

A Machine Learning Methodology for Classifying

Chronic Kidney Diseases

By

DAKSH SHARMA

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the Degree of Master of Science

Bishop's University

Canada

December 2023

Copyright © Daksh Sharma, 2023

i

Abstract

Chronic kidney disease (CKD) is a significant global health issue that requires urgent attention.

Unfortunately, patients in the early stages of CKD may not exhibit any noticeable symptoms,

leading to delayed diagnosis and treatment. Recent advancements in Machine Learning (ML) offer

an effective tool for clinicians to detect the disease early and provide prompt treatment. A

significant amount of research has been conducted on this topic. In this thesis, we propose a model

for CKD prediction based on Ensemble Learning (EL) concepts. Five well-known supervised

learning algorithms, three of which are based on the EL techniques of bagging and boosting, are

used as components to form an ensemble model applying the EL stacking strategy. A CKD dataset

from the University of California Irvine (UCI) machine learning repository is used for

experimental validation of the model. The dataset had many missing values, which were handled

using iterative imputation. The Random Forest Feature Importance (RF-FI) is used to select the

most relevant features and reduce the feature vector dimensionality for the prediction task. The

ensemble model achieved an average accuracy rate of 99% after running 10-fold cross-validation.

The experimental procedure mentioned previously was also applied to a dataset related to

cardiovascular diseases, which is discussed in the experimental section. Our study revealed that

our model can be beneficial in the early detection of CKD and other diseases, leading to prompt

treatment of affected patients.

Keywords: Chronic Kidney Disease, Machine Learning, Ensemble Learning, Classification,

Boosting, Bagging, Stacking, Imputation, Feature Importance, Hyper-Parameter Tuning

ii

Acknowledgments

I am immensely grateful to my supervisor, Dr. Madjid Allili, for his invaluable advice and

guidance that have played a pivotal role in shaping my academic and professional growth. The

insightful feedback and constructive criticism provided by Drs. Stefan Bruda, Rachid Hedjam, and

Mohammed Ayoub Alaoui Mhamdi from the Department of Computer Science at Bishop's

University have been instrumental in transforming me into a confident individual. I owe a debt of

gratitude to Steve K. Houley for his constant encouragement and support, which has enabled me

to explore my academic pursuits beyond my comfort zone. Lastly, I cannot thank my family

enough for their unwavering support and generosity throughout my academic journey.

iii

Table of Contents

CHAPTER 1: INTRODUCTION... 1

1.1 INTRODUCTION ... 1

1.2 THESIS OUTLINE .. 2

CHAPTER 2: LITERATURE REVIEW ... 3

2.1 RELATED WORK ... 3

2.2 ENSEMBLE LEARNING .. 4

2.3 MACHINE LEARNING CLASSIFICATION ALGORITHMS ... 6

2.3.1 Decision Tree ... 6

2.3.2 Random Forest ... 7

2.3.3 Support Vector Machines ... 8

2.3.4 ADA Boost Classifier Tree ... 9

2.3.5 Gradient Boosting Classifier .. 11

2.3.6 Artificial Neural Networks (ANN Tree) .. 13

2.3.6.1 Learning Process and Back-propagation ... 14

2.4 RANDOM FOREST FEATURE IMPORTANCE (RF-FI) .. 14

2.5 ITERATIVE IMPUTER ... 16

CHAPTER 3: METHODOLOGY ... 18

3.1 DATA COLLECTION .. 18

3.2 DATA PREPROCESSING .. 19

3.3 MODEL TRAINING AND EVALUATION ... 20

3.4 HYPER-PARAMETER TUNING ... 20

3.5 DATA VISUALIZATION TECHNIQUES ... 21

3.5.1 Confusion Matrices .. 21

3.5.2 ROC-AUC Curves ... 21

3.6 PROPOSED MODEL ... 21

CHAPTER 4: EXPERIMENTALS .. 23

4.1 DATA PRE-PROCESSING .. 23

4.2 EVALUATION METRICS ... 27

4.3 EXPLORATORY DATA ANALYSIS (EDA) .. 28

4.3.1 Red blood cell count .. 28

4.3.2 White blood cell count ... 29

4.3.3 Haemoglobin .. 30

4.3.4 Packed cell volume .. 31

4.3.5 Albumin ... 31

4.3.6 Serum Creatinine ... 32

4.3.7 Specific Gravity ... 33

4.4 TRAINING OUR COMPONENT MODELS BEFORE FEATURE SELECTION: .. 34

4.5 TRAINING OUR COMPONENT MODELS AFTER FEATURE SELECTION ... 38

iv

4.6 COMPARING COMPONENT MODELS ... 42

4.7 STACKING COMPONENT MODELS AND USING ENSEMBLE CLASSIFICATION VOTING ... 44

4.8 USING THE SAME FRAMEWORK WITH THE CARDIOVASCULAR DATASET ... 45

CHAPTER 5: CONCLUSION AND FUTURE DIRECTIONS ... 50

5.1 FUTURE RESEARCH .. 50

REFERENCES .. 51

v

List of Figures

FIGURE 2.1 DECISION TREE FLOWCHART ... 6

FIGURE 2.2 AN ILLUSTRATION OF BOOTSTRAP SAMPLING IN RANDOM FOREST .. 8

FIGURE 2.3 MAXIMUM MARGIN SEPARATING HYPERPLANE FOR SVM .. 8

FIGURE 2.4 EXAMPLE OF ADA BOOST CLASSIFIER .. 9

FIGURE 2.5 GRADIENT BOOSTING FLOWCHART ... 11

FIGURE 2.6 AN ILLUSTRATION OF A BIOLOGICAL AND ARTIFICIAL NEURONS ... 13

FIGURE 2.7 AN ILLUSTRATION OF A NEURAL NETWORK .. 14

FIGURE 3.1 DATA DISTRIBUTION OF CHRONIC KIDNEY DISEASE DATASET ... 18

FIGURE 3.2 CONFUSION MATRIX .. 21

FIGURE 4.1 HEATMAP SHOWING MISSING VALUES .. 23

FIGURE 4.2 HEATMAP AFTER MISSING VALUE IMPUTATION ... 23

FIGURE 4.3 STANDARD DEVIATION PLOT FOR CKD DATASET .. 24

FIGURE 4.4 BOX PLOT FOR WBC COUNT CONFIRMING OUTLIERS ... 24

FIGURE 4.5 BOX PLOT FOR WBC COUNT AFTER HANDLING OUTLIERS .. 25

FIGURE 4.6 NEW FEATURES SHOWING ZERO MEAN AND UNIT VARIANCE ... 25

FIGURE 4.7 CORRELATION HEATMAP .. 25

FIGURE 4.8 IMPORTANT FEATURES (RF-FI SCORE) ... 26

FIGURE 4.9 DATASET BEFORE ENCODING .. 26

FIGURE 4.10 DATASET AFTER ENCODING .. 26

FIGURE 4.11 TRAIN AND TEST DATASET ... 27

FIGURE 4.12 BARH PLOT SHOWING CROSS-VALIDATION SCORES ... 27

FIGURE 4.13 VIOLIN PLOT FOR RED BLOOD CELL COUNT .. 28

FIGURE 4.14 FACET GRID PLOT FOR RED BLOOD CELL COUNT ... 29

FIGURE 4.15 VIOLIN PLOT FOR WHITE BLOOD CELL COUNT.. 29

FIGURE 4.16 FACET GRID PLOT FOR WHITE BLOOD CELL COUNT .. 29

FIGURE 4.17 VIOLIN PLOT FOR HAEMOGLOBIN .. 30

FIGURE 4.18 FACET GRID PLOT FOR HAEMOGLOBIN .. 30

FIGURE 4.19 VIOLIN PLOT FOR PACKED CELL VOLUME ... 31

FIGURE 4.20 FACET GRID PLOT FOR PACKED CELL VOLUME ... 31

FIGURE 4.21 VIOLIN PLOT FOR ALBUMIN ... 32

FIGURE 4.22 FACET GRID PLOT FOR ALBUMIN ... 32

FIGURE 4.23 VIOLIN PLOT FOR SERUM CREATININE ... 33

FIGURE 4.24 FACET GRID PLOT FOR SERUM CREATININE ... 33

FIGURE 4.25 VIOLIN PLOT FOR SPECIFIC GRAVITY ... 33

FIGURE 4.26 FACET GRID PLOT FOR SPECIFIC GRAVITY .. 34

FIGURE 4.27 CLASSIFICATION REPORT FOR SVM.. 34

FIGURE 4.28 CONFUSION MATRIX FOR SVM .. 35

FIGURE 4.29 CLASSIFICATION REPORT FOR RANDOM FOREST BAGGING .. 35

vi

FIGURE 4.30 CONFUSION MATRIX FOR RANDOM FOREST BAGGING ... 35

FIGURE 4.31 CLASSIFICATION REPORT FOR GRADIENT BOOSTING.. 36

FIGURE 4.32 CONFUSION MATRIX FOR GRADIENT BOOSTING .. 36

FIGURE 4.33 CLASSIFICATION REPORT FOR ADA BOOST ... 36

FIGURE 4.34 CONFUSION MATRIX FOR ADA BOOST .. 37

FIGURE 4.35 CLASSIFICATION REPORT FOR ANN.. 37

FIGURE 4.36 CONFUSION MATRIX FOR ANN .. 38

FIGURE 4.37 CLASSIFICATION REPORT FOR SVM ... 38

FIGURE 4.38 CONFUSION MATRIX FOR SVM .. 38

FIGURE 4.39 CLASSIFICATION REPORT FOR RANDOM FOREST BAGGING .. 39

FIGURE 4.40 CONFUSION MATRIX FOR RANDOM FOREST BAGGING ... 39

FIGURE 4.41 CLASSIFICATION REPORT FOR GRADIENT BOOSTING.. 39

FIGURE 4.42 CONFUSION MATRIX FOR GRADIENT BOOSTING .. 40

FIGURE 4.43 CLASSIFICATION REPORT FOR ADA BOOST ... 40

FIGURE 4.44 CONFUSION MATRIX FOR ADA BOOST. .. 41

FIGURE 4.45 CLASSIFICATION REPORT FOR ANN ... 41

FIGURE 4.46 CONFUSION MATRIX FOR ANN .. 41

FIGURE 4.47 BAR GRAPH COMPARING OUR MODELS BEFORE FEATURE SELECTION... 42

FIGURE 4.48 BAR GRAPH COMPARING OUR MODELS AFTER FEATURE SELECTION ... 42

FIGURE 4.49 ROC-AUC CURVE BEFORE FEATURE SELECTION .. 42

FIGURE 4.50 ROC-AUC CURVE AFTER FEATURE SELECTION .. 43

FIGURE 4.51 CLASSIFICATION REPORT FOR STACKED MODEL... 44

FIGURE 4.52 CONFUSION MATRIX FOR STACKED MODEL ... 44

FIGURE 4.53 ROC-AUC CURVE FOR STACKED MODEL .. 44

FIGURE 4.54 DATASET FOR CARDIOVASCULAR DISEASES ... 45

FIGURE 4.55 HEATMAP SHOWING ZERO MISSING VALUES CARDIOVASCULAR DATASET ... 46

FIGURE 4.56 DATA SPLITTING FOR CARDIOVASCULAR DATASET .. 47

FIGURE 4.57 IMPORTANT FEATURES (RF-FI SCORE) ... 47

FIGURE 4.58 COMPARING MODEL ACCURACIES FOR CARDIOVASCULAR DATASET ... 47

FIGURE 4.59 ROC-AUC CURVE FOR CARDIOVASCULAR DATASET .. 48

FIGURE 4.60 CONFUSION MATRIX FOR STACKED MODEL ... 48

FIGURE 4.61 ROC-AUC CURVE FOR STACKED MODEL ... 49

vii

List of Tables

TABLE 3.1 DATA DESCRIPTION FOR CHRONIC KIDNEY DISEASE DATASET ... 19

TABLE 4.1 EVALUATION TABLE BEFORE FEATURE SELECTION .. 43

TABLE 4.2 EVALUATION TABLE AFTER FEATURE SELECTION .. 43

TABLE 4.3 DATA DESCRIPTION FOR CARDIOVASCULAR DATASET ... 46

TABLE 4.4 RESULTS AFTER FEATURE SELECTION ... 48

viii

List of symbols and abbreviations

• CKD – Chronic kidney disease

• ML – Machine Learning

• DV – Data Visualization

• EDA – Exploratory Data Analysis

• KDE – Kernel Density Estimation

• DT – Decision Tree

• ADA – Adaptive Boosting

• ANN – Artificial Neural Network

• DPP – Data Pre-Processing

• GB – Gradient Boosting

• IQR – Inter Quantile Range

• RF-FI – Random Forest Feature Importance

• CBC – Complete Blood Count

• RBC – Red Blood Cell

• WBC – White Blood Cell

• PCV – Packed Cell Volume

• HB – Haemoglobin

• Std – Standard Deviation

• IQR – Inter Quantile Range

• AUC – Accuracy Curve

• ROC – Receiver Operating Characteristic Curve

• TP – True Positive

• FP – False Positive

• FN – False Negative

• TN – True Negative

1

Chapter 1: Introduction

1.1 Introduction

Chronic Kidney Disease (CKD) is a significant health concern worldwide due to its insidious

nature during the initial stages. The challenge lies in the silent progression of CKD without

apparent symptoms, leading to delayed diagnoses and delayed treatment initiation. Early detection

methods are crucial to identifying CKD in its preliminary stages, underscoring the need for

comprehensive and routine health screenings [1]. Timely intervention is essential, as it can

significantly slow or impede the progression of the disease. The importance of early intervention

strategies cannot be overstated, as healthcare professionals can effectively mitigate the decline in

kidney function caused by CKD through meticulous monitoring and appropriate medication [2].

