

the SVM algorithm addresses this limitation by mapping the data into higher-dimensional space 

𝑓 (𝑥)  =  𝑤𝑇 𝑥 +  𝑏 =  0 (2.4) 



Chapter 2: Literature Review 

9 

 

where linear separation becomes possible. If we assume that 𝜓(𝑥) is the transformation that 

achieves this objective, the quadratic optimization procedure to find the separation hyperplane in 

the linear case applied in the new feature space will contain the quantities 𝜓(𝑥𝑖)
𝑇 𝜓(𝑥𝑗) for pairs 

of feature vectors 𝑥𝑖 and 𝑥𝑗. Since it is generally impossible to find explicitly the transformation 

𝜓(𝑥), [38] proposed the idea called the kernel trick which makes use of an appropriate kernel 

function 𝑘(𝑥𝑖 , 𝑥𝑗  ) to replace the dot products 𝜓(𝑥𝑖)
𝑇 𝜓(𝑥𝑗) in the optimization procedure. Many 

categories of kernel functions are used in practice, such as the homogeneous and non-

homogeneous polynomial, the radial-based, and the sigmoid. The selection of the kernel function 

is related to the data distribution in the original feature space. In real-world problems, we examine 

closely the properties of our data to select an appropriate kernel function, and we can also test 

experimentally different kernels and select the one that provides the best performance. 

 

2.3.4 ADA Boost Classifier Tree  

We recall that boosting is a general strategy for learning classifiers by combining simpler ones. A 

popular boosting algorithm is AdaBoost, which is short for adaptive boosting and was introduced 

by Yoav Freund and Robert Schapire in 1995 [40]. It is so-called because it is adaptive in that 

subsequent weak learners are chosen to compensate for the weaknesses of the previous classifiers 

[41]. AdaBoost is straightforward to use and implement and generally gives very effective results 

[42]. 

 
Figure 2.4 Example of ADA Boost classifier [42] 

Assume we are given the training data {(𝑥1 , 𝑦1), . . . , (𝑥𝑁  , 𝑦𝑁 )}, where  𝑥𝑖 ∈  𝑅𝑘 and 

 𝑦𝑖  ∈  {−1, 1}. Suppose we are given a set of weak classifiers {𝑓
𝑚 

}
𝑚=1

𝑀
 where 𝑓

𝑚 
(𝑥) ∈

 {−1, 1}, and 0 −  1 loss function 𝐼, defined as: 

 

The final classifier 𝑓 (𝑥) is a weighted average of all sequential models 𝑓𝑚 (𝑥): 

 

𝐼(𝑓𝑚 (𝑥𝑖 ), 𝑦𝑖 ) =  {
0  𝑖𝑓  𝑓𝑚 (𝑥𝑖 ) =  𝑦𝑖  

1  𝑖𝑓   𝑓𝑚 (𝑥𝑖 ) ≠  𝑦𝑖  
 

(2.5) 

𝑓 (𝑥) =  𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑚 𝑓
𝑚 

(𝑥)

𝑀

𝑚=1

) 

 

(2.6) 
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where the model-weights 𝛼𝑚 are given by the misclassification rate ϵ𝑚 of the model 𝑓𝑚 . The 

sign of 𝑓 (𝑥) identifies the predicted object class and the absolute value gives the confidence in 

that classification.  

 

ALGORITHM 1: THE CONSTRUCTION OF ADABOOST CLASSIFIER 

1) Input: Data {(𝑥𝑖 , 𝑦𝑖 ): 1 ≤  𝑖 ≤  𝑁 } and the loss function 𝐼(𝑦, 𝑓 (𝑥)) 

2) For 𝑖 =  1 to 𝑁 , set w𝑖
(1)

 =
1

𝑛
 

3) Repeat for 𝑚 =  1 to 𝑀 : 

 a) Fit the classifier 𝑓𝑚 (𝑥) using weights w𝑖
(𝑚)

 to minimize the objective function: 

ϵ𝑚 = ∑ w𝑖

(𝑚)

𝑁

𝑖=1

 I (𝑦
𝑖 

, 𝑓
𝑚 

(𝑥𝑖 )) 

 

 

(2.7) 

 b) Compute the aggregation weight: 

𝛼𝑚  =  𝑙𝑛 (
1 − ϵ𝑚

ϵ𝑚
) 

 

 

(2.8) 

 c) For 𝑖 =  1 to 𝑁 , update the weight: 

w𝑖
(𝑚+1)

= w𝑖
(𝑚)

𝑒𝑥𝑝 (𝛼𝑚𝐼 (𝑦𝑖 , 𝑓𝑚 
(𝑥𝑖 ))) 

 

 

(2.9) 

 d) Normalize the weights so as: 

∑ w𝑖
(𝑚+1)

= 1

𝑁

𝑖=1

 

 

 

(2.10) 

4) For 𝑖 =  1 to 𝑁 , output 

𝑓(𝑥𝑖 ) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑚𝑓
𝑚 

(𝑥𝑖 )

𝑀

𝑚=1

) 

 

 

(2.11) 

   

 

AdaBoost is a greedy algorithm that builds the strong classifier 𝑓(𝑥)  incrementally by optimizing 

the weights 𝛼𝑚 for each added weak classifier. Equation (2.8) is derived from the exponential loss 

function used for classification problems in machine learning. This loss function is preferred in 

Adaboost for its sensitivity to misclassifications and outliers. The quantities ϵ𝑚  represent 

weighted measures of the error rates of each base classifier on the data set. The weighting 

coefficients 𝛼𝑚 in Equation (2.9) give greater weight to the more accurate base classifiers added 

to the sum. Equation (2.10) shows that the weighting coefficients w𝑖
𝑚 are increased for 

misclassified data points. 
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2.3.5 Gradient Boosting Classifier 

The fundamental intuition behind gradient boosting is iteratively building a complex classification 

or regression model by adding simple models [43]. Each new simple model added to the ensemble 

compensates for the weaknesses of the current ensemble.  

 

 
Figure 2.5 Gradient Boosting  Flowchart  [44] 

More concretely, we take an ensemble of simple models {𝑓𝑘}𝑘∈𝐾 and additively combine them 

into a single, more complex model: 

 

 Each model 𝑓𝑘 might be a poor fit for the data, but a linear combination of the ensemble will 

provide a better fit Consider the training data {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛 )}. We can assume that the 

predictor 𝑓𝑘 (𝑥) at stage 𝑘 incurs the loss 𝐿( 𝑓𝑘 (𝑥), 𝑦), i.e., the difference between the actual and 

the predicted variables: 

 

At this point, we want to minimize the loss function 𝐿(𝑓𝑘 (𝑥), 𝑦) with respect to 𝑓𝑘 . We therefore 

train a function ℎ𝑘 (𝑥) to approximate the negative gradient of 𝐿(𝑓𝑘 (𝑥), 𝑦) with respect to the 

predictor 𝑓𝑘 , that is: 

 

and obtain a new predictor 𝑓𝑘 + 1 by adding a multiple of ℎ𝑘 (𝑥) to predictor 𝑓𝑘 : 
 

 

For instance, when the modified squared loss function: 

𝐹 =  ∑ 𝜆𝑘𝑓𝑘

𝑘

 
(2.12) 

  

𝐿(𝑓𝑘 (𝑥), 𝑦) = ∑ 𝐿(𝑓𝑘 (𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

 

(2.13) 

ℎ𝑘 (x) =  −
𝜕𝐿(𝑓𝑘 (𝑥), 𝑦

𝜕𝑓𝑘 (𝑥)
 

(2.14) 

𝑓𝑘 + 1(𝑥) =  𝑓𝑘 (𝑥) + 𝜆𝑘 ℎ𝑘 (𝑥) (2.15) 
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is used in the case of the regression, each component of the gradient is given by: 

which is the pseudo residual. We then train a base learner  ℎ𝑘 (𝑥) with the pseudo residual dataset 
{(𝑥1 , 𝑟1), . . . , (𝑥𝑁  , 𝑟𝑁 )}, where the base learner can be any non-linear predictor, e.g., a small 

decision tree, to update the predictor  𝑓𝑘 (𝑥) by adding a multiple of the base learner. 