Poorly managed CKD can lead to dire consequences, potentially leading to kidney failure, where

the therapeutic options often narrow down to life-altering treatments such as dialysis or kidney

transplantation [3],[4].

Recent advancements in machine learning and computational capabilities have sparked

optimism in the diagnosis of CKD [5]. The precision, cost-effectiveness, and adaptability of

machine learning, coupled with evolving information technology and electronic health data, make

it a promising candidate for determining various health statuses [6],[7]. Its application in diverse

medical domains showcases its remarkable potential in deciphering complex health conditions,

from diagnosing heart diseases to addressing acute kidney injuries [8]. Our research focuses on

leveraging ensemble learning techniques in machine learning to improve the accuracy of chronic

kidney disease (CKD) prediction models. The objective is to refine disease prediction models by

utilizing diverse data patterns and complex relationships within the dataset.

 Our study focuses on machine learning-based disease prediction techniques, potentially

bringing timely interventions and enhanced management strategies for CKD. Using multiple

models and ensemble techniques ensures a more reliable and precise approach to CKD diagnosis.

By aggregating predictions from numerous models, our approach enhances CKD predictive

capabilities, ensuring accurate diagnosis and providing healthcare professionals with a valuable

toolset to improve patient care. We chose the ensemble approach as ensemble methods work on

the principle of combining diverse models, which, when aggregated, can provide more accurate

predictions than any single model alone [9]. This approach leverages the strengths of various

models while mitigating their weaknesses. For instance, some models might excel in capturing

specific patterns or relationships within the data, while others might be better suited for different

aspects. Combining these models, ensemble learning aims to create a more robust and

comprehensive predictive model.

To achieve our research goal, we employ various models, including Random Forest (RF),

Gradient Boosting (GB), ADA Boosting (ADA), Support Vector Machines (SVM), and Artificial

Neural Networks (ANN). Out of five models, three are based on ensemble bagging (RF) and

boosting techniques (ADA and GB), while the two left, SVM and ANN, are chosen as they provide

a different approaches than ensemble learning. Our ensemble models are based on decision trees,

which serve as the foundational base learner.

Chapter 1: Introduction

2

Our approach involved the stacking ensemble learning technique to synthesize a model and

then using max voting to produce our final proposed CKD classification model, providing a precise

and reliable approach to CKD diagnosis. We stacked RF, SVM, GB, ADA, and ANN, followed

by 10-fold cross-validation, which increased the reliability of our model, and compared our results

for the stacked model with the other five component models. Our methods also address missing

data using iterative imputation techniques in conjunction with decision tree-based models,

significantly enhancing accuracy. We used random forest feature importance scores to identify the

most impactful subset for classifying CKD problems. This helped us to develop a comprehensive

methodology that culminates in a reliable and efficient diagnostic tool for early CKD detection

and diagnosis.

1.2 Thesis Outline

Chapter 2 delves into an in-depth discussion of the related work undertaken in this field and

explores concepts necessary for developing our models. It provides a clear and concise elucidation

of the background and reasoning behind our selection of specific techniques and models. Chapter

3 comprehensively elaborates our methodology, which employs robust data processing and

strategic use of ensemble methods to enhance predictive performance. The culmination of our

thesis is presented in Chapter 4, where we showcase our experimental work and in-depth analysis.

Lastly, Chapter 5 delivers conclusive findings that set the stage for future research endeavors.

Chapter 2: Literature Review

3

Chapter 2: Literature Review

This chapter holds great importance as it delves into the related literature and serves as the

foundation for the research methodology that will be expanded upon in Chapter 3. Section 2.1

covers the previous work done in this area, followed by Section 2.2 which provides an in-depth

overview of ensemble learning and its primary strategies. In Section 2.3, we introduce the machine

learning classifiers that have been utilized in this study. Additionally, Sections 2.4 and 2.5 offer a

comprehensive account of the feature selection method and the missing data imputation strategy

employed in this research.

2.1 Related Work

Nephropathy, or kidney damage, is called kidney disease. People with kidney disease have kidney

failure, which can lead to kidney failure if not treated quickly. According to the National Kidney

Foundation, chronic kidney disease affects 10% of the world’s population, and millions of people

die each year due to inadequate treatment. Recent advances in ML and DL-based kidney disease

testing may bring hope to countries that cannot manage kidney disease testing.

Bemando et al. [10] investigated the relationship between blood-related diseases and their

features using Gaussian Naive Bayes, Bernoulli Naive Bayes, and Random Forest classifier

methods. These three algorithms anticipate and offer statistical findings in a variety of ways. In

this experiment, we discovered that Naive Bayes estimated accuracy was higher than other

algorithms.

Kumar and Polepaka [11] devised a technique for illness prediction in the medical field.

They employed Random Forest and CNN as well as other machine learning methods. These

algorithms deliver better results for illness dataset classification, precision, recall, and F1-score. In

this experiment, Random Forest outperformed different algorithms regarding accuracy and

statistical performance.

Singh et al. [12] developed a technique for predicting medical-related illness datasets. For

improved prediction, they utilized a support vector machine classifier. The accuracy ranged from

73 to 91 percent, and the author eventually improved accuracy to 91 percent [13]. Desai et al.

devised a technique for illness prediction in the medical field. The author employed back-

propagation NN and LR classification algorithms in this study. These two strategies provide

distinct outcomes, with statistical analysis and logistic regression yielding a more accurate model

than other algorithms.

Patil et al. [14] created a database for cardiovascular-related medical conditions. On a

disease dataset, the authors employed machine learning approaches such as a Support Vector

Machine and Cuckoo search optimized Neural Network, and the support vector machine estimated

94.44 percent improved accuracy. They observed the illness dataset for statistical analysis by Liu

et al. [15]. They estimated superior findings for specificity, sensitivity, and positive and negative

predictive values using machine learning approaches such as support vector machines. Acharya et

al. [16] reviewed the medical-linked illness dataset for better statistical analysis outcomes; they

employed several machine learning techniques, such as CNN, and applied machine learning

algorithms to the ECG dataset, achieving a classification accuracy of 94 percent.

Chapter 2: Literature Review

4

Wasle et al. [17] devised a statistical analysis technique to examine the chronic kidney

disease dataset; the authors employed a variety of machine-learning approaches. They used Naive

Bayes, Decision Trees, and Random Forest to improve prediction, and they discovered that

Random Forest computed greater classification accuracy than the other algorithms. Nithya et al.

[18] developed a categorization and cluster-based analysis method on the kidney disease dataset.

They calculated 99.61 percent classification accuracy using Artificial Neural Networks for Kidney

Disease Image Prediction.

Al Imran et al. [19] examined machine learning techniques to analyze datasets for chronic

renal disease. For statistical analysis such as F1-score, Precision, Recall, and AUC, the authors

employed Logistic Regression and Feedforward Neural Networks and generated better results than

previous algorithms. Navaneeth and Suchetha [20] devised a method for predicting chronic renal

disease using a dataset. They employed machine learning methods such as CNN and SVM. The

authors estimated greater accuracy, sensitivity, and specificity findings after the prediction.

Brunetti et al. [21] used a system or method for chronic kidney disease datasets. The

authors used the CNN machine learning technique and calculated 95% classification accuracy for

the disease dataset. Hodneland et al. [22] used image registration to detect renal morphologic

changes in CKD diagnosis. Vasquez-Morales et al. [23] established a classifier based on the neural

network using large-scale CKD data, and the model's accuracy on their test data was 95%. In

addition, most previous studies utilized the CKD data set obtained from the UCI machine learning

repository.

Chen et al. [24] used k-nearest neighbor (KNN), support vector machine (SVM), and soft

independent modeling of class analogy to diagnose CKD; KNN and SVM achieved the highest

accuracy of 99.7%. Aljaaf et al. [25] used a fuzzy rule-building expert system, fuzzy optimal

associative memory, and partial least squares discriminant analysis to diagnose CKD, and the

range of accuracy in those models was 95.5%-99.6%. Their studies have achieved good results in

the diagnosis of CKD.

Nishant et al. [26] used MLP, SVM, KNN, C4.5 decision tree, and random forest (RF) to

diagnose CKD, and the RF achieved an accuracy of 100%. In the models established by Boukenze

et al. [27], MLP achieved the highest accuracy of 99.75%. The studies focus mainly on setting

models and achieving an ideal result. However, a complete process of filling in the missing values

is not described in detail, and no feature selection technology is used to select predictors. Rady et

al. [28] used SVM and neural networks to diagnose CKD, and the accuracy of the models was

97.75% and 99.75%, respectively. In the models established by Gunarathne et al. [29], zero was

used to fill out the missing values, and the decision forest achieved the best performance with an

accuracy of 99.1%.

The mean imputation fills in the missing values in the above models and depends on the

samples' diagnostic categories. As a result, their method could only be used when the diagnostic

results of the samples are known. In reality, patients might miss some measurements for assorted

reasons before diagnosing. In addition, for missing values in categorical variables, data obtained

using mean imputation might have a significant deviation from the actual values. For example, for

variables with only two categories, we set the categories to 0 and 1, but the mean of the variables

might be between 0 and 1.

2.2 Ensemble Learning

Ensemble Learning is a Machine Learning technique that makes predictions by combining the

results of several machine learning models, also known as base learners. This approach can be

Chapter 2: Literature Review

5

advantageous when individual models are prone to overfitting or need help recognizing the

underlying data's complexity [30]. Although various strategies can combine machine learning

models, including simple ones such as Majority Voting and Averaging, the Bagging, Boosting, and

Stacking techniques are most commonly used in practice. Their popularity is due to their ease of

implementation and success on various predictive modeling problems.

Bagging

Bagging is so named because it combines Bootstrapping and Aggregation to form one ensemble

model. Given a collection of base learners and a dataset, the main idea consists of training each of

them using a slightly different dataset generated by taking a bootstrap sampling of the original

dataset, that is, by iteratively resampling with replacement of the dataset. The predictions of the

base learners are then aggregated to form a more efficient predictor. When dealing with a

classification problem, the base learner predictions are typically combined using plurality votes or

by averaging the estimated class probabilities. Because of the aggregation process, bagging

effectively reduces the variance of the individual base learners. Bagging works exceptionally well

for unstable, high-variance base learners' algorithms whose predicted output undergoes significant

changes in response to small changes in the training data [31]. A typical example of an ensemble

learner obtained through bagging is the random forest classifier discussed in section 2.2.3.

Boosting

Boosting is a supervised machine learning strategy combining multiple base model predictions to

generate a more efficient ensemble model. Unlike bagging, it focuses on successively training the

basic models in a way that emphasizes misclassified samples from prior iterations. The goal is to

prioritize samples incorrectly categorized in previous iterations, allowing the ensemble model to

learn from its mistakes and improve its overall performance. Typically, the training dataset is left

unchanged. Instead, the learning algorithm is modified to pay more attention to instances of the

training data misclassified incorrectly by previously added ensemble members.

The idea of combining many weak learners into a strong learner was theoretically

proposed, and many algorithms were unsuccessful. Only when the Adaptive Boosting (AdaBoost)

algorithm was developed was boosting demonstrated as an effective ensemble method [32].

Sections 2.2.4 and 2.2.5 present two machine learning prediction methods based on ensemble

learning boosting strategy: the Adaboost and Gradient Boosting algorithms.

Stacking

Stacking involves training multiple models and combining their outputs using another model

called the combiner or the second-level learner. The combiner model aggregates the predictions of

the ensemble components to produce a more accurate result. In principle, any machine learning

model can be the second-level learner. However, the rule of thumb is to generally let the model's

complexity reside at the base models' level and use simple models as combiners. Stacking can be

very effective when the base models are complementary in their strengths and weaknesses, as it

can help to capture a broader range of information from the underlying data. The main advantage

of stacking is that it can combine models with different types of architectures. This means it can

combine models using different features or based on different algorithms. The diversity of the

ensemble members is desirable since they are generally constructed in very different ways,

Chapter 2: Literature Review

6

ensuring that they make different assumptions and, therefore, have fewer correlated prediction

errors.

2.3 Machine Learning Classification Algorithms

This section discusses the fundamental machine learning algorithms that comprise the final model

in Chapter 3. The decision tree algorithm (DT) is used as the base learner for bagging and boosting

techniques, which reduce variance and improve accuracy—bagging forms the random forest (RF)

classifier while boosting forms both Adaboost and GB models. Two complementary models,

Support Vector Machine (SVM) and Artificial Neural Network (ANN), are included since they

are built based on strategies different from ensemble learning. These algorithms are combined

through stacking to improve the accuracy and performance of the model.

2.3.1 Decision Tree

Decision Tree is a classification technique based on the recursive partitioning of a dataset into

distinct segments. This method constructs a tree-like structure by evaluating attributes and their

values at each node, sequentially breaking down the dataset into smaller subsets [33]. The core

principle involves identifying the most significant feature that best separates the data, creating

branches that lead to subsequent nodes with refined criteria. This recursive process continues until

a defined stopping criterion is met, such as reaching a certain depth or achieving purity in the

subsets. Ultimately, the decision tree becomes a hierarchical flowchart where each internal node

represents a feature, and each leaf node signifies the final classification outcome Fig 2.1.

Figure 2.1 Decision Tree Flowchart [34]

Decision Trees offer an interpretable and understandable representation of decision-making

processes, providing insights into the most critical features influencing classification outcomes.

The algorithms work based on splits, which are determined by the following:

Entropy

In Machine Learning, entropy measures the level of disorder or uncertainty in each data set. It can

also be seen as quantifying the amount of information in the dataset [35]. Entropy is defined

mathematically for random distributions and can be extended for any dataset 𝑆 consisting of

𝑛 classes using the formula:

Chapter 2: Literature Review

7

𝐻(𝑆) = ∑ −𝑝𝑘𝑙𝑜𝑔2(𝑝𝑘)

𝑛

𝑘=1

(2.1)

Here, 𝑝𝑘 represents the probability of class k occurring within the data set, which is the proportion

of the data points that belong to a class 𝑘 to the total number of data points in 𝑆.

Information Gain

Information gain is the measure of reduction in entropy resulting from a dataset split based on a

specific attribute. We typically use it to determine the usefulness of a feature by partitioning the

dataset into more homogeneous subsets concerning the class labels or

target variable [36]. The higher the information gains, the more valuable the feature is in predicting

the class label or the target variable. Given a data set 𝑆 and an attribute 𝐴, the information gain of

𝐴 with respect to 𝑆 is defined as:

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑
|𝑆𝜐|

|𝑆|

𝜐∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)

𝐻(𝑆𝜐)
(2.2)

where 𝜐 represents the possible values taken by the feature 𝐴, |𝑆𝜐| is the number of instances in the

subset 𝑆 with the value υ for the attribute 𝐴.

The attribute with the least entropy should be used to find the optimal decision tree with the best

feature split. This can be obtained via information gain, which is the difference in entropy before

and after a split of an attribute.

Gini Impurity

An alternative way of splitting a decision tree is via the Gini Index. The Gini Index or Impurity

measures the probability of a random instance being misclassified when chosen randomly from a

data set. The Gini index is calculated using the formula given below.

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ 𝑝𝑗
2

𝑛

𝑗=1

(2.3)

Where 𝑝𝑗denotes the probability that a training instance belongs to a class, 𝑗, 𝑑, 𝑛 is the total

number of classes. The value of Gini impurity ranges from 0 𝑡𝑜 1. Zero refers to the pure node,

where all elements in the node belong to one single class, and 0.5 refers to the impure node, with

elements in the node belonging to multiple classes. The optimal split is the one having the lowest

Gini index. The simplicity of the decision tree method makes it a valuable tool for understanding

and developing predictive models that are widely used in machine learning and data analysis [37].

2.3.2 Random Forest

Random Forest is a supervised machine-learning algorithm introduced by Leo Breiman and Adele

Cutler in 2001 [38]. It is an ensemble learning-based classifier obtained by bagging a set of

decision trees built from the training data. Each decision tree forming a random forest is made

unique by using a distinct random subset of data obtained from the bootstrap sampling of the

original dataset, as illustrated in Figure 2.3. This results in a more accurate model than a single

decision tree. For prediction problems, the majority vote of the base learners in a random forest is

used to obtain the final prediction.

Chapter 2: Literature Review

8

Figure 2.2 An illustration of bootstrap sampling in Random Forest [38]

2.3.3 Support Vector Machines

Support Vector Machine (SVM) is a supervised learning method useful for regression and

classification. The original version of SVM was developed for linear separation of two classes

[39]. This early limitation was later overcome by allowing non-separable classes and non-linearly

separable classes. For binary classification in a d-dimensional space, the SVM,

technique constructs a hyperplane described by an equation of the form that correctly separates

two classes with a maximum margin, as illustrated in Figure 2.3.

Figure 2.3 Maximum margin separating hyperplane for SVM [39]

If the training data {(𝑥𝑖, 𝑦𝑖)} 𝑛
𝑖=1

 is linearly separable, the maximum margin can be defined by two

parallel hyperplanes that separate the two classes of data, so that the distance between them is as

large as possible. The maximum margin separating the hyperplane is the hyperplane that lies

halfway between them. The equation of this hyperplane is found using a quadratic optimization

procedure, and it is completely determined by the vectors 𝑥𝑖 that lie near the separation region.

These vectors are called support vectors. A soft separation margin can be obtained when the data

is not completely separable by a linear boundary, forcing the procedure to tolerate some

classification errors.

However, when the data requires a non-linear boundary separation in the original feature space,

the SVM algorithm addresses this limitation by mapping the data into higher-dimensional space

𝑓 (𝑥) = 𝑤𝑇 𝑥 + 𝑏 = 0 (2.4)

Chapter 2: Literature Review

9

where linear separation becomes possible. If we assume that 𝜓(𝑥) is the transformation that

achieves this objective, the quadratic optimization procedure to find the separation hyperplane in

the linear case applied in the new feature space will contain the quantities 𝜓(𝑥𝑖)
𝑇 𝜓(𝑥𝑗) for pairs

of feature vectors 𝑥𝑖 and 𝑥𝑗. Since it is generally impossible to find explicitly the transformation

𝜓(𝑥), [38] proposed the idea called the kernel trick which makes use of an appropriate kernel

function 𝑘(𝑥𝑖 , 𝑥𝑗) to replace the dot products 𝜓(𝑥𝑖)
𝑇 𝜓(𝑥𝑗) in the optimization procedure. Many

categories of kernel functions are used in practice, such as the homogeneous and non-

homogeneous polynomial, the radial-based, and the sigmoid. The selection of the kernel function

is related to the data distribution in the original feature space. In real-world problems, we examine

closely the properties of our data to select an appropriate kernel function, and we can also test

experimentally different kernels and select the one that provides the best performance.

2.3.4 ADA Boost Classifier Tree

We recall that boosting is a general strategy for learning classifiers by combining simpler ones. A

popular boosting algorithm is AdaBoost, which is short for adaptive boosting and was introduced

by Yoav Freund and Robert Schapire in 1995 [40]. It is so-called because it is adaptive in that

subsequent weak learners are chosen to compensate for the weaknesses of the previous classifiers

[41]. AdaBoost is straightforward to use and implement and generally gives very effective results

[42].

Figure 2.4 Example of ADA Boost classifier [42]

Assume we are given the training data {(𝑥1 , 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)}, where 𝑥𝑖 ∈ 𝑅𝑘 and

 𝑦𝑖 ∈ {−1, 1}. Suppose we are given a set of weak classifiers {𝑓
𝑚

}
𝑚=1

𝑀
 where 𝑓

𝑚
(𝑥) ∈

 {−1, 1}, and 0 − 1 loss function 𝐼, defined as:

The final classifier 𝑓 (𝑥) is a weighted average of all sequential models 𝑓𝑚 (𝑥):

𝐼(𝑓𝑚 (𝑥𝑖), 𝑦𝑖) = {
0 𝑖𝑓 𝑓𝑚 (𝑥𝑖) = 𝑦𝑖

1 𝑖𝑓 𝑓𝑚 (𝑥𝑖) ≠ 𝑦𝑖

(2.5)

𝑓 (𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚 𝑓
𝑚

(𝑥)

𝑀

𝑚=1

)

(2.6)

Chapter 2: Literature Review

10

where the model-weights 𝛼𝑚 are given by the misclassification rate ϵ𝑚 of the model 𝑓𝑚 . The

sign of 𝑓 (𝑥) identifies the predicted object class and the absolute value gives the confidence in

that classification.

ALGORITHM 1: THE CONSTRUCTION OF ADABOOST CLASSIFIER

1) Input: Data {(𝑥𝑖 , 𝑦𝑖): 1 ≤ 𝑖 ≤ 𝑁 } and the loss function 𝐼(𝑦, 𝑓 (𝑥))

2) For 𝑖 = 1 to 𝑁 , set w𝑖
(1)

 =
1

𝑛

3) Repeat for 𝑚 = 1 to 𝑀 :

 a) Fit the classifier 𝑓𝑚 (𝑥) using weights w𝑖
(𝑚)

 to minimize the objective function:

ϵ𝑚 = ∑ w𝑖

(𝑚)

𝑁

𝑖=1

 I (𝑦
𝑖

, 𝑓
𝑚

(𝑥𝑖))

(2.7)

 b) Compute the aggregation weight:

𝛼𝑚 = 𝑙𝑛 (
1 − ϵ𝑚

ϵ𝑚
)

(2.8)

 c) For 𝑖 = 1 to 𝑁 , update the weight:

w𝑖
(𝑚+1)

= w𝑖
(𝑚)

𝑒𝑥𝑝 (𝛼𝑚𝐼 (𝑦𝑖 , 𝑓𝑚
(𝑥𝑖)))

(2.9)

 d) Normalize the weights so as:

∑ w𝑖
(𝑚+1)

= 1

𝑁

𝑖=1

(2.10)

4) For 𝑖 = 1 to 𝑁 , output

𝑓(𝑥𝑖) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚𝑓
𝑚

(𝑥𝑖)

𝑀

𝑚=1

)

(2.11)

AdaBoost is a greedy algorithm that builds the strong classifier 𝑓(𝑥) incrementally by optimizing

the weights 𝛼𝑚 for each added weak classifier. Equation (2.8) is derived from the exponential loss

function used for classification problems in machine learning. This loss function is preferred in

Adaboost for its sensitivity to misclassifications and outliers. The quantities ϵ𝑚 represent

weighted measures of the error rates of each base classifier on the data set. The weighting

coefficients 𝛼𝑚 in Equation (2.9) give greater weight to the more accurate base classifiers added

to the sum. Equation (2.10) shows that the weighting coefficients w𝑖
𝑚 are increased for

misclassified data points.