The overall algorithm that applies to both regression and classification with their respective loss 

functions is as follows: 

 

ALGORITHM 2: THE CONSTRUCTION OF GRADIENT BOOSTING CLASSIFIER 

1) Input: Data {(𝑥𝑖 , 𝑦𝑖 ): 1 ≤  𝑖 ≤  𝑁 } and a loss function 𝐿(𝑦, 𝑓 (𝑥)) 

2) Initialize the predictor with a constant value 𝑓0 (𝑥): 

𝑓0 (𝑥) =  argmin
𝛾

∑ 𝐿

𝑛

𝑖=1

(𝑦𝑖 , 𝛾) 

 

 

(2.18) 

3) At step 𝑘 where the predictor is  𝑓𝑘 (𝑥), calculate the pseudo residuals: 

𝑟𝑖  =  −
𝜕𝐿( 𝑓𝑘 (𝑥𝑖 ), 𝑦𝑖 )

𝜕 𝑓𝑘 (𝑥𝑖 )
 

 

 

(2.19) 

4) Train a base learner ℎ𝑘 (𝑥) with the pseudo residual dataset 

{(𝑥1 , 𝑟1), . . . , (𝑥𝑁  , 𝑟𝑁 )}: 

𝜆𝑘  =  argmin
𝜆

∑ 𝐿( 𝑓𝑘 ( 𝑥𝑖 ) +  𝜆 ℎ𝑘 ( 𝑥𝑖 ),  𝑦𝑖 )

𝑖

 

 

 

 

(2.20) 

5) Optimize Step lengths.  

6) Update the predictor 

 𝑓𝑘+1(𝑥) =   𝑓𝑘 (𝑥) +   𝜆𝑘  ℎ𝑘 (𝑥) 

 

 

(2.21) 

7) Redo steps 3 to 6 until a stopping condition is met. 

 

 

 

Typically, steps 3 to 6 are iterated from 𝑘 =  1 to some prefixed value 𝐾 (for instance 𝐾 =  100) 

since it is sometimes difficult to satisfy fixed stopping conditions such as residuals or updates in 

the predictors being sufficiently small.  

𝐿(𝑓
𝑘 

(𝑥), 𝑦) = ∑
1

2

𝑁

𝑖=1

(𝑓
𝑘 

(𝑥𝑖 ) −  𝑦𝑖 )
2

 
(2.16) 

  

ℎ𝑘 (𝑥𝑖 ) =  −
𝜕 [

1
2

(𝑓𝑘 (𝑥𝑖 ) −  𝑦𝑖 )
2]

𝜕𝑓𝑘 (𝑥𝑖 )
=  𝑦𝑖  −  𝑓𝑘(𝑥𝑖 ) =  𝑟𝑖  

(2.17) 

  



Chapter 2: Literature Review 

13 

 

Gradient boosting stands out in predictive modeling due to several key attributes. Primarily, its 

exceptional precision sets it apart, often outperforming other models in delivering accurate 

predictions [45]. Additionally, this technique showcases remarkable efficiency, notably in training, 

even with vast and intricate datasets, making it a preferred choice for handling data-intensive 

projects [46]. Another distinct advantage lies in its robust support for managing categorical 

features, an essential capability in real-world scenarios characterized by diverse datasets. 

Furthermore, its competence in handling missing values within data adds to its appeal, addressing 

a common challenge encountered in data analysis and predictive modeling [47]. 

 

2.3.6 Artificial Neural Networks (ANN Tree)  

Artificial Neural Networks (ANN) are computational systems that consist of many simple 

processors called neurons or perceptrons and are designed to work similarly to neurons in the 

biological brain [48]. The human brain contains about 100 billion interconnected neurons that 

process sensory information from the environment. Every single neuron processes the input’s 

activities. If a particular action potential is reached, the neuron fires through its single output to all 

the neurons to which it is connected. 

 
Figure 2.6 An illustration of a biological and artificial neurons [49] 

Each artificial neuron takes a vector of inputs 𝑥 and processes the inputs by taking their weighted 

sum with a vector of weights 𝑤, adding a bias 𝑏, and then applying an activation function 𝑓. The 

complete equation for the neuron’s output is written as: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑖

) 
(2.22) 

The activation function introduces non-linearity into the output of a neuron. This allows the neural 

network to learn non-linear representations from the training data. The most used activation 

functions are the sigmoid, the tangent hyperbolic (Tanh), and the rectified linear unit (ReLu). 

The typical ANN architecture is the Feed-Forward neural network. Figure 2.6 shows an example 

of a feed-forward neural network [49]. In this framework, the neurons are arranged in three layers: 

an input layer, a few hidden layers in which all the processing is performed, and an output layer. 

The flow of information takes place sequentially from the input layer to the hidden layers and 

finally to the output layer, which computes the final output [50]. 
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Figure 2.7 An illustration of a neural network [49] 

2.3.6.1 Learning Process and Back-propagation 

The goal of the learning (or training) process is to find a set of parameters for the weights and the 

bias that result in the best possible performance of the ANN for the problem at hand (classification 

in our context). In supervised learning, the actual output 𝑦 of a particular input 𝑥 is given and can 

be used to update the parameters 𝑤. The idea in this approach is to start with a random initialization 

of the weights and calculate the output for a given input. The error between the generated output 

and the actual output provided by a loss function is used to update the network weights using a 

gradient descent algorithm to minimize the error. The technique is called back-propagation since 

the weights are first corrected for the output layer and then propagated backward into the network 

[51]. The cross-entropy loss function is commonly used for classification tasks. 

Once the gradient 𝛻𝑤𝐿 of the loss function 𝐿 with respect to the weight vector 𝑤 is 

evaluated, the gradient descent algorithm changes the weights in the negative direction of 𝛻𝑤𝐿 in 

such a way that the loss approaches closer to the minimum in each iteration. A local minimum is 

expected to be reached after several iterations [52]. Equation 2.23 shows the corresponding update 

rule of gradient descent, where the learning rate parameter defines how quickly the minimum 

should be approached. If the learning rate is too high, there is a risk that the minimum cannot be 

reached because the steps taken are too big and will be overshot. If it is bigger, the learning will 

take a long time to get the desired accuracy. 

𝑤𝑘+1  = 𝑤𝑘 − 𝜂𝛻𝑤𝐿(𝑤𝑘) (2.23) 

Neural networks can self-learn and produce output that is not limited by the input they receive. 

They can store the information of an entire network. However, the model requires fine-tuning 

several hyper-parameters to function efficiently, and inappropriate scaling of features might 

negatively impact its performance. Overfitting is another widespread problem in neural networks, 

where the model learns the details of training data so well that it fails to generalize to unseen data. 

To overcome this problem, regularization and careful feature selection are performed. Similarly, 

data splitting and cross-validation are used to train and test the base classifiers to avoid overfitting. 

 

2.4 Random Forest Feature Importance (RF-FI)  

Collecting data is an essential part of any analysis. However, it can lead to noise that may obscure 

the patterns and essential information that the data contains. Fortunately, dimensionality reduction 

is a powerful technique that can help identify and eliminate redundant features, thus reducing 

noise. When it comes to creating classification rules, random forests use the importance of features 
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to identify the significance score for each feature [55]. This score is calculated and used to 

determine the feature's importance. By analyzing the Gini relevance value of a feature in a single 

tree, we can calculate the overall importance of all the trees in the forest. With this information, 

we can easily determine the significance of each feature using Gini importance in a random forest 

model consisting of 100 decision trees [56]:  

For each feature, 𝑗, calculate the total decrease in Gini impurity (TDI) at each node m of each 

decision tree i using the following formula: 

𝑇𝐷𝐼(𝑗, 𝑚, 𝑖) = 𝐴 · (𝐵 − 𝐶 · 𝐷 − 𝐸 · 𝐹) (2.24) 

Where: 

• 𝐴: Proportion of samples that reach node m of tree 𝑖 compared to the total number of samples 𝑛𝑖. 