Chapter 2: Literature Review

11

2.3.5 Gradient Boosting Classifier

The fundamental intuition behind gradient boosting is iteratively building a complex classification

or regression model by adding simple models [43]. Each new simple model added to the ensemble

compensates for the weaknesses of the current ensemble.

Figure 2.5 Gradient Boosting Flowchart [44]

More concretely, we take an ensemble of simple models {𝑓𝑘}𝑘∈𝐾 and additively combine them

into a single, more complex model:

 Each model 𝑓𝑘 might be a poor fit for the data, but a linear combination of the ensemble will

provide a better fit Consider the training data {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}. We can assume that the

predictor 𝑓𝑘 (𝑥) at stage 𝑘 incurs the loss 𝐿(𝑓𝑘 (𝑥), 𝑦), i.e., the difference between the actual and

the predicted variables:

At this point, we want to minimize the loss function 𝐿(𝑓𝑘 (𝑥), 𝑦) with respect to 𝑓𝑘 . We therefore

train a function ℎ𝑘 (𝑥) to approximate the negative gradient of 𝐿(𝑓𝑘 (𝑥), 𝑦) with respect to the

predictor 𝑓𝑘 , that is:

and obtain a new predictor 𝑓𝑘 + 1 by adding a multiple of ℎ𝑘 (𝑥) to predictor 𝑓𝑘 :

For instance, when the modified squared loss function:

𝐹 = ∑ 𝜆𝑘𝑓𝑘

𝑘

(2.12)

𝐿(𝑓𝑘 (𝑥), 𝑦) = ∑ 𝐿(𝑓𝑘 (𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

(2.13)

ℎ𝑘 (x) = −
𝜕𝐿(𝑓𝑘 (𝑥), 𝑦

𝜕𝑓𝑘 (𝑥)

(2.14)

𝑓𝑘 + 1(𝑥) = 𝑓𝑘 (𝑥) + 𝜆𝑘 ℎ𝑘 (𝑥) (2.15)

Chapter 2: Literature Review

12

is used in the case of the regression, each component of the gradient is given by:

which is the pseudo residual. We then train a base learner ℎ𝑘 (𝑥) with the pseudo residual dataset
{(𝑥1 , 𝑟1), . . . , (𝑥𝑁 , 𝑟𝑁)}, where the base learner can be any non-linear predictor, e.g., a small

decision tree, to update the predictor 𝑓𝑘 (𝑥) by adding a multiple of the base learner.

The overall algorithm that applies to both regression and classification with their respective loss

functions is as follows:

ALGORITHM 2: THE CONSTRUCTION OF GRADIENT BOOSTING CLASSIFIER

1) Input: Data {(𝑥𝑖 , 𝑦𝑖): 1 ≤ 𝑖 ≤ 𝑁 } and a loss function 𝐿(𝑦, 𝑓 (𝑥))

2) Initialize the predictor with a constant value 𝑓0 (𝑥):

𝑓0 (𝑥) = argmin
𝛾

∑ 𝐿

𝑛

𝑖=1

(𝑦𝑖 , 𝛾)

(2.18)

3) At step 𝑘 where the predictor is 𝑓𝑘 (𝑥), calculate the pseudo residuals:

𝑟𝑖 = −
𝜕𝐿(𝑓𝑘 (𝑥𝑖), 𝑦𝑖)

𝜕 𝑓𝑘 (𝑥𝑖)

(2.19)

4) Train a base learner ℎ𝑘 (𝑥) with the pseudo residual dataset

{(𝑥1 , 𝑟1), . . . , (𝑥𝑁 , 𝑟𝑁)}:

𝜆𝑘 = argmin
𝜆

∑ 𝐿(𝑓𝑘 (𝑥𝑖) + 𝜆 ℎ𝑘 (𝑥𝑖), 𝑦𝑖)

𝑖

(2.20)

5) Optimize Step lengths.

6) Update the predictor

 𝑓𝑘+1(𝑥) = 𝑓𝑘 (𝑥) + 𝜆𝑘 ℎ𝑘 (𝑥)

(2.21)

7) Redo steps 3 to 6 until a stopping condition is met.

Typically, steps 3 to 6 are iterated from 𝑘 = 1 to some prefixed value 𝐾 (for instance 𝐾 = 100)

since it is sometimes difficult to satisfy fixed stopping conditions such as residuals or updates in

the predictors being sufficiently small.

𝐿(𝑓
𝑘

(𝑥), 𝑦) = ∑
1

2

𝑁

𝑖=1

(𝑓
𝑘

(𝑥𝑖) − 𝑦𝑖)
2

(2.16)

ℎ𝑘 (𝑥𝑖) = −
𝜕 [

1
2

(𝑓𝑘 (𝑥𝑖) − 𝑦𝑖)
2]

𝜕𝑓𝑘 (𝑥𝑖)
= 𝑦𝑖 − 𝑓𝑘(𝑥𝑖) = 𝑟𝑖

(2.17)

Chapter 2: Literature Review

13

Gradient boosting stands out in predictive modeling due to several key attributes. Primarily, its

exceptional precision sets it apart, often outperforming other models in delivering accurate

predictions [45]. Additionally, this technique showcases remarkable efficiency, notably in training,

even with vast and intricate datasets, making it a preferred choice for handling data-intensive

projects [46]. Another distinct advantage lies in its robust support for managing categorical

features, an essential capability in real-world scenarios characterized by diverse datasets.

Furthermore, its competence in handling missing values within data adds to its appeal, addressing

a common challenge encountered in data analysis and predictive modeling [47].

2.3.6 Artificial Neural Networks (ANN Tree)

Artificial Neural Networks (ANN) are computational systems that consist of many simple

processors called neurons or perceptrons and are designed to work similarly to neurons in the

biological brain [48]. The human brain contains about 100 billion interconnected neurons that

process sensory information from the environment. Every single neuron processes the input’s

activities. If a particular action potential is reached, the neuron fires through its single output to all

the neurons to which it is connected.

Figure 2.6 An illustration of a biological and artificial neurons [49]

Each artificial neuron takes a vector of inputs 𝑥 and processes the inputs by taking their weighted

sum with a vector of weights 𝑤, adding a bias 𝑏, and then applying an activation function 𝑓. The

complete equation for the neuron’s output is written as:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑖

)
(2.22)

The activation function introduces non-linearity into the output of a neuron. This allows the neural

network to learn non-linear representations from the training data. The most used activation

functions are the sigmoid, the tangent hyperbolic (Tanh), and the rectified linear unit (ReLu).

The typical ANN architecture is the Feed-Forward neural network. Figure 2.6 shows an example

of a feed-forward neural network [49]. In this framework, the neurons are arranged in three layers:

an input layer, a few hidden layers in which all the processing is performed, and an output layer.

The flow of information takes place sequentially from the input layer to the hidden layers and

finally to the output layer, which computes the final output [50].

Chapter 2: Literature Review

14

Figure 2.7 An illustration of a neural network [49]

2.3.6.1 Learning Process and Back-propagation

The goal of the learning (or training) process is to find a set of parameters for the weights and the

bias that result in the best possible performance of the ANN for the problem at hand (classification

in our context). In supervised learning, the actual output 𝑦 of a particular input 𝑥 is given and can

be used to update the parameters 𝑤. The idea in this approach is to start with a random initialization

of the weights and calculate the output for a given input. The error between the generated output

and the actual output provided by a loss function is used to update the network weights using a

gradient descent algorithm to minimize the error. The technique is called back-propagation since

the weights are first corrected for the output layer and then propagated backward into the network

[51]. The cross-entropy loss function is commonly used for classification tasks.

Once the gradient 𝛻𝑤𝐿 of the loss function 𝐿 with respect to the weight vector 𝑤 is

evaluated, the gradient descent algorithm changes the weights in the negative direction of 𝛻𝑤𝐿 in

such a way that the loss approaches closer to the minimum in each iteration. A local minimum is

expected to be reached after several iterations [52]. Equation 2.23 shows the corresponding update

rule of gradient descent, where the learning rate parameter defines how quickly the minimum

should be approached. If the learning rate is too high, there is a risk that the minimum cannot be

reached because the steps taken are too big and will be overshot. If it is bigger, the learning will

take a long time to get the desired accuracy.

𝑤𝑘+1 = 𝑤𝑘 − 𝜂𝛻𝑤𝐿(𝑤𝑘) (2.23)

Neural networks can self-learn and produce output that is not limited by the input they receive.

They can store the information of an entire network. However, the model requires fine-tuning

several hyper-parameters to function efficiently, and inappropriate scaling of features might

negatively impact its performance. Overfitting is another widespread problem in neural networks,

where the model learns the details of training data so well that it fails to generalize to unseen data.

To overcome this problem, regularization and careful feature selection are performed. Similarly,

data splitting and cross-validation are used to train and test the base classifiers to avoid overfitting.

2.4 Random Forest Feature Importance (RF-FI)

Collecting data is an essential part of any analysis. However, it can lead to noise that may obscure

the patterns and essential information that the data contains. Fortunately, dimensionality reduction

is a powerful technique that can help identify and eliminate redundant features, thus reducing

noise. When it comes to creating classification rules, random forests use the importance of features

Chapter 2: Literature Review

15

to identify the significance score for each feature [55]. This score is calculated and used to

determine the feature's importance. By analyzing the Gini relevance value of a feature in a single

tree, we can calculate the overall importance of all the trees in the forest. With this information,

we can easily determine the significance of each feature using Gini importance in a random forest

model consisting of 100 decision trees [56]:

For each feature, 𝑗, calculate the total decrease in Gini impurity (TDI) at each node m of each

decision tree i using the following formula:

𝑇𝐷𝐼(𝑗, 𝑚, 𝑖) = 𝐴 · (𝐵 − 𝐶 · 𝐷 − 𝐸 · 𝐹) (2.24)

Where:

• 𝐴: Proportion of samples that reach node m of tree 𝑖 compared to the total number of samples 𝑛𝑖.

A =
𝑛𝑚,𝑖

𝑛𝑖
 (2.25)

•𝐵: Gini impurity score at node 𝑚 of tree 𝑖.
𝐵 = 𝐺𝑖𝑛𝑖(𝑚, 𝑖) (2.26)

• 𝐶: Proportion of samples that go to the left child node of node m of tree i compared to the

samples at node m.

• 𝐷: Gini impurity score at the left child node of node 𝑚 of tree 𝑖.

• 𝐸: Proportion of samples that go to the right child node of node m of tree i compared to the

samples at node m.

• 𝐹: Gini impurity score at the right child node of node m of tree i.

For each decision tree i, calculate the total decrease in Gini impurity over all the nodes where each

feature is used to split, as follows:

where the sum is taken over all nodes m where feature 𝑗 is used to split in tree 𝑖. For each feature

𝑗 and each decision tree 𝑖, calculate the importance of feature j in tree i as the ratio of its total

decrease in Gini impurity to the sum of the total decline in Gini impurity overall features, using

the following formula:

𝐶 =
𝑛𝑙𝑒𝑓𝑡,𝑚,𝑖

𝑛𝑚,𝑖
 (2.27)

𝐷 = 𝐺𝑖𝑛𝑖(𝑙𝑒𝑓𝑡, 𝑚, 𝑖)

(2.28)

𝐸 =
𝑛𝑟𝑖𝑔ℎ𝑡,𝑚,𝑖

𝑛𝑚,𝑖

(2.29)

𝐹 = 𝐺𝑖𝑛𝑖(𝑟𝑖𝑔ℎ𝑡, 𝑚, 𝑖) (2.30)

𝑇𝐷𝐼(𝑗, 𝑖) = ∑ 𝑇𝐷𝐼(𝑗, 𝑚, 𝑖)

𝑚

 (2.31)

Chapter 2: Literature Review

16

Average the feature importance scores overall decision trees to obtain the mean importance of each

feature, as follows:

Normalize the mean importance scores by dividing each score by the sum of all the mean

importance scores, using the following formula:

where 𝐹𝐼′(𝑗) is the normalized importance score for feature 𝑗. The Gini importance scores,

denoted as 𝐹𝐼′(𝑗), represent the resulting values for each feature. A higher score indicates a greater

significance of the feature. These scores are valuable in ranking the features and selecting the most

crucial ones for further analysis or model development. One of the notable contributions of this

thesis is the comprehensive feature selection process, which aims to identify the essential features

within the dataset. We utilized the Random Forest built-in Feature Importance (RF-FI) technique

to achieve this. By employing RF-FI, we generated a new feature set that contains fewer features

yet provides more informative insights. This approach effectively reduced dimensionality and

improved model execution time without compromising accuracy. To determine the most critical

features, we set a threshold for RF-FI, resulting in the selection of 7 features for each model. We

utilized the outcomes of this selection to create a new set of features. Subsequently, we retrained

our models using these feature sets and compared the results to identify the optimal features

regarding accuracy and execution time.

2.5 Iterative Imputer

Iterative imputation is a highly sophisticated data preprocessing technique that tackles missing

values in datasets. Unlike conventional methods that rely on simple statistics such as mean or

median values to fill in missing data, iterative imputation takes a more intricate approach. By

considering all features present in the dataset, it estimates missing values iteratively. This

technique creates a predictive model for each feature with missing data, based on the other

available features. The imputer begins by estimating missing values for one feature, using the

remaining features as predictors. This process continues iteratively across all the features until

convergence, refining its estimates with each iteration. By incorporating complex modeling

strategies such as regression, decision trees, or other machine learning algorithms, iterative

imputation captures intricate relationships between variables, enhancing the accuracy of the

imputed values. It adapts to the data structure and considers interdependencies between variables

to create more precise estimations for missing values. The iterative nature of this technique ensures

a more refined and nuanced approach to handling missing data, which contributes to improved

downstream analysis and modeling processes. The algorithm 3 explains the process for iterative

imputation in detail [57]:

𝐹𝐼(𝑗, 𝑖) =
𝑇𝐷𝐼(𝑗, 𝑖)

∑ 𝑇𝐷𝐼(𝑗′, 𝑚, 𝑖)𝑗′

(2.32)

𝐹𝐼(𝑗) =
1

100
∑ 𝐹𝐼(𝑗, 𝑖)

100

𝑖=1

(2.33)

𝐹𝐼′(𝑗) =
𝐹𝐼(𝑗)

∑ 𝐹𝐼(𝑗′)𝑗′

(2.34)

Chapter 2: Literature Review

17

ALGORITHM 3: ITERATIVE IMPUTER ALGORITHM FOR MISSING DATA IMPUTATION

1) Inputs:
 • X: incomplete dataset with missing values

 • Estimator: regression model used to estimate missing values

 • max-iter: maximum number of iterations

2) Outputs:

 • Xcomplete: Complete the dataset with imputed missing values.

 Steps:

 a) Initialize missing values in X using a simple imputation method (e.g., mean, or median).

 b) Repeat until convergence or maximum number of iterations:

 • For each feature i with missing values:

 - Define Xobs as the subset of X where feature i is observed.

 - Define Xmiss as the subset of X where feature i is missing.

 - Use an estimator to estimate missing values in Xmiss based on observed values in Xobs.

 - Replace missing values in Xmiss with the estimated values.

3) Return the completed dataset Xcomplete.

Chapter 3: Methodology

18

Chapter 3: Methodology

This research methodically details the approach used to predict chronic kidney disease (CKD) rates

employing Machine Learning algorithms. The methodology encompasses comprehensive stages,

including data collection, preprocessing, selection of Machine Learning algorithms, and putting

together an ensemble model that aggregates the predictions of the selected models.

3.1 Data Collection

The research was conducted using the CKD dataset [58]. The output column "class" has a value of

either "0" or "1". The value "0" indicates that the person is not a CKD patient, while the value "1"

shows that the person is a CKD patient. Figure 3.1 displays the total number of CKD and non-

CKD entries in the output column. The overall number of CKD data is 250, whereas the total

number of non-CKD data is 150.

Figure 3.1 Data distribution of Chronic Kidney Disease Dataset

Feature attributes for CKD dataset:

Attribute Meaning Category Scale

age Age Numerical Years

bp Blood pressure Numerical mm/Hg

sg Specific gravity Nominal 1.005 to 1.025

al Albumin Nominal 0 to 5

Chapter 3: Methodology

19

Attribute Meaning Category Scale

su Sugar Nominal 0 to 5

rbc Red blood cells Nominal Abnormal, Normal

pc Pus cell Nominal Abnormal, Normal

pcc Pus cell clumps Nominal Not present, Present

ba Bacteria Nominal Not present, Present

bgr Blood glucose random Numerical mgs/dl

bu Blood urea Numerical mgs/dl

sc Serum creatinine Numerical mgs/dl

sod Sodium Numerical mEq/L

pot Potassium Numerical mEq/L

hemo Hemoglobin Numerical gms

pcv Packed cell volume Numerical Pcv

wc White blood cell count Numerical cells/cumm

rc Red blood cell count Nominal millions/cmm

htn Hypertension Nominal No, Yes

dm Diabetes mellitus Nominal No, Yes

cad Coronary artery disease Nominal No, Yes

appet Appetite Nominal Poor, Good

pe Peda edema Nominal No, Yes

ane Anemia Nominal No, Yes

Classification Class Nominal Not CKD, CKD

Table 3.1 Data Description for Chronic Kidney Disease Dataset

3.2 Data Preprocessing

Data preprocessing was conducted to ensure the dataset's suitability for Machine Learning. The

following steps were performed:

1) Handling Missing Data: As explained in 2.3, we employed iterative imputer for imputing

missing data.

2) Outlier Detection: Our next step involved the identification of outliers. We created

visualizations, including Std plots for all dataset columns, to detect potential outliers.

Chapter 3: Methodology

20

3) Feature Scaling: To mitigate biases in our Machine Learning algorithms, we standardized

numerical features, ensuring they had a mean of zero and a variance of one.

4) Feature Selection: We plotted a correlation heatmap and employed the RF-FI algorithm

to select the best subset for predicting CKD.

5) One-Hot Encoding: Categorical variables underwent one-hot encoding to transform them

into a numerical format, facilitating processing by Machine Learning models.

6) Data Splitting: We partitioned the dataset into training and testing sets using random split,

facilitating practical model training and evaluation.

7) Cross-validation: In the final stage, we perform 10-fold cross-validation on CKD data to

evaluate the effectiveness of the machine learning proposed model.

3.3 Model Training and Evaluation

The selected Machine Learning algorithms are trained and evaluated using the following

methodology:

1) Training: Each algorithm was trained on the training dataset using default hyper-

parameters.

2) Hyper-parameter Tuning: Hyper-parameter tuning was performed using a grid search

technique to optimize the algorithms' performance.

3) Evaluation Metrics: To assess their predictive performance, the models were evaluated

using standard classification metrics such as accuracy, precision, recall, F1-score, and

ROC-AUC curve.

4) Visualization Integration: During the evaluation process, data visualization techniques

were employed to gain insights into model behavior, feature importance, and decision

boundaries.

3.4 Hyper-Parameter Tuning

Finding the optimal hyper-parameters for a given task can be difficult as the perfect settings cannot

be predetermined. To overcome this challenge, we tested various hyper-parameter combinations

on the training set and assessed the performance of each model. However, this method can result

in overfitting, where the model performs well on the training data but needs to be generalized to

new data. To address this, we employed cross-validation, a critical technique in hyper-parameter

tuning. We utilized K-fold cross-validation to divide the data into training and testing sets and split

the training set into K subsets or folds. The model was then trained iteratively K times, with each

iteration using K-1 of the folds and evaluating the remaining fold. The average performance of

each fold was used to determine the final validation metrics for the model. To prevent bias in

assessing the model's performance, we utilized stratified K-fold cross-validation, which is ideal

for classification problems [59]. Stratified K-fold ensures that each cross-validation fold has a

similar proportion of each class as the entire dataset. We evaluated various folds, including 3-, 4-,

5-, and 10-folds, using stratified sampling set to the output 'FLAG' variable and assessed different

hyper-parameters. We used grid search to identify the best parameter values based on each model's

context. Additionally, we applied various configurations to the k-fold cross-validation, including

3-, 4-, 5-, and 10-fold, using the same stratified parameter. The results of these evaluations are

presented in the results section and were primarily used to identify any potential overfitting or

underfitting issues in our models. Following these steps ensured that our dataset was appropriately

Chapter 3: Methodology

21

prepared for model training and testing, enabling our models to detect illicit accounts accurately

while minimizing false positives.

3.5 Data Visualization Techniques

Various techniques were applied during the evaluation phase to leverage the potential of data

visualization in improving the interpretability and transparency of machine learning models. These

visualization methods are designed to provide insights into the behavior of the models, the

importance of features, and the decision boundaries. The following data visualization techniques

were employed:

3.5.1 Confusion Matrices

Confusion matrices are used to visualize the performance of classification models. They provide

insights into the number of true positives, true negatives, false positives, and false negatives [60].

Visualizing these metrics helps us understand how well the model performs and where it may need

improvement. Figure 3.6 shows the confusion matrix. The confusion matrix rates the performance

of machine learning classification models. All models were evaluated using the confusion matrix.

The confusion matrix illustrates how often our models guess correctly and incorrectly. Poorly

predicted values received false positives and negatives, whereas correctly predicted values

received genuine positives and negatives. The model's accuracy, precision-recall trade-off, and

AUC were assessed after grouping all predicted values in the matrix.

Figure 3.2 Confusion Matrix [60]

3.5.2 ROC-AUC Curves

Receiver Operating Characteristic (ROC) curves and the Area Under the Curve (AUC) score are

valuable tools for visualizing the trade-off between actual positive rate and false positive rate [61].

These curves provide insights into the model's ability to distinguish between different classes,

especially in imbalanced datasets.

3.6 Proposed Model

Our model is based on machine learning and uses the advantages of strategies employed in the

ensemble learning framework. The main strategies of ensemble learning, which are bagging,

boosting, and stacking, as explained in section 2.1, have been incorporated into our model as

follows: we used a basic decision tree model as a base learner explained in subsection 2.2.1 and

Chapter 3: Methodology

22

applied bagging to build a random forest classifier. For boosting, we built two classifiers,

Adaboost, and Gradient-boosted trees classifiers. In addition, we included two complementary

models, Support Vector Machine (SVM) and Artificial Neural Network (ANN), based on strategies

different from ensemble learning. We trained and tested all three classifiers, along with SVM and

ANN, individually on the data using the basic data splitting procedure. Finally, we used a stacking

strategy to combine the five aforementioned classifiers using ensemble vote classifier based on the

majority rule voting and resampling strategy similar to the 10-fold cross-validation to train and

test each of the five ensemble components of the stacked model. We decided to include two

classifiers based on the boosting strategy in the stacked ensemble due to their good performance

in many prediction applications.

The resampling procedure used in our model can be described as follows:

• We split randomly the dataset into 10 equally sized folds.

• Then, we repeat the following for each of the 10 folds and each base model:

– we train the model on the 9 remaining folds

– test the model on the selected fold

This resampling strategy allows us to obtain a more accurate estimate of each base model’s

prediction performance since it ensures that the whole dataset is used for both training and testing.

The Ensemble Vote Classifier is a meta-classifier for combining similar or different

machine learning classifiers and aggregate their output into a final prediction using the majority or

plurality voting. In the general context, the final class label 𝑆(𝑥𝑖) output by the stacked model 𝑆

for a feature vector 𝑥𝑖 in the dataset is given by the mode of the distribution of the class labels as

where 𝑀𝑘(𝑥𝑖) stands for the class label assigned to 𝑥𝑖 by the base model 𝑀𝑘, and 𝐾 is the number

of the base models used in the stacking.

𝑆(𝑥𝑖) = 𝑚𝑜𝑑𝑒{𝑀1(𝑥𝑖), . . . , 𝑀𝐾(𝑥𝑖)},

(3.1)

Chapter 4: Experimentals

23

Chapter 4: Experimentals

In Chapter 4, we conducted experiments to predict CKD rates using various machine-learning

algorithms and visualization techniques. The aim was to evaluate their effectiveness and potential

benefits for decision-making.

4.1 Data Pre-Processing

1) Handling Missing Data: The heatmap in Figure 4.1 represents missing values, with

'yellow lines' indicating the absence of data.

Figure 4.1 Heatmap showing Missing values

We utilized iterative imputation to fill both numerical and categorical missing values, resulting in

more accurate data. The dark background in Fig 4.2 indicates the successful imputation of all

missing data points.