A = 
𝑛𝑚,𝑖

𝑛𝑖
 (2.25) 

 

•𝐵: Gini impurity score at node 𝑚 of tree 𝑖. 
𝐵 =  𝐺𝑖𝑛𝑖(𝑚, 𝑖) (2.26) 

 

• 𝐶: Proportion of samples that go to the left child node of node m of tree i compared to the 

samples at node m. 

 

• 𝐷: Gini impurity score at the left child node of node 𝑚 of tree 𝑖. 

• 𝐸: Proportion of samples that go to the right child node of node m of tree i compared to the 

samples at node m. 

 

• 𝐹: Gini impurity score at the right child node of node m of tree i. 

 

For each decision tree i, calculate the total decrease in Gini impurity over all the nodes where each 

feature is used to split, as follows: 

where the sum is taken over all nodes m where feature 𝑗 is used to split in tree 𝑖. For each feature 

𝑗 and each decision tree 𝑖, calculate the importance of feature j in tree i as the ratio of its total 

decrease in Gini impurity to the sum of the total decline in Gini impurity overall features, using 

the following formula: 

𝐶 = 
𝑛𝑙𝑒𝑓𝑡,𝑚,𝑖

𝑛𝑚,𝑖
 (2.27) 

𝐷 =  𝐺𝑖𝑛𝑖(𝑙𝑒𝑓𝑡, 𝑚, 𝑖) 

 

(2.28) 

𝐸 =  
𝑛𝑟𝑖𝑔ℎ𝑡,𝑚,𝑖

𝑛𝑚,𝑖
 

(2.29) 

𝐹 =  𝐺𝑖𝑛𝑖(𝑟𝑖𝑔ℎ𝑡, 𝑚, 𝑖) (2.30) 

𝑇𝐷𝐼( 𝑗, 𝑖)  =  ∑ 𝑇𝐷𝐼(𝑗, 𝑚, 𝑖)

𝑚

 (2.31) 
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Average the feature importance scores overall decision trees to obtain the mean importance of each 

feature, as follows: 

Normalize the mean importance scores by dividing each score by the sum of all the mean  

importance scores, using the following formula: 

where 𝐹𝐼′( 𝑗) is the normalized importance score for feature 𝑗. The Gini importance scores, 

denoted as 𝐹𝐼′(𝑗), represent the resulting values for each feature. A higher score indicates a greater 

significance of the feature. These scores are valuable in ranking the features and selecting the most 

crucial ones for further analysis or model development. One of the notable contributions of this 

thesis is the comprehensive feature selection process, which aims to identify the essential features 

within the dataset. We utilized the Random Forest built-in Feature Importance (RF-FI) technique 

to achieve this. By employing RF-FI, we generated a new feature set that contains fewer features 

yet provides more informative insights. This approach effectively reduced dimensionality and 

improved model execution time without compromising accuracy. To determine the most critical 

features, we set a threshold for RF-FI, resulting in the selection of 7 features for each model. We 

utilized the outcomes of this selection to create a new set of features. Subsequently, we retrained 

our models using these feature sets and compared the results to identify the optimal features 

regarding accuracy and execution time. 

 

2.5 Iterative Imputer  

Iterative imputation is a highly sophisticated data preprocessing technique that tackles missing 

values in datasets. Unlike conventional methods that rely on simple statistics such as mean or 

median values to fill in missing data, iterative imputation takes a more intricate approach. By 

considering all features present in the dataset, it estimates missing values iteratively. This 

technique creates a predictive model for each feature with missing data, based on the other 

available features. The imputer begins by estimating missing values for one feature, using the 

remaining features as predictors. This process continues iteratively across all the features until 

convergence, refining its estimates with each iteration. By incorporating complex modeling 

strategies such as regression, decision trees, or other machine learning algorithms, iterative 

imputation captures intricate relationships between variables, enhancing the accuracy of the 

imputed values. It adapts to the data structure and considers interdependencies between variables 

to create more precise estimations for missing values. The iterative nature of this technique ensures 

a more refined and nuanced approach to handling missing data, which contributes to improved 

downstream analysis and modeling processes. The algorithm 3 explains the process for iterative 

imputation in detail [57]: 

 

 

𝐹𝐼( 𝑗, 𝑖) =  
𝑇𝐷𝐼(𝑗, 𝑖)

∑ 𝑇𝐷𝐼(𝑗′, 𝑚, 𝑖)𝑗′
 

(2.32) 

𝐹𝐼( 𝑗) =
1

100
∑ 𝐹𝐼(𝑗, 𝑖)

100

𝑖=1

 

(2.33) 

𝐹𝐼′( 𝑗) =
𝐹𝐼( 𝑗)

∑ 𝐹𝐼(𝑗′)𝑗′
 

(2.34) 
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ALGORITHM 3: ITERATIVE IMPUTER ALGORITHM FOR MISSING DATA IMPUTATION  

1) Inputs: 
 • X: incomplete dataset with missing values 

 • Estimator: regression model used to estimate missing values 

 • max-iter: maximum number of iterations 

2) Outputs: 

 • Xcomplete: Complete the dataset with imputed missing values. 

 Steps: 

 a) Initialize missing values in X using a simple imputation method (e.g., mean, or median).  

 b) Repeat until convergence or maximum number of iterations:  

  • For each feature i with missing values:   

  - Define Xobs as the subset of X where feature i is observed.  

  - Define Xmiss as the subset of X where feature i is missing.  

  - Use an estimator to estimate missing values in Xmiss based on observed values in Xobs.  

  - Replace missing values in Xmiss with the estimated values.  

3) Return the completed dataset Xcomplete. 
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Chapter 3: Methodology  
 

This research methodically details the approach used to predict chronic kidney disease (CKD) rates 

employing Machine Learning algorithms. The methodology encompasses comprehensive stages, 

including data collection, preprocessing, selection of Machine Learning algorithms, and putting 

together an ensemble model that aggregates the predictions of the selected models. 

 

3.1 Data Collection  

The research was conducted using the CKD dataset [58]. The output column "class" has a value of 

either "0" or "1". The value "0" indicates that the person is not a CKD patient, while the value "1" 

shows that the person is a CKD patient. Figure 3.1 displays the total number of CKD and non-

CKD entries in the output column. The overall number of CKD data is 250, whereas the total 

number of non-CKD data is 150. 

 
Figure 3.1 Data distribution of Chronic Kidney Disease Dataset 

 

Feature attributes for CKD dataset: 

 

Attribute Meaning Category Scale 

age Age Numerical Years 

bp Blood pressure Numerical mm/Hg 

sg Specific gravity Nominal 1.005 to 1.025 

al Albumin Nominal 0 to 5 
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Attribute Meaning Category Scale 

su Sugar Nominal 0 to 5 

rbc Red blood cells Nominal Abnormal, Normal 

pc Pus cell Nominal Abnormal, Normal 

pcc Pus cell clumps Nominal Not present, Present 

ba Bacteria Nominal Not present, Present 

bgr Blood glucose random Numerical mgs/dl 

bu Blood urea Numerical mgs/dl 

sc Serum creatinine Numerical mgs/dl 

sod Sodium Numerical mEq/L 

pot Potassium Numerical mEq/L 

hemo Hemoglobin Numerical gms 

pcv Packed cell volume Numerical Pcv 

wc White blood cell count Numerical cells/cumm 

rc Red blood cell count Nominal millions/cmm 

htn Hypertension Nominal No, Yes 

dm Diabetes mellitus Nominal No, Yes 

cad Coronary artery disease Nominal No, Yes 

appet Appetite Nominal Poor, Good 

pe Peda edema Nominal No, Yes 

ane Anemia Nominal No, Yes 

Classification Class Nominal Not CKD, CKD 

Table 3.1 Data Description for Chronic Kidney Disease Dataset 

3.2 Data Preprocessing 

Data preprocessing was conducted to ensure the dataset's suitability for Machine Learning. The 

following steps were performed: 

1) Handling Missing Data: As explained in 2.3, we employed iterative imputer for imputing 

missing data. 