Figure 4.2 Heatmap after Missing value Imputation

Chapter 4: Experimentals

24

2) Outliers: We proceeded to check for outliers in our dataset by plotting the standard

deviation for all columns. Figure 4.3 displays a scatter plot showing the standard deviation

for all columns. This plot indicated outliers in the White Blood Cell (WBC) count. To

confirm this, we referred to Figure 4.4, which presents a box plot specifically for WBC.

Figure 4.3 Standard Deviation Plot for CKD Dataset

Figure 4.4 Box plot for WBC Count Confirming Outliers

For handling outliers, we used the Inter Quantile Range (IQR) [62], defining the upper and the

lower bound:

In the above formula, according to statistics, we used 1.5 times the IQR to define the upper and

lower bounds. This allows us to consider all data points within 2.7 standard deviations of the

Gaussian Distribution. Fig 4.5 shows the data frame after removing outliers.

𝒖𝒑𝒑𝒆𝒓 = 𝑸𝟑 + 𝟏. 𝟓 ∗ 𝑰𝑸𝑹

(4.1)

𝒍𝒐𝒘𝒆𝒓 = 𝑸𝟏 – 𝟏. 𝟓 ∗ 𝑰𝑸𝑹

(4.2)

Chapter 4: Experimentals

25

Figure 4.5 Box Plot for WBC Count after Handling Outliers

3) Feature Scaling: Using {MinMaxScaling}, we scaled and translated each feature individually

to be in the given range on the training set, e.g., between zero and one, as shown in Fig 4.6.

Figure 4.6 New Features showing Zero Mean and Unit Variance

4) Feature Selection:

Figure 4.7 Correlation Heatmap

➢ Feature-Class Correlation:

We also assessed the correlation between individual features and the target variable, the

'class' column. We considered features with higher absolute correlations with the 'class'

column to be more critical for our CKD prediction models. We observed that some features

Chapter 4: Experimentals

26

displayed notable correlations with the 'class' column, suggesting their potential

significance in distinguishing CKD patients from non-CKD cases.

➢ RF-FI score:

To streamline our feature selection process, we implemented a threshold for the RF-FI

score as explained in section 2.3. This allowed us to identify the top features based on their

essential scores while ensuring that the number of features remained manageable. Our

threshold value of 0.03 was chosen to include the top seven features, as we observed

significant discrepancies in accuracy beyond this value. This is depicted in Figure 4.8.

Figure 4.8 Important Features (RF-FI score)

5) One-Hot Encoding: One-hot encoding transforms categorical variables into numerical format.

Fig 4.9 displays the data frame pre-encoding, while Fig 4.10 displays the data frame post-

encoding.

Figure 4.9 Dataset before encoding

Figure 4.10 Dataset after encoding

6) Data Splitting: One of the techniques for splitting data is the random split method. This

approach randomly divides a dataset into two subsets: the training and test sets. Typically, an

80:20 ratio is used for training and testing, respectively. The randomness of this method helps

Chapter 4: Experimentals

27

mitigate any potential bias in the data. Figure 4.11 below visually represents the random split

method for data.

Figure 4.11 Train and Test Dataset

7) Cross-Validation: Figure 4.12 shows the plot for cross-validation of our dataset. Since our

dataset is small, we ran cross-validation to assess its reliability.

Figure 4.12 Barh plot showing cross-validation scores

4.2 Evaluation Metrics

The predictive performance of the Machine Learning models was assessed using the following

evaluation metrics [63]:

1) Accuracy: Measures the overall correctness of predictions.

2) Precision: Evaluate the positive predictive value.

3) Recall: Measures the ability to identify actual positive cases.

4) F1-Score: Balances precision and recall.

5) ROC-AUC Curve/Score: Assesses the model's ability to distinguish between CKD and

non-CKD cases.

𝐴𝑐 =
𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁

(4.3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃

(4.4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(4.5)

𝐹 1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4.6)

Chapter 4: Experimentals

28

Here, Ac refers to accuracy. TP, FP, FN, and TN represent true positive, false positive, false

negative, and true negative.

4.3 Exploratory Data Analysis (EDA)

Using data visualization techniques, we conducted experiments to explore our model's behavior,

feature importance, and decision boundaries. We used facet grids and violin plots to uncover trends

and patterns in the dataset, focusing on the columns relevant to disease prediction. We created a

Python function to generate Facet Grid plots for Kernel Density Estimation (KDE) to visualize the

columns and segregate data into CKD and non-CKD cases. This approach allowed us to scrutinize

how CKD and non-CKD classes exhibited different distributions within the columns. We also

created another Python function to generate violin plots for the specified column to analyze the

volume. Each violin plot features a central box plot that provides valuable statistical insights. The

surrounding area displays density estimation, further motivating our decision to proceed with our

machine-learning algorithms. We limited our EDA figures to focus solely on the columns pertinent

to disease prediction, including red blood cell count, white blood cell count, packed cell volume,

hemoglobin, albumin, serum creatinine, and specific gravity. These visualizations, accompanied

by our observations, gave us a more profound understanding of the dataset and its potential for our

predictive modeling tasks. Lastly, all the plots show that 0 indicates patients with non-CKD, and

1 indicates patients with CKD.

4.3.1 Red blood cell count

A high red blood count refers to the number of cells produced in the bone marrow and found in

the blood. The primary function of red blood cells is to transport oxygen from the lungs

to other parts of the body. Conditions that limit oxygen can increase the number of red blood cells.

Other conditions may cause the body to produce more red blood cells than it needs [64].

The definition of high blood pressure varies between laboratories. The normal range for adults is

4.35 to 5.65 million red blood cells per microliter (mcL) of blood in men and 3.92 to 5.13 million

red blood cells per microliter (mcL) of blood in women.

Figure 4.13 Violin Plot for Red Blood Cell Count

Chapter 4: Experimentals

29

Figure 4.14 Facet grid plot for Red Blood Cell Count

Observations:

• The Facet Grid shows variations in Red Blood Cell (RBC) counts across different

categorical variables, i.e., 0 and 1.

• The violin plot for non-CKD class (0) shows tremendous variation across the graph;

incidentally, CKD (1) varies in a fixed range for most and has a higher density.

4.3.2 White blood cell count
Leukocytosis, or elevated white blood cells, can indicate many conditions, including infection,

inflammation, injury, and immune system disorders [65]. A complete blood count (CBC) is usually

performed to check for leukocytosis. The following treatments often reduce the number of white

blood cells. Figures 4.15 and 4.16 show the WBC density and KDE calculated for our data.

Figure 4.15 Violin plot for White blood cell count

Figure 4.16 Facet grid plot for White Blood Cell Count

Chapter 4: Experimentals

30

Observations:

• The Facet Grid exhibits the distribution of White Blood Cell (WBC) counts across distinct

categorical variables, denoted as 0 and 1.

• The violin plot for the non-chronic kidney disease (CKD) class (0) displays significant

variability throughout the graph. At the same time, the variation for CKD (1) remains

within a consistent range for most data points, exhibiting higher density.

4.3.3 Haemoglobin

Hemoglobin (Hb) is a protein found in red blood cells that carries oxygen throughout the body and

delivers red blood cells. Both levels vary from person to person. Levels are higher in men than in

women. When donating blood, a hemoglobin "cut-off" level is set to ensure your hemoglobin does

not fall below normal after donation. The average amount of heme varies between races, men, and

women and is also affected by age, especially women. People with hemoglobin levels below

normal are anemic. Diabetes has many causes and is thought to be caused by iron deficiency. [67]

Figure 4.17 Violin plot for Haemoglobin

Figure 4.18 Facet Grid Plot for Haemoglobin

Observations:

• The Facet Grid for hemoglobin highlighted variations in hemoglobin levels across

categories, i.e., non-ckd (0) and ckd (1).

• The Violin Plot for hemoglobin indicated the concentration and distribution of hemoglobin

values, offering insights into any potential clustering or outliers.

Chapter 4: Experimentals

31

4.3.4 Packed cell volume

Packed Cell Volume (PCV) testing is used to diagnose diabetes or polycythemia in patients.

Complete blood tests are usually done to evaluate the need for blood transfusions and to monitor

response to blood therapy [66]. Blood is a mixture of blood and cells. The PCV test measures the

number of blood cells in the blood. If the PCV result shows a reading of 50%, 50 ml of cells are

present in 100 ml of blood. If the number of RBCs (red blood cells) increases, the total PCV value

will also increase. This number also increases due to dehydration.

Figure 4.19 Violin plot for Packed Cell Volume

Figure 4.20 Facet Grid plot for Packed Cell Volume

Observations:

• The Facet Grid analysis illustrates the diverse Packed Cell Volume (PCV) levels

concerning various categorical factors. It is a crucial tool to discern any substantial

disparities in PCV across distinct categories, i.e., non-ckd(0) and ckd(1).

• Moreover, the Violin Plot visualization for PCV effectively portrays the distribution pattern

of PCV values, highlighting potential asymmetry or the presence of multiple modes within

the distribution, thus offering valuable insights into the data's distribution characteristics.

4.3.5 Albumin

The albumin test checks your liver and kidney function. Albumin is a protein found in plasma.

Low albumin levels can be caused by kidney disease, liver disease, inflammation, or infection.

High albumin levels are often caused by dehydration or severe diarrhea [68]. The albumin blood

test measures the amount of albumin in the blood. Albumin is a protein found in plasma. Your

liver produces albumin. Albumin protects fluid from the blood. It also helps vitamins, enzymes,

Chapter 4: Experimentals

32

hormones, and other substances in the body. If your doctor suspects your liver or kidneys are

malfunctioning, they may order an albumin test.

Figure 4.21 Violin Plot for Albumin

Figure 4.22 Facet Grid Plot for Albumin

Observations:

• Higher albumin levels indicate dehydration, which will drastically affect kidney function.

• As you can see in the plot, the albumin levels are higher in CKD than in non-CKD persons.

• The Facet Grid and Violin Plot for albumin helped us to identify variations in albumin

levels across varied factors. This is crucial for understanding the distribution of this

important biomarker.

4.3.6 Serum Creatinine

The creatinine test measures the kidney's ability to filter waste products from the blood. Creatinine

is a byproduct of the energy production process in muscles. Healthy kidneys filter creatinine from

the blood. Creatinine is eliminated as a waste product in the urine [69]. Measuring creatinine in

your blood or urine can provide clues to help your doctor determine how well your kidneys are

working. Low creatinine levels may also indicate that a person has chronic kidney disease,

decreased kidney function, or malnutrition. You can find more information about low creatinine

levels here. High creatinine levels can also indicate kidney problems such as infection or failure.

Chapter 4: Experimentals

33

Figure 4.23 Violin plot for Serum Creatinine

Figure 4.24 Facet Grid plot for Serum Creatinine

Observations:

• In the Violin plot, the KDE for Serum Creatinine is lower in Class 1 than in Class 0 due to

the disease.

• The facet grid confirms this. As you can see, the serum levels for Class 1 vary between a

fixed range and vice-versa.

• The Facet Grid and Violin Plot for serum creatinine revealed variations in serum creatinine

levels across categories. It was valuable for detecting potential patterns.

4.3.7 Specific Gravity

Elevated specific gravity (SG) can indicate various conditions, including dehydration, kidney

problems, and certain medical conditions [70]. A urinalysis is typically performed to check for

abnormal specific gravity. Figures 4.25 and 4.26 show the SG density and KDE calculated for our

data.

Figure 4.25 Violin plot for Specific Gravity

Chapter 4: Experimentals

34

Figure 4.26 Facet grid plot for Specific Gravity

Observations:

• The Facet Grid for Specific Gravity (SG) revealed variations across various categories,

highlighting how specific gravity levels differ between groups.

• The Violin Plot for Specific Gravity (SG) revealed exciting patterns, such as variations in

specific gravity levels within subgroups.