2) Outlier Detection: Our next step involved the identification of outliers. We created 

visualizations, including Std plots for all dataset columns, to detect potential outliers. 
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3) Feature Scaling:  To mitigate biases in our Machine Learning algorithms, we standardized 

numerical features, ensuring they had a mean of zero and a variance of one. 

4) Feature Selection: We plotted a correlation heatmap and employed the RF-FI algorithm 

to select the best subset for predicting CKD. 

5) One-Hot Encoding:  Categorical variables underwent one-hot encoding to transform them 

into a numerical format, facilitating processing by Machine Learning models. 

6) Data Splitting: We partitioned the dataset into training and testing sets using random split, 

facilitating practical model training and evaluation. 

7) Cross-validation: In the final stage, we perform 10-fold cross-validation on CKD data to 

evaluate the effectiveness of the machine learning proposed model. 

 

3.3 Model Training and Evaluation 

The selected Machine Learning algorithms are trained and evaluated using the following 

methodology: 

1) Training: Each algorithm was trained on the training dataset using default hyper-

parameters. 

2) Hyper-parameter Tuning: Hyper-parameter tuning was performed using a grid search 

technique to optimize the algorithms' performance.  

3) Evaluation Metrics: To assess their predictive performance, the models were evaluated 

using standard classification metrics such as accuracy, precision, recall, F1-score, and 

ROC-AUC curve. 

4) Visualization Integration: During the evaluation process, data visualization techniques 

were employed to gain insights into model behavior, feature importance, and decision 

boundaries. 

 

3.4 Hyper-Parameter Tuning 

Finding the optimal hyper-parameters for a given task can be difficult as the perfect settings cannot 

be predetermined. To overcome this challenge, we tested various hyper-parameter combinations 

on the training set and assessed the performance of each model. However, this method can result 

in overfitting, where the model performs well on the training data but needs to be generalized to 

new data. To address this, we employed cross-validation, a critical technique in hyper-parameter 

tuning. We utilized K-fold cross-validation to divide the data into training and testing sets and split 

the training set into K subsets or folds. The model was then trained iteratively K times, with each 

iteration using K-1 of the folds and evaluating the remaining fold. The average performance of 

each fold was used to determine the final validation metrics for the model. To prevent bias in 

assessing the model's performance, we utilized stratified K-fold cross-validation, which is ideal 

for classification problems [59]. Stratified K-fold ensures that each cross-validation fold has a 

similar proportion of each class as the entire dataset. We evaluated various folds, including 3-, 4-, 

5-, and 10-folds, using stratified sampling set to the output 'FLAG' variable and assessed different 

hyper-parameters. We used grid search to identify the best parameter values based on each model's 

context. Additionally, we applied various configurations to the k-fold cross-validation, including 

3-, 4-, 5-, and 10-fold, using the same stratified parameter. The results of these evaluations are 

presented in the results section and were primarily used to identify any potential overfitting or 

underfitting issues in our models. Following these steps ensured that our dataset was appropriately 
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prepared for model training and testing, enabling our models to detect illicit accounts accurately 

while minimizing false positives. 

 

3.5 Data Visualization Techniques  

Various techniques were applied during the evaluation phase to leverage the potential of data 

visualization in improving the interpretability and transparency of machine learning models. These 

visualization methods are designed to provide insights into the behavior of the models, the 

importance of features, and the decision boundaries. The following data visualization techniques 

were employed: 

 

3.5.1 Confusion Matrices  

Confusion matrices are used to visualize the performance of classification models. They provide 

insights into the number of true positives, true negatives, false positives, and false negatives [60]. 

Visualizing these metrics helps us understand how well the model performs and where it may need 

improvement. Figure 3.6 shows the confusion matrix. The confusion matrix rates the performance 

of machine learning classification models. All models were evaluated using the confusion matrix. 

The confusion matrix illustrates how often our models guess correctly and incorrectly. Poorly 

predicted values received false positives and negatives, whereas correctly predicted values 

received genuine positives and negatives. The model's accuracy, precision-recall trade-off, and 

AUC were assessed after grouping all predicted values in the matrix. 

 

 
Figure 3.2 Confusion Matrix [60] 

3.5.2 ROC-AUC Curves  

Receiver Operating Characteristic (ROC) curves and the Area Under the Curve (AUC) score are 

valuable tools for visualizing the trade-off between actual positive rate and false positive rate [61]. 

These curves provide insights into the model's ability to distinguish between different classes, 

especially in imbalanced datasets. 

 

3.6 Proposed Model 

Our model is based on machine learning and uses the advantages of strategies employed in the 

ensemble learning framework. The main strategies of ensemble learning, which are bagging, 

boosting, and stacking, as explained in section 2.1, have been incorporated into our model as 

follows: we used a basic decision tree model as a base learner explained in subsection 2.2.1 and 
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applied bagging to build a random forest classifier. For boosting, we built two classifiers, 

Adaboost, and Gradient-boosted trees classifiers. In addition, we included two complementary 

models, Support Vector Machine (SVM) and Artificial Neural Network (ANN), based on strategies 

different from ensemble learning. We trained and tested all three classifiers, along with SVM and 

ANN, individually on the data using the basic data splitting procedure. Finally, we used a stacking 

strategy to combine the five aforementioned classifiers using ensemble vote classifier based on the 

majority rule voting and resampling strategy similar to the 10-fold cross-validation to train and 

test each of the five ensemble components of the stacked model. We decided to include two 

classifiers based on the boosting strategy in the stacked ensemble due to their good performance 

in many prediction applications. 

The resampling procedure used in our model can be described as follows: 

• We split randomly the dataset into 10 equally sized folds. 

• Then, we repeat the following for each of the 10 folds and each base model: 

– we train the model on the 9 remaining folds 

– test the model on the selected fold 

This resampling strategy allows us to obtain a more accurate estimate of each base model’s 

prediction performance since it ensures that the whole dataset is used for both training and testing. 

The Ensemble Vote Classifier is a meta-classifier for combining similar or different 

machine learning classifiers and aggregate their output into a final prediction using the majority or 

plurality voting. In the general context, the final class label 𝑆(𝑥𝑖) output by the stacked model 𝑆 

for a feature vector 𝑥𝑖  in the dataset is given by the mode of the distribution of the class labels as 

where 𝑀𝑘(𝑥𝑖) stands for the class label assigned to 𝑥𝑖 by the base model 𝑀𝑘, and 𝐾 is the number 

of the base models used in the stacking.  

 

 

𝑆(𝑥𝑖)  =  𝑚𝑜𝑑𝑒{𝑀1(𝑥𝑖), . . . , 𝑀𝐾(𝑥𝑖)}, 

 

(3.1) 
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Chapter 4: Experimentals 

 
In Chapter 4, we conducted experiments to predict CKD rates using various machine-learning 

algorithms and visualization techniques. The aim was to evaluate their effectiveness and potential 

benefits for decision-making. 

 

4.1 Data Pre-Processing 

1) Handling Missing Data: The heatmap in Figure 4.1 represents missing values, with 

'yellow lines' indicating the absence of data. 

 

 
Figure 4.1 Heatmap showing Missing values 

We utilized iterative imputation to fill both numerical and categorical missing values, resulting in 

more accurate data. The dark background in Fig 4.2 indicates the successful imputation of all 

missing data points. 

 
Figure 4.2 Heatmap after Missing value Imputation 
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2) Outliers: We proceeded to check for outliers in our dataset by plotting the standard 

deviation for all columns. Figure 4.3 displays a scatter plot showing the standard deviation 

for all columns. This plot indicated outliers in the White Blood Cell (WBC) count. To 

confirm this, we referred to Figure 4.4, which presents a box plot specifically for WBC. 

 

 
Figure 4.3 Standard Deviation Plot for CKD Dataset 

 
Figure 4.4 Box plot for WBC Count Confirming Outliers 

For handling outliers, we used the Inter Quantile Range (IQR) [62], defining the upper and the 

lower bound: 

In the above formula, according to statistics, we used 1.5 times the IQR to define the upper and 

lower bounds. This allows us to consider all data points within 2.7 standard deviations of the 

Gaussian Distribution. Fig 4.5 shows the data frame after removing outliers. 