4.4 Training our component models before feature selection:

After performing exploratory data analysis (EDA), we employed five supervised classification

machine learning algorithms: Support Vector Machine (SVM), Random Forest Bagging (RF

Bagging), Gradient Boosting (GB), ADA Boost, and Artificial Neural Networks (ANN). By

leveraging an ensemble learning technique, we stacked the models and subjected them to max

voting to amalgamate their predictions. Moreover, we used a 10-fold cross-validation strategy to

ensure a robust evaluation during the training and assessment phases. Our approach is designed to

provide accurate and reliable predictions, and we are confident that our methodology has yielded

results that can be trusted.

Support Vector Machine (SVM)

Figure 4.27 depicts the accuracy and classification report of Hunt’s Decision Tree classifier before

feature selection. Notably, the accuracy achieved in this case is 64 percent.

Figure 4.27 Classification report for SVM

Moreover, examining the overall F1 score shows accuracy at 50 percent. Drilling into the specifics,

individual F1 scores reveal 78 percent for non-chronic kidney disease (CKD) and 0 percent for

CKD cases. These statistics highlight the classifier's proficiency in distinguishing between the two

categories with a slight difference in the F1 scores. For a more detailed insight into the model's

Chapter 4: Experimentals

35

performance, Figure 4.28 presents the confusion matrix, which illustrates the model's predictions

and their alignment with actual outcomes.

Figure 4.28 Confusion Matrix for SVM

Random Forest Bagging

In Figure 4.29, we delve into the accuracy and classification report of the Random Forest Bagging

classifier. Notably, the classifier attains a commendable accuracy of 95 percent, demonstrating its

effectiveness in distinguishing between the classes.

Figure 4.29 Classification Report for Random Forest Bagging

Furthermore, when examining the average F1 score, it aligns harmoniously with the accuracy at

95 percent. Drilling into the specifics, individual F1 scores, with 96 percent for non-chronic kidney

disease (CKD) and 93 percent for CKD cases, underscore the classifier's precision in categorizing

the data, with an excellent differentiation between the two classes. Figure 4.30 presents the

confusion matrix; this matrix illustrates the model's predictions and their alignment with actual

outcomes.

Figure 4.30 Confusion Matrix for Random Forest Bagging

Chapter 4: Experimentals

36

Gradient Boosting

In Figure 4.31, we delve into the accuracy and classification report of the Gradient Boosting

classifier. Notably, the classifier attains a commendable accuracy of 95 percent, demonstrating its

effectiveness in distinguishing between the classes.

Figure 4.31 Classification Report for Gradient Boosting

Furthermore, when examining the average F1 score, it aligns harmoniously with the accuracy at

95 percent. Drilling into the specifics, individual F1 scores shine, with an impressive 96 percent

for non-chronic kidney disease (CKD) and 93 percent for CKD cases. These results underscore the

classifier's precision in categorizing the data, with an excellent differentiation between the two

classes. For an even deeper understanding of the model's performance, Figure 4.32 presents the

confusion matrix. This matrix offers a detailed view of the model's predictions and their alignment

with actual outcomes.

Figure 4.32 Confusion Matrix for Gradient Boosting

ADA Boost

In Figure 4.33, we present the results for the AdaBoost classifier, providing insights into its

accuracy and classification report. The classifier demonstrates a solid performance with an

accuracy rate of 97.5 percent, indicating its ability to classify the data effectively.

Figure 4.33 Classification Report for ADA Boost

Chapter 4: Experimentals

37

Looking closely at the metrics, the average F1 score mirrors the overall accuracy at 98 percent,

reaffirming the classifier's reliability in distinguishing between classes. When examining

individual F1 scores, we observe commendable results, with a 98 percent score for non-chronic

kidney disease (CKD) and a 97 percent score for CKD cases. These scores underscore the

classifier's proficiency in classifying the data, emphasizing precision and recall. To gain a more

comprehensive view of the model's performance, Figure 4.34 displays the confusion matrix, which

presents a detailed summary of the model's predictions compared to the actual outcomes.

Figure 4.34 Confusion Matrix for ADA Boost

Artificial Neural Network (ANN)

In Figure 4.35, we present the results for the ANN classifier, providing insights into its accuracy

and classification report. The classifier performs with an accuracy rate of 38.4 percent, indicating

its ability to classify the data poorly.

Figure 4.35 Classification report for ANN

Looking closely at the metrics, the average F1 score is 36 percent, reaffirming the classifier's

reliability in distinguishing between classes. When examining individual F1 scores, we observe

commendable results, with a 55 percent score for non-chronic kidney disease (CKD) and a 62

percent score for CKD cases. These scores underscore the classifier's inferior performance in

classifying the data, emphasizing precision and recall. To gain a more comprehensive view of the

model's performance, Figure 4.36 displays the confusion matrix, which presents a detailed

summary of the model's predictions compared to the actual outcomes.

Chapter 4: Experimentals

38

Figure 4.36 Confusion Matrix for ANN

4.5 Training our component models after Feature Selection

As part of our contribution to this thesis project, we developed one new set of features using the

RF-F1 selection technique, as explained in section 2.2. We then used these new sets to retrain our

models and analyze the results.

Support Vector Machine (SVM)

Figure 4.37 depicts the accuracy and classification report of the SVM classifier after feature

selection. Notably, the accuracy achieved in this case is 94 percent, a notable accomplishment.

Figure 4.37 Classification Report for SVM

Drilling into the specifics, individual F1 scores reveal a remarkable 95 percent for non-chronic

kidney disease (CKD) and 92 percent for CKD cases. These statistics highlight the classifier's

proficiency in distinguishing between the two categories with a slight difference in the F1 scores.

For a more detailed insight into the model's performance, Figure 4.38 presents the confusion

matrix. This matrix illustrates the model's predictions and their alignment with actual outcomes.

Figure 4.38 Confusion Matrix for SVM

Chapter 4: Experimentals

39

Random Forest Bagging

In Figure 4.39, we delve into the accuracy and classification report of the Gradient Boosting

classifier after feature selection. Notably, the classifier attains a commendable accuracy of 98.5

percent, demonstrating its effectiveness in distinguishing between the classes.

Figure 4.39 Classification Report for Random Forest Bagging

Furthermore, when examining the average F1 score, it aligns harmoniously with the accuracy at

99 percent. Drilling into the specifics, individual F1 scores shine, with an impressive 99 percent

for non-chronic kidney disease (CKD) and 98 percent for CKD cases. These results underscore the

classifier's precision in categorizing the data, with an excellent differentiation between the two

classes. For a more detailed insight into the model's performance, Figure 4.40 presents the

confusion matrix. This matrix illustrates the model's predictions and their alignment with actual

outcomes.

Figure 4.40 Confusion Matrix for Random Forest Bagging

Gradient Boosting

In Figure 4.41, we delve into the accuracy and classification report of the Gradient Boosting

classifier after feature selection with our new subset. Notably, the classifier attains a commendable

accuracy of 95 percent, demonstrating its effectiveness in distinguishing between the classes.

Figure 4.41 Classification Report for Gradient Boosting

Chapter 4: Experimentals

40

The above classification report shows the performance after using hyperparameters to tune the

algorithm. Furthermore, when examining the average F1 score, it aligns harmoniously with the

accuracy at 95 percent. Drilling into the specifics, individual F1 scores shine, with an impressive

96 percent for non-chronic kidney disease (CKD) and 93 percent for CKD cases. These results

underscore the classifier's precision in categorizing the data, with an excellent differentiation

between the two classes. For an even deeper understanding of the model's performance, Figure

4.42 presents the confusion matrix. This matrix offers a detailed view of the model's predictions

and their alignment with actual outcomes.

Figure 4.42 Confusion Matrix for Gradient Boosting

ADA Boost

In Figure 4.43, we present the results for the AdaBoost classifier, providing insights into its

accuracy and classification report. The classifier demonstrates a solid performance with an

accuracy rate of 97.5 percent, indicating its ability to classify the data effectively.

Figure 4.43 Classification Report for ADA Boost

Looking closely at the metrics, the average F1 score mirrors the overall accuracy at 98 percent,

reaffirming the classifier's reliability in distinguishing between classes. When examining

individual F1 scores, we observe results, with a 98 percent score for non-chronic kidney disease

(CKD) and a 97 percent score for CKD cases. These scores underscore the classifier's proficiency

in classifying the data, emphasizing precision and recall. To gain a more comprehensive view of

the model's performance, Figure 4.44 displays the confusion matrix, which presents a detailed

summary of the model's predictions compared to the actual outcomes.

Chapter 4: Experimentals

41

Figure 4.44 Confusion Matrix for ADA boost

Artificial Neural Network (ANN)

In Figure 4.45, we present the results for the ANN classifier, providing insights into its accuracy

and classification report. The classifier performs with an accuracy rate of 81 percent, indicating its

ability to classify the data poorly.

Figure 4.45 Classification Report for ANN

Looking closely at the metrics, the average F1 score is 50 percent, reaffirming the classifier's

reliability in distinguishing between classes. When examining individual F1 scores, we observe

commendable results, with a 78 percent score for non-chronic kidney disease (CKD) and a 0

percent score for CKD cases. These scores underscore the classifier's inferior performance in

classifying the data, emphasizing precision and recall. To gain a more comprehensive view of the

model's performance, Figure 4.46 displays the confusion matrix, which presents a detailed

summary of the model's predictions compared to the actual outcomes.

Figure 4.46 Confusion Matrix for ANN

Chapter 4: Experimentals

42

4.6 Comparing component models

After running algorithms, we compared all the models concerning their accuracy, precision, recall,

F1 score, and ROC-AUC curve. Fig 4.47 shows a bar graph comparing the accuracies of our

proposed models before feature selection, followed by Fig 4.48, which illustrates model accuracies

after feature selection.

Figure 4.47 Bar Graph Comparing our Models before Feature Selection

Figure 4.48 Bar Graph Comparing our Models after Feature Selection

Figure 4.49 ROC-AUC Curve Before Feature Selection

Chapter 4: Experimentals

43

Figure 4.50 ROC-AUC Curve after Feature Selection

The ROC-AUC curves depicted in Figures 4.49 and 4.50 are a testament to the outstanding

performance of our ensemble machine-learning models in predicting chronic kidney disease

(CKD) rates, both before and after feature selection.

Classifiers Test

accuracy

Confusion

matrix

Precision Recall F1-score

SVM 0.64 128 0

 72 0

0.41 0.64 0.50

Bagging

(Random Forest)

0.95 123 5

5 67

0.95 0.95 0.95

Gradient Boosting 0.95 122 6

1 71

0.95 0.95 0.95

ADA Boost 0.97 119 9

0 72

0.98 0.97 0.98

ANN 0.38 121 7

66 6

0.34 0.39 0.36

Table 4.1 Evaluation Table Before Feature Selection

Classifiers Test

accuracy

Confusion

matrix

Precision Recall F1-score

SVM 0.94 120 8

 0 72

0.95 0.94 0.94

Bagging

(Random Forest)

0.98 125 3

0 72

0.99 0.98 0.99

Gradient Boosting 0.95 126 2

0 72

0.95 0.95 0.95

ADA Boost 0.97 123 5

0 72

0.97 0.98 0.97

ANN 0.72 92 36

1 71

0.77 0.72 0.73

Table 4.2 Evaluation Table after feature selection

Chapter 4: Experimentals

44

Our framework's classifiers were rigorously analyzed in-depth, and the results are highly

impressive, as outlined in Tables 4.1 and 4.2. We evaluated five classifiers, including Support

Vector Machine, RF Bagging, Gradient Boosting, ADA Boost, and ANN, and their performance

was outstanding. Gradient Boosting and RF Bagging stood out as exceptional performers,

achieving the highest accuracies at 99.5% and 98%, respectively.

4.7 Stacking Component Models and using Ensemble Classification Voting

After synthesizing our component models, we used ensemble technique stacking to stack all the

component models and then employed max voting to get our final and proposed model.

Figure 4.51 Classification report for Stacked Model

Figure 4.52 Confusion Matrix for Stacked Model

Figure 4.53 ROC-AUC curve for Stacked Model

Our ensemble comprised three powerful models: Random Forest (RF), ADA Boost, and Gradient

Boosting (GB), complemented by the Support Vector Machine (SVM) and Artificial Neural

Network (ANN). Each model demonstrated its unique strengths in discerning CKD rates, but when

Chapter 4: Experimentals

45

it came to the top performer, our proposed stacked model was the clear winner with the highest

AUC score, showcasing its exceptional ability to discriminate between positive and negative CKD

cases. Furthermore, we observed that Random Forest Bagging (RF Bagging) demonstrated robust

predictive power, while ADA Boost delivered competitive performance with slightly lower AUC

scores. Our ensemble strategy, which involved stacking and subsequent max voting, resulted in

the most optimal classification model. We want to emphasize that while each model was

significant, the ensemble approach, as outlined in the abstract, emphasized the collective strength

of diverse algorithms in improving CKD predictive models.