 

𝒖𝒑𝒑𝒆𝒓 =  𝑸𝟑 + 𝟏. 𝟓 ∗ 𝑰𝑸𝑹 

 

(4.1) 

𝒍𝒐𝒘𝒆𝒓 =  𝑸𝟏 –  𝟏. 𝟓 ∗ 𝑰𝑸𝑹 

 

(4.2) 
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Figure 4.5 Box Plot for WBC Count after Handling Outliers 

3) Feature Scaling:  Using {MinMaxScaling}, we scaled and translated each feature individually 

to be in the given range on the training set, e.g., between zero and one, as shown in Fig 4.6. 

 

 
Figure 4.6 New Features showing Zero Mean and Unit Variance 

4) Feature Selection:  

 

 
Figure 4.7 Correlation Heatmap 

➢ Feature-Class Correlation: 

We also assessed the correlation between individual features and the target variable, the 

'class' column. We considered features with higher absolute correlations with the 'class' 

column to be more critical for our CKD prediction models. We observed that some features 
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displayed notable correlations with the 'class' column, suggesting their potential 

significance in distinguishing CKD patients from non-CKD cases. 

 

➢ RF-FI score: 

To streamline our feature selection process, we implemented a threshold for the RF-FI 

score as explained in section 2.3. This allowed us to identify the top features based on their 

essential scores while ensuring that the number of features remained manageable. Our 

threshold value of 0.03 was chosen to include the top seven features, as we observed 

significant discrepancies in accuracy beyond this value. This is depicted in Figure 4.8. 

 
Figure 4.8 Important Features (RF-FI score) 

5) One-Hot Encoding: One-hot encoding transforms categorical variables into numerical format. 

Fig 4.9 displays the data frame pre-encoding, while Fig 4.10 displays the data frame post-

encoding. 

 
Figure 4.9 Dataset before encoding 

 
Figure 4.10 Dataset after encoding 

6) Data Splitting: One of the techniques for splitting data is the random split method. This 

approach randomly divides a dataset into two subsets: the training and test sets. Typically, an 

80:20 ratio is used for training and testing, respectively. The randomness of this method helps 
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mitigate any potential bias in the data. Figure 4.11 below visually represents the random split 

method for data. 

 
Figure 4.11 Train and Test Dataset 

7) Cross-Validation: Figure 4.12 shows the plot for cross-validation of our dataset. Since our 

dataset is small, we ran cross-validation to assess its reliability. 

 

 
Figure 4.12 Barh plot showing cross-validation scores 

4.2 Evaluation Metrics 

The predictive performance of the Machine Learning models was assessed using the following 

evaluation metrics [63]: 

1) Accuracy: Measures the overall correctness of predictions. 

2) Precision: Evaluate the positive predictive value. 

3) Recall: Measures the ability to identify actual positive cases. 

4) F1-Score: Balances precision and recall. 

5) ROC-AUC Curve/Score: Assesses the model's ability to distinguish between CKD and 

non-CKD cases. 

𝐴𝑐 =  
𝑇 𝑃 +  𝑇 𝑁

𝑇 𝑃 +  𝐹 𝑃 +  𝑇 𝑁 +  𝐹 𝑁
 

(4.3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇 𝑃

𝑇 𝑃 +  𝐹 𝑃
 

(4.4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.5) 

𝐹 1 =  
2 ∗   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4.6) 
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Here, Ac refers to accuracy. TP, FP, FN, and TN represent true positive, false positive, false 

negative, and true negative. 

 

4.3 Exploratory Data Analysis (EDA) 

Using data visualization techniques, we conducted experiments to explore our model's behavior, 

feature importance, and decision boundaries. We used facet grids and violin plots to uncover trends 

and patterns in the dataset, focusing on the columns relevant to disease prediction. We created a 

Python function to generate Facet Grid plots for Kernel Density Estimation (KDE) to visualize the 

columns and segregate data into CKD and non-CKD cases. This approach allowed us to scrutinize 

how CKD and non-CKD classes exhibited different distributions within the columns. We also 

created another Python function to generate violin plots for the specified column to analyze the 

volume. Each violin plot features a central box plot that provides valuable statistical insights. The 

surrounding area displays density estimation, further motivating our decision to proceed with our 

machine-learning algorithms. We limited our EDA figures to focus solely on the columns pertinent 

to disease prediction, including red blood cell count, white blood cell count, packed cell volume, 

hemoglobin, albumin, serum creatinine, and specific gravity. These visualizations, accompanied 

by our observations, gave us a more profound understanding of the dataset and its potential for our 

predictive modeling tasks. Lastly, all the plots show that 0 indicates patients with non-CKD, and 

1 indicates patients with CKD. 

 

4.3.1 Red blood cell count  

A high red blood count refers to the number of cells produced in the bone marrow and found in 

the blood. The primary function of red blood cells is to transport oxygen from the lungs  

to other parts of the body. Conditions that limit oxygen can increase the number of red blood cells. 

Other conditions may cause the body to produce more red blood cells than it needs [64]. 

The definition of high blood pressure varies between laboratories. The normal range for adults is 

4.35 to 5.65 million red blood cells per microliter (mcL) of blood in men and 3.92 to 5.13 million 

red blood cells per microliter (mcL) of blood in women. 

 
Figure 4.13 Violin Plot for Red Blood Cell Count 
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Figure 4.14 Facet grid plot for Red Blood Cell Count 

Observations: 

• The Facet Grid shows variations in Red Blood Cell (RBC) counts across different 

categorical variables, i.e., 0 and 1.  

• The violin plot for non-CKD class (0) shows tremendous variation across the graph; 

incidentally, CKD (1) varies in a fixed range for most and has a higher density. 

 

4.3.2 White blood cell count  
Leukocytosis, or elevated white blood cells, can indicate many conditions, including infection, 

inflammation, injury, and immune system disorders [65]. A complete blood count (CBC) is usually 

performed to check for leukocytosis. The following treatments often reduce the number of white 

blood cells. Figures 4.15 and 4.16 show the WBC density and KDE calculated for our data. 

 
Figure 4.15 Violin plot for White blood cell count 

 
Figure 4.16 Facet grid plot for White Blood Cell Count 
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Observations: 

• The Facet Grid exhibits the distribution of White Blood Cell (WBC) counts across distinct 

categorical variables, denoted as 0 and 1.  

• The violin plot for the non-chronic kidney disease (CKD) class (0) displays significant 

variability throughout the graph. At the same time, the variation for CKD (1) remains 

within a consistent range for most data points, exhibiting higher density. 

 

4.3.3 Haemoglobin 

Hemoglobin (Hb) is a protein found in red blood cells that carries oxygen throughout the body and 

delivers red blood cells. Both levels vary from person to person. Levels are higher in men than in 

women. When donating blood, a hemoglobin "cut-off" level is set to ensure your hemoglobin does 

not fall below normal after donation. The average amount of heme varies between races, men, and 

women and is also affected by age, especially women. People with hemoglobin levels below 

normal are anemic. Diabetes has many causes and is thought to be caused by iron deficiency. [67] 

 
Figure 4.17 Violin plot for Haemoglobin 

 
Figure 4.18 Facet Grid Plot for Haemoglobin 

Observations: 

• The Facet Grid for hemoglobin highlighted variations in hemoglobin levels across 

categories, i.e., non-ckd (0) and ckd (1). 

• The Violin Plot for hemoglobin indicated the concentration and distribution of hemoglobin 

values, offering insights into any potential clustering or outliers. 
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4.3.4 Packed cell volume  

Packed Cell Volume (PCV) testing is used to diagnose diabetes or polycythemia in patients. 

Complete blood tests are usually done to evaluate the need for blood transfusions and to monitor 

response to blood therapy [66]. Blood is a mixture of blood and cells. The PCV test measures the 

number of blood cells in the blood. If the PCV result shows a reading of 50%, 50 ml of cells are 

present in 100 ml of blood. If the number of RBCs (red blood cells) increases, the total PCV value 

will also increase. This number also increases due to dehydration. 

 
Figure 4.19 Violin plot for Packed Cell Volume 

 
Figure 4.20 Facet Grid plot for Packed Cell Volume 

Observations: 

• The Facet Grid analysis illustrates the diverse Packed Cell Volume (PCV) levels 

concerning various categorical factors. It is a crucial tool to discern any substantial 

disparities in PCV across distinct categories, i.e., non-ckd(0) and ckd(1).  

• Moreover, the Violin Plot visualization for PCV effectively portrays the distribution pattern 

of PCV values, highlighting potential asymmetry or the presence of multiple modes within 

the distribution, thus offering valuable insights into the data's distribution characteristics. 

 

4.3.5 Albumin  

The albumin test checks your liver and kidney function. Albumin is a protein found in plasma. 

Low albumin levels can be caused by kidney disease, liver disease, inflammation, or infection. 

High albumin levels are often caused by dehydration or severe diarrhea [68]. The albumin blood 

test measures the amount of albumin in the blood. Albumin is a protein found in plasma. Your 

liver produces albumin. Albumin protects fluid from the blood. It also helps vitamins, enzymes, 
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hormones, and other substances in the body. If your doctor suspects your liver or kidneys are 

malfunctioning, they may order an albumin test. 

 

 
Figure 4.21 Violin Plot for Albumin 

 
Figure 4.22 Facet Grid Plot for Albumin 

Observations: 

• Higher albumin levels indicate dehydration, which will drastically affect kidney function. 

• As you can see in the plot, the albumin levels are higher in CKD than in non-CKD persons. 

• The Facet Grid and Violin Plot for albumin helped us to identify variations in albumin 

levels across varied factors. This is crucial for understanding the distribution of this 

important biomarker. 

 

4.3.6 Serum Creatinine  

The creatinine test measures the kidney's ability to filter waste products from the blood. Creatinine 

is a byproduct of the energy production process in muscles. Healthy kidneys filter creatinine from 

the blood. Creatinine is eliminated as a waste product in the urine [69]. Measuring creatinine in 

your blood or urine can provide clues to help your doctor determine how well your kidneys are 

working. Low creatinine levels may also indicate that a person has chronic kidney disease, 

decreased kidney function, or malnutrition. You can find more information about low creatinine 

levels here. High creatinine levels can also indicate kidney problems such as infection or failure. 
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Figure 4.23 Violin plot for Serum Creatinine 

 
Figure 4.24 Facet Grid plot for Serum Creatinine 

Observations: 

• In the Violin plot, the KDE for Serum Creatinine is lower in Class 1 than in Class 0 due to 

the disease. 

• The facet grid confirms this. As you can see, the serum levels for Class 1 vary between a 

fixed range and vice-versa. 

• The Facet Grid and Violin Plot for serum creatinine revealed variations in serum creatinine 

levels across categories. It  was valuable for detecting potential patterns. 

 

4.3.7 Specific Gravity  

Elevated specific gravity (SG) can indicate various conditions, including dehydration, kidney 

problems, and certain medical conditions [70]. A urinalysis is typically performed to check for 

abnormal specific gravity. Figures 4.25 and 4.26 show the SG density and KDE calculated for our 

data. 

 
Figure 4.25 Violin plot for Specific Gravity 
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Figure 4.26 Facet grid plot for Specific Gravity 

Observations: 

• The Facet Grid for Specific Gravity (SG) revealed variations across various categories, 

highlighting how specific gravity levels differ between groups. 

• The Violin Plot for Specific Gravity (SG) revealed exciting patterns, such as variations in 

specific gravity levels within subgroups. 

 

4.4 Training our component models before feature selection:  

After performing exploratory data analysis (EDA), we employed five supervised classification 

machine learning algorithms: Support Vector Machine (SVM), Random Forest Bagging (RF 

Bagging), Gradient Boosting (GB), ADA Boost, and Artificial Neural Networks (ANN). By 

leveraging an ensemble learning technique, we stacked the models and subjected them to max 

voting to amalgamate their predictions. Moreover, we used a 10-fold cross-validation strategy to 

ensure a robust evaluation during the training and assessment phases. Our approach is designed to 

provide accurate and reliable predictions, and we are confident that our methodology has yielded 

results that can be trusted. 

 

Support Vector Machine (SVM) 

Figure 4.27 depicts the accuracy and classification report of Hunt’s Decision Tree classifier before 

feature selection. Notably, the accuracy achieved in this case is 64 percent. 

 

 
Figure 4.27 Classification report for SVM 

Moreover, examining the overall F1 score shows accuracy at 50 percent. Drilling into the specifics, 

individual F1 scores reveal 78 percent for non-chronic kidney disease (CKD) and 0 percent for 

CKD cases. These statistics highlight the classifier's proficiency in distinguishing between the two 

categories with a slight difference in the F1 scores. For a more detailed insight into the model's 
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performance, Figure 4.28 presents the confusion matrix, which illustrates the model's predictions 

and their alignment with actual outcomes.  

 
Figure 4.28 Confusion Matrix for SVM 

Random Forest Bagging 

In Figure 4.29, we delve into the accuracy and classification report of the Random Forest Bagging 

classifier. Notably, the classifier attains a commendable accuracy of 95 percent, demonstrating its 

effectiveness in distinguishing between the classes. 

 

 
Figure 4.29 Classification Report for Random Forest Bagging 

Furthermore, when examining the average F1 score, it aligns harmoniously with the accuracy at 

95 percent. Drilling into the specifics, individual F1 scores, with  96 percent for non-chronic kidney 

disease (CKD) and 93 percent for CKD cases, underscore the classifier's precision in categorizing 

the data, with an excellent differentiation between the two classes. Figure 4.30 presents the 

confusion matrix; this matrix illustrates the model's predictions and their alignment with actual 

outcomes.  

 
Figure 4.30 Confusion Matrix for Random Forest Bagging 
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Gradient Boosting 

In Figure 4.31, we delve into the accuracy and classification report of the Gradient Boosting 

classifier. Notably, the classifier attains a commendable accuracy of 95 percent, demonstrating its 

effectiveness in distinguishing between the classes. 

 

 
Figure 4.31 Classification Report for Gradient Boosting 

Furthermore, when examining the average F1 score, it aligns harmoniously with the accuracy at 

95 percent. Drilling into the specifics, individual F1 scores shine, with an impressive 96 percent 

for non-chronic kidney disease (CKD) and 93 percent for CKD cases. These results underscore the 

classifier's precision in categorizing the data, with an excellent differentiation between the two 

classes. For an even deeper understanding of the model's performance, Figure 4.32 presents the 

confusion matrix. This matrix offers a detailed view of the model's predictions and their alignment 

with actual outcomes.  

 
Figure 4.32 Confusion Matrix for Gradient Boosting 

ADA Boost 

In Figure 4.33, we present the results for the AdaBoost classifier, providing insights into its 

accuracy and classification report. The classifier demonstrates a solid performance with an 

accuracy rate of 97.5 percent, indicating its ability to classify the data effectively. 

 

 
Figure 4.33 Classification Report for ADA Boost 
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Looking closely at the metrics, the average F1 score mirrors the overall accuracy at 98 percent, 

reaffirming the classifier's reliability in distinguishing between classes. When examining 

individual F1 scores, we observe commendable results, with a 98 percent score for non-chronic 

kidney disease (CKD) and a 97 percent score for CKD cases. These scores underscore the 

classifier's proficiency in classifying the data, emphasizing precision and recall. To gain a more 

comprehensive view of the model's performance, Figure 4.34 displays the confusion matrix, which 

presents a detailed summary of the model's predictions compared to the actual outcomes.  

 

 
Figure 4.34 Confusion Matrix for ADA Boost 

 

Artificial Neural Network (ANN) 

In Figure 4.35, we present the results for the ANN classifier, providing insights into its accuracy 

and classification report. The classifier performs with an accuracy rate of 38.4 percent, indicating 

its ability to classify the data poorly. 

 

 
Figure 4.35 Classification report for ANN 

Looking closely at the metrics, the average F1 score is 36 percent, reaffirming the classifier's 

reliability in distinguishing between classes. When examining individual F1 scores, we observe 

commendable results, with a 55 percent score for non-chronic kidney disease (CKD) and a 62 

percent score for CKD cases. These scores underscore the classifier's inferior performance in 

classifying the data, emphasizing precision and recall. To gain a more comprehensive view of the 

model's performance, Figure 4.36 displays the confusion matrix, which presents a detailed 

summary of the model's predictions compared to the actual outcomes. 
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Figure 4.36 Confusion Matrix for ANN 

4.5 Training our component models after Feature Selection 

As part of our contribution to this thesis project, we developed one new set of features using the 

RF-F1 selection technique, as explained in section 2.2. We then used these new sets to retrain our 

models and analyze the results.  

 

Support Vector Machine (SVM) 

Figure 4.37 depicts the accuracy and classification report of the SVM classifier after feature 

selection. Notably, the accuracy achieved in this case is 94 percent, a notable accomplishment. 

 

 
Figure 4.37 Classification Report for SVM 

Drilling into the specifics, individual F1 scores reveal a remarkable 95 percent for non-chronic 

kidney disease (CKD) and 92 percent for CKD cases. These statistics highlight the classifier's 

proficiency in distinguishing between the two categories with a slight difference in the F1 scores. 

For a more detailed insight into the model's performance, Figure 4.38 presents the confusion 

matrix. This matrix illustrates the model's predictions and their alignment with actual outcomes.  

 

 
Figure 4.38 Confusion Matrix for SVM 
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Random Forest Bagging 

In Figure 4.39, we delve into the accuracy and classification report of the Gradient Boosting 

classifier after feature selection. Notably, the classifier attains a commendable accuracy of 98.5 

percent, demonstrating its effectiveness in distinguishing between the classes. 

 

 
Figure 4.39 Classification Report for Random Forest Bagging 

Furthermore, when examining the average F1 score, it aligns harmoniously with the accuracy at 

99 percent. Drilling into the specifics, individual F1 scores shine, with an impressive 99 percent 

for non-chronic kidney disease (CKD) and 98 percent for CKD cases. These results underscore the 

classifier's precision in categorizing the data, with an excellent differentiation between the two 

classes. For a more detailed insight into the model's performance, Figure 4.40 presents the 

confusion matrix. This matrix illustrates the model's predictions and their alignment with actual 

outcomes.  

 
Figure 4.40 Confusion Matrix for Random Forest Bagging 

Gradient Boosting 

In Figure 4.41, we delve into the accuracy and classification report of the Gradient Boosting 

classifier after feature selection with our new subset. Notably, the classifier attains a commendable 

accuracy of 95 percent, demonstrating its effectiveness in distinguishing between the classes. 

 

 
Figure 4.41 Classification Report for Gradient Boosting 
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The above classification report shows the performance after using hyperparameters to tune the 

algorithm. Furthermore, when examining the average F1 score, it aligns harmoniously with the 

accuracy at 95 percent. Drilling into the specifics, individual F1 scores shine, with an impressive 

96 percent for non-chronic kidney disease (CKD) and 93 percent for CKD cases. These results 

underscore the classifier's precision in categorizing the data, with an excellent differentiation 

between the two classes. For an even deeper understanding of the model's performance, Figure 

4.42 presents the confusion matrix. This matrix offers a detailed view of the model's predictions 

and their alignment with actual outcomes. 

 

 
Figure 4.42 Confusion Matrix for Gradient Boosting 

ADA Boost 

In Figure 4.43, we present the results for the AdaBoost classifier, providing insights into its 

accuracy and classification report. The classifier demonstrates a solid performance with an 

accuracy rate of 97.5 percent, indicating its ability to classify the data effectively. 

 

 
Figure 4.43 Classification Report for ADA Boost 

Looking closely at the metrics, the average F1 score mirrors the overall accuracy at 98 percent, 

reaffirming the classifier's reliability in distinguishing between classes. When examining 

individual F1 scores, we observe results, with a 98 percent score for non-chronic kidney disease 

(CKD) and a 97 percent score for CKD cases. These scores underscore the classifier's proficiency 

in classifying the data, emphasizing precision and recall. To gain a more comprehensive view of 

the model's performance, Figure 4.44 displays the confusion matrix, which presents a detailed 

summary of the model's predictions compared to the actual outcomes.  
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Figure 4.44 Confusion Matrix for ADA boost 

 

Artificial Neural Network (ANN) 

In Figure 4.45, we present the results for the ANN classifier, providing insights into its accuracy 

and classification report. The classifier performs with an accuracy rate of 81 percent, indicating its 

ability to classify the data poorly. 

 

 
Figure 4.45 Classification Report for ANN 

Looking closely at the metrics, the average F1 score is 50 percent, reaffirming the classifier's 

reliability in distinguishing between classes. When examining individual F1 scores, we observe 

commendable results, with a 78 percent score for non-chronic kidney disease (CKD) and a 0 

percent score for CKD cases. These scores underscore the classifier's inferior performance in 

classifying the data, emphasizing precision and recall. To gain a more comprehensive view of the 

model's performance, Figure 4.46 displays the confusion matrix, which presents a detailed 

summary of the model's predictions compared to the actual outcomes. 

 

 
Figure 4.46 Confusion Matrix for ANN 
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4.6 Comparing component models 

After running algorithms, we compared all the models concerning their accuracy, precision, recall, 

F1 score, and ROC-AUC curve. Fig 4.47 shows a bar graph comparing the accuracies of our 

proposed models before feature selection, followed by Fig 4.48, which illustrates model accuracies 

after feature selection.  

 

 
Figure 4.47 Bar Graph Comparing our Models before Feature Selection 

 
Figure 4.48 Bar Graph Comparing our Models after Feature Selection 

 
Figure 4.49 ROC-AUC Curve Before Feature Selection 
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Figure 4.50 ROC-AUC Curve after Feature Selection 

The ROC-AUC curves depicted in Figures 4.49 and 4.50 are a testament to the outstanding 

performance of our ensemble machine-learning models in predicting chronic kidney disease 

(CKD) rates, both before and after feature selection.  

 

Classifiers  Test 

accuracy 

Confusion 

matrix 

Precision Recall F1-score 

SVM 0.64 128   0 

  72    0 

0.41 0.64 0.50 

Bagging  

(Random Forest) 

0.95 123  5 

5  67 

0.95 0.95 0.95 

Gradient Boosting 0.95 122 6 

1  71 

0.95 0.95 0.95 

ADA Boost 0.97 119  9 

0  72 

0.98 0.97 0.98 

ANN  0.38 121  7 

66  6 

0.34 0.39 0.36 

Table 4.1 Evaluation Table Before Feature Selection 

Classifiers  Test 

accuracy 

Confusion 

matrix 

Precision Recall F1-score 

SVM 0.94 120   8 

  0  72 

0.95 0.94 0.94 

Bagging  

(Random Forest) 

0.98 125  3 

0  72 

0.99 0.98 0.99 

Gradient Boosting 0.95 126  2 

0  72 

0.95 0.95 0.95 

ADA Boost 0.97 123 5 

0  72 

0.97 0.98 0.97 

ANN  0.72 92  36 

1   71 

0.77 0.72 0.73 

Table 4.2 Evaluation Table after feature selection 
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Our framework's classifiers were rigorously analyzed in-depth, and the results are highly 

impressive, as outlined in Tables 4.1 and 4.2. We evaluated five classifiers, including Support 

Vector Machine, RF Bagging, Gradient Boosting, ADA Boost, and ANN, and their performance 

was outstanding. Gradient Boosting and RF Bagging stood out as exceptional performers, 

achieving the highest accuracies at 99.5% and 98%, respectively.  

 

4.7 Stacking Component Models and using Ensemble Classification Voting 

After synthesizing our component models, we used ensemble technique stacking to stack all the 

component models and then employed max voting to get our final and proposed model. 

 

 
Figure 4.51 Classification report for Stacked Model 

 
Figure 4.52 Confusion Matrix for Stacked Model 

 
Figure 4.53 ROC-AUC curve for Stacked Model 

Our ensemble comprised three powerful models: Random Forest (RF), ADA Boost, and Gradient 

Boosting (GB), complemented by the Support Vector Machine (SVM) and Artificial Neural 

Network (ANN). Each model demonstrated its unique strengths in discerning CKD rates, but when 
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it came to the top performer, our proposed stacked model was the clear winner with the highest 

AUC score, showcasing its exceptional ability to discriminate between positive and negative CKD 

cases. Furthermore, we observed that Random Forest Bagging (RF Bagging) demonstrated robust 

predictive power, while ADA Boost delivered competitive performance with slightly lower AUC 

scores. Our ensemble strategy, which involved stacking and subsequent max voting, resulted in 

the most optimal classification model. We want to emphasize that while each model was 

significant, the ensemble approach, as outlined in the abstract, emphasized the collective strength 

of diverse algorithms in improving CKD predictive models. 

 

4.8 Using the same framework with the Cardiovascular Dataset 

After rigorously developing and testing our models on the CKD dataset, we applied the same 

framework to analyze the cardiovascular dataset obtained from Kaggle [71]. The count for each 

column in our Cardiovascular dataset, as depicted in Fig 4.54, provides valuable insights into the 

distribution of information in the dataset. This information enables us to make decisions for data 

analysis, ensuring that we derive the most meaningful and accurate results. 

 

 
Figure 4.54 Dataset for Cardiovascular Diseases 

The dataset description is presented comprehensively through the aid of Table 4.3.  

  

Feature Description 

Column 

Name Data Type 

Age Objective Feature: Age in days age Integer (days) 

Height Objective Feature: Height in cm height Integer (cm) 

Weight Objective Feature: Weight in kg weight Float (kg) 

Gender Objective Feature: Gender gender Categorical Code 
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Feature Description 

Column 

Name Data Type 

Systolic blood pressure 

Examination Feature: Systolic 

blood pressure ap_hi Integer 

Diastolic blood pressure 

Examination Feature: Diastolic 

blood pressure ap_lo Integer 

Cholesterol 

Examination Feature: Cholesterol 

levels cholesterol 

1: Normal, 2: Above 

Normal, 3: Well 

Above Normal 

Glucose 

Examination Feature: Glucose 

levels gluc 

1: Normal, 2: Above 

Normal, 3: Well 

Above Normal 

Smoking Subjective Feature: Smoking smoke Binary 

Alcohol intake Subjective Feature: Alcohol intake alco Binary 

Physical activity 

Subjective Feature: Physical 

activity active Binary 

Presence or absence of 

cardiovascular disease 

Target Variable: Cardiovascular 

disease cardio Binary 

Table 4.3 Data Description for Cardiovascular Dataset 

 

As a result of our data preprocessing steps, we eliminated all missing values from the dataset, as 

shown in Figure 4.55. 

 

 
Figure 4.55 Heatmap Showing Zero Missing Values Cardiovascular Dataset 
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After handling missing values, we strategically partitioned our dataset into a training and test set 

with an optimal 80-20 ratio. This approach ensures that our model is trained on a comprehensive 

and diverse dataset while being tested on an independent data set, allowing for reliable and accurate 

predictions. 

 

 
Figure 4.56 Data Splitting for Cardiovascular Dataset 

After that, we utilized the RF-FI score to identify the crucial features: 

 
Figure 4.57 Important Features (RF-FI score) 

Once the features were selected, we ran the dataset to obtain component models. The results have 

been analyzed and compared below, providing valuable insights into the performance of our 

models. 

 
Figure 4.58 Comparing Model Accuracies for Cardiovascular Dataset 
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Figure 4.59 ROC-AUC Curve for Cardiovascular Dataset 

Classifiers  Test 

accuracy 

Confusion 

matrix 

Precision Recall F1-score 

SVM 0.60 1902 1083 

1146 1869 

0.63 0.63 0.63 

Bagging  

(Random Forest) 

0.72 2216  769 

903 2212 

0.73 0.72 0.72 

Gradient 

Boosting 

0.73 2280 705 

886  2129 

0.73 0.73 0.73 

ADA Boost 0.72 2361 624 

1028 1987 

0.72 0.72 0.72 

ANN  0.62 2475 510 

1235 1780 

0.72 0.71 0.71 

Table 4.4 Results after Feature Selection 

After collecting all the component models, we utilized a technique called stacking. This ensemble 

learning technique enabled us to stack all the models on top of each other. This approach confirmed 

the reliability of our proposed model, providing us with the highest accuracy. Combining these 

techniques allowed us to create a robust and reliable model for our intended purpose. 

 

 
Figure 4.60 Confusion Matrix for Stacked Model 
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Figure 4.61 ROC-AUC  Curve for Stacked Model 

Our findings reveal that the stacked model, upon employing ensemble learning technique max 

voting, has demonstrated exceptional capabilities in effectively analyzing the dataset for chronic 

kidney disease prediction. With an accuracy rate of 73%, our proposed model has outperformed 

all other classifiers and is in line with previous works on this subject using the exact dataset we 

used[71]. The confusion matrix reflected only 639 erroneous predictions out of 12,500 training 

samples, reaffirming the robustness of our approach. Leveraging precision, recall, and F1 scores 

further bolstered our stacked model's standout performance, aligning seamlessly with the 

methodologies detailed in our abstract. This comprehensive evaluation underscores the superiority 

of our proposed model, emphasizing its significant contribution to advancements in disease 

prediction models and its pivotal role in accurately predicting chronic kidney disease rates.
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Chapter 5: Conclusion and Future Directions 

 
Our research aimed to develop an early chronic kidney disease (CKD) detection method using 

ensemble learning techniques. We employed stacking and max voting to combine multiple 

machine learning algorithms, which enabled us to achieve high accuracy in swiftly identifying 

CKD cases. To verify the efficacy of our approach, we conducted experiments on two separate 

datasets, namely a small Chronic Kidney Disease (CKD) dataset and an extensive Cardiovascular 

dataset. The results obtained from these experiments provided compelling evidence to support the 

effectiveness and resilience of our methodology. 

Our study also highlighted the importance of the partnership between machine learning 

and data visualization, providing healthcare professionals with insights into CKD risk factors, 

patient stratification, and model behavior. We can democratize advanced diagnostics by leveraging 

this combined approach, especially in resource-limited regions. Accurately predicting CKD is 

crucial as it enables healthcare professionals to intervene proactively, providing timely and 

targeted care. Our goal is to bridge global healthcare disparities and revolutionize the landscape of 

CKD prediction for the better. 

 

5.1 Future Research 

Many promising avenues exist to explore in predicting chronic kidney disease (CKD). One area 

of focus is the development of transparent machine learning models using SHAP values to gain 

clear insights into predictive mechanisms. Integrating these models into clinical practice could 

create user-friendly interfaces prioritizing ethical considerations. Advanced feature engineering 

techniques can strengthen CKD prediction models by uncovering or refining new features. 

Analyzing longitudinal patient data could deepen our understanding of disease progression and the 

effectiveness of interventions over time. Exploring ensemble models could increase predictive 

accuracy while empowering CKD patients with understandable health insights could significantly 

enhance self-management. Tailoring these models for resource-limited healthcare settings is 

crucial, ensuring adaptability even in areas with minimal resources. Ethical considerations such as 

privacy, bias, and fairness must be at the forefront of these advancements. Additionally, extending 

CKD prediction models to forecast related health conditions could offer a more integrated 

approach to healthcare. Validating these models across diverse datasets is crucial to assessing their 

applicability and robustness. Incorporating more data and using multiple models to compare 

techniques could improve performance. As the healthcare and machine learning fields continue to 

evolve, there are many opportunities for focused and impactful research. 
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