4.8 Using the same framework with the Cardiovascular Dataset

After rigorously developing and testing our models on the CKD dataset, we applied the same

framework to analyze the cardiovascular dataset obtained from Kaggle [71]. The count for each

column in our Cardiovascular dataset, as depicted in Fig 4.54, provides valuable insights into the

distribution of information in the dataset. This information enables us to make decisions for data

analysis, ensuring that we derive the most meaningful and accurate results.

Figure 4.54 Dataset for Cardiovascular Diseases

The dataset description is presented comprehensively through the aid of Table 4.3.

Feature Description

Column

Name Data Type

Age Objective Feature: Age in days age Integer (days)

Height Objective Feature: Height in cm height Integer (cm)

Weight Objective Feature: Weight in kg weight Float (kg)

Gender Objective Feature: Gender gender Categorical Code

Chapter 4: Experimentals

46

Feature Description

Column

Name Data Type

Systolic blood pressure

Examination Feature: Systolic

blood pressure ap_hi Integer

Diastolic blood pressure

Examination Feature: Diastolic

blood pressure ap_lo Integer

Cholesterol

Examination Feature: Cholesterol

levels cholesterol

1: Normal, 2: Above

Normal, 3: Well

Above Normal

Glucose

Examination Feature: Glucose

levels gluc

1: Normal, 2: Above

Normal, 3: Well

Above Normal

Smoking Subjective Feature: Smoking smoke Binary

Alcohol intake Subjective Feature: Alcohol intake alco Binary

Physical activity

Subjective Feature: Physical

activity active Binary

Presence or absence of

cardiovascular disease

Target Variable: Cardiovascular

disease cardio Binary

Table 4.3 Data Description for Cardiovascular Dataset

As a result of our data preprocessing steps, we eliminated all missing values from the dataset, as

shown in Figure 4.55.

Figure 4.55 Heatmap Showing Zero Missing Values Cardiovascular Dataset

Chapter 4: Experimentals

47

After handling missing values, we strategically partitioned our dataset into a training and test set

with an optimal 80-20 ratio. This approach ensures that our model is trained on a comprehensive

and diverse dataset while being tested on an independent data set, allowing for reliable and accurate

predictions.

Figure 4.56 Data Splitting for Cardiovascular Dataset

After that, we utilized the RF-FI score to identify the crucial features:

Figure 4.57 Important Features (RF-FI score)

Once the features were selected, we ran the dataset to obtain component models. The results have

been analyzed and compared below, providing valuable insights into the performance of our

models.

Figure 4.58 Comparing Model Accuracies for Cardiovascular Dataset

Chapter 4: Experimentals

48

Figure 4.59 ROC-AUC Curve for Cardiovascular Dataset

Classifiers Test

accuracy

Confusion

matrix

Precision Recall F1-score

SVM 0.60 1902 1083

1146 1869

0.63 0.63 0.63

Bagging

(Random Forest)

0.72 2216 769

903 2212

0.73 0.72 0.72

Gradient

Boosting

0.73 2280 705

886 2129

0.73 0.73 0.73

ADA Boost 0.72 2361 624

1028 1987

0.72 0.72 0.72

ANN 0.62 2475 510

1235 1780

0.72 0.71 0.71

Table 4.4 Results after Feature Selection

After collecting all the component models, we utilized a technique called stacking. This ensemble

learning technique enabled us to stack all the models on top of each other. This approach confirmed

the reliability of our proposed model, providing us with the highest accuracy. Combining these

techniques allowed us to create a robust and reliable model for our intended purpose.

Figure 4.60 Confusion Matrix for Stacked Model

Chapter 4: Experimentals

49

Figure 4.61 ROC-AUC Curve for Stacked Model

Our findings reveal that the stacked model, upon employing ensemble learning technique max

voting, has demonstrated exceptional capabilities in effectively analyzing the dataset for chronic

kidney disease prediction. With an accuracy rate of 73%, our proposed model has outperformed

all other classifiers and is in line with previous works on this subject using the exact dataset we

used[71]. The confusion matrix reflected only 639 erroneous predictions out of 12,500 training

samples, reaffirming the robustness of our approach. Leveraging precision, recall, and F1 scores

further bolstered our stacked model's standout performance, aligning seamlessly with the

methodologies detailed in our abstract. This comprehensive evaluation underscores the superiority

of our proposed model, emphasizing its significant contribution to advancements in disease

prediction models and its pivotal role in accurately predicting chronic kidney disease rates.

Chapter 5: Conclusion and Future Directions

50

Chapter 5: Conclusion and Future Directions

Our research aimed to develop an early chronic kidney disease (CKD) detection method using

ensemble learning techniques. We employed stacking and max voting to combine multiple

machine learning algorithms, which enabled us to achieve high accuracy in swiftly identifying

CKD cases. To verify the efficacy of our approach, we conducted experiments on two separate

datasets, namely a small Chronic Kidney Disease (CKD) dataset and an extensive Cardiovascular

dataset. The results obtained from these experiments provided compelling evidence to support the

effectiveness and resilience of our methodology.

Our study also highlighted the importance of the partnership between machine learning

and data visualization, providing healthcare professionals with insights into CKD risk factors,

patient stratification, and model behavior. We can democratize advanced diagnostics by leveraging

this combined approach, especially in resource-limited regions. Accurately predicting CKD is

crucial as it enables healthcare professionals to intervene proactively, providing timely and

targeted care. Our goal is to bridge global healthcare disparities and revolutionize the landscape of

CKD prediction for the better.

5.1 Future Research

Many promising avenues exist to explore in predicting chronic kidney disease (CKD). One area

of focus is the development of transparent machine learning models using SHAP values to gain

clear insights into predictive mechanisms. Integrating these models into clinical practice could

create user-friendly interfaces prioritizing ethical considerations. Advanced feature engineering

techniques can strengthen CKD prediction models by uncovering or refining new features.

Analyzing longitudinal patient data could deepen our understanding of disease progression and the

effectiveness of interventions over time. Exploring ensemble models could increase predictive

accuracy while empowering CKD patients with understandable health insights could significantly

enhance self-management. Tailoring these models for resource-limited healthcare settings is

crucial, ensuring adaptability even in areas with minimal resources. Ethical considerations such as

privacy, bias, and fairness must be at the forefront of these advancements. Additionally, extending

CKD prediction models to forecast related health conditions could offer a more integrated

approach to healthcare. Validating these models across diverse datasets is crucial to assessing their

applicability and robustness. Incorporating more data and using multiple models to compare

techniques could improve performance. As the healthcare and machine learning fields continue to

evolve, there are many opportunities for focused and impactful research.

References

51

References

1. National Kidney Foundation. (2021). Chronic Kidney Disease: Early Detection and

Prevention. https://www.kidney.org/atoz/content/about-chronic-kidney-disease

2. National Institute of Diabetes and Digestive and Kidney Diseases. (2021). Treatment

Methods for Kidney Failure: Hemodialysis, Peritoneal Dialysis & Kidney

Transplantation. https://www.niddk.nih.gov/health-information/kidney-disease/kidney-

failure/treatment

3. Alloghani, M., Al-Jumeily, D., Baker, T., Hussain, A., Mustafina, J., & Aljaaf, A. J. (2018).

Applications of machine learning techniques for software engineering learning and early

prediction of students’ performance. In Proceedings of the International Conference on

Soft Computing in Data Science (pp. 246–258).

4. Gupta, D., Khare, S., & Aggarwal, A. (2016). A method to predict diagnostic codes for

chronic diseases using machine learning techniques. In Proceedings of the International

Conference on Computing, Communication and Automation (ICCCA) (pp. 281–287).

5. Du, L., Xia, C., Deng, Z., Lu, G., Xia, S., & Ma, J. (2018). A machine learning based

approach to identify protected health information in Chinese clinical text. International

Journal of Medical Informatics, 116, 24–32.

https://doi.org/10.1016/j.ijmedinf.2018.05.004

6. Saran, R., Robinson, B., Abbott, K. C., Agodoa, L. Y. C., Bhave, N., Bragg-Gresham, J.,

... & Bragg-Gresham, J. (2018). US Renal Data System 2017 Annual Data Report:

Epidemiology of Kidney Disease in the United States. American Journal of Kidney

Diseases, 71(3S1), A7. https://doi.org/10.1053/j.ajkd.2018.01.001

7. Alickovic, E., & Subasi, A. (2016). Medical decision support system for diagnosis of heart

arrhythmia using DWT and random forests classifier. Journal of Medical Systems, 40(4).

8. Kate, R. J., Perez, R. M., Mazumdar, D., Pasupathy, K. S., & Nilakantan, V. (2016).

Prediction and detection models for acute kidney injury in hospitalized older adults. BMC

Medical Informatics and Decision Making, 16(39). https://doi.org/10.1186/s12911-016-

0270-7

9. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

10. Bemando, C., Miranda, E., & Aryuni, M. (2021). Machine-Learning-Based Prediction

Models of Coronary Heart Disease Using Naïve Bayes and Random Forest Algorithms.

In Proceedings of the 2021 International Conference on Software Engineering &

Computer Systems and 4th International Conference on Computational Science and

Information Management (ICSECS-ICOCSIM) (pp. 232–237). IEEE.

11. Ram Kumar, R. P., & Polepaka, S. (2020). Performance comparison of random forest

classifier and convolution neural network in predicting heart diseases. In K. SrujanRaju,

A. Govardhan, B. PadmajaRani, R. Sridevi, & M. Ramakrishna Murty (Eds.), Proceedings

of the Third International Conference on Computational Intelligence and Informatics.

12. Springer H. Singh, N. V. Navaneeth, G. N. Pillai, "Multisurface proximal SVM based

decision trees for heart disease classification," in TENCON 2019-2019 IEEE Region 10

Conference (TENCON), (IEEE 2019), pp. 13–18.

References

52

13. S.D. Desai, S. Giraddi, P. Narayankar, N.R. Pudakalakatti, S. Sulegaon, Backpropagation

neural network versus logistic regression in heart disease classification in advanced

computing and communication technologies (Springer, Singapore, 2019).

14. 10. D.D. Patil, R.P. Singh, V.M. Thakare, A.K. Gulve, Analysis of ecg arrhythmia for heart

disease detection using svm and cuckoo search optimized neural network. Int. J. Eng.

Technol. 7(217),27–33 (2018).

15. N. Liu, Z. Lin, J. Cao, Z. Koh, T. Zhang, G.-B. Huang, W. Ser, M.E.H. Ong, An intelligent

scoring system and its application to cardiac arrest prediction. IEEE Trans. Inf Technol.

Biomed. 16(6), 1324–1331 (2012).

16. U. Rajendra Acharya, Oh. Shu Lih, Y. Hagiwara, J.H. Tan, M. Adam, A. Gertych, R.S.

Tan, A deep convolutional neural network model to classify heartbeats. Comput. Biol.

Med. 89, 389–396 (2017).

17. R.S. Walse, G.D. Kurundkar, S.D. Khamitkar, A.A. Muley, P.U. Bhalchandra, S.N.

Lokhande, Effective use of naïve bayes, decision tree, and random forest techniques for

analysis of chronic kidney disease, in International Conference on Information and

Communication Technology for Intelligent Systems. ed. by T. Senjyu, P.N. Mahalle, T.

Perumal, A. Joshi (Springer, Singpore, 2020).

18. A. Nithya, A. Appathurai, N. Venkatadri, D.R. Ramji, C.A. Palagan, Kidney disease

detection and segmentation using artificial neural network and multi-kernel k-means

clustering for ultrasound images. Measurement (2020). https:// doi. org/ 10. 1016/j.

measurement.2019.106952.

19. Abdullah Al Imran, Md Nur Amin, and Fatema Tuj Johora. Classification of chronic

kidney disease using logistic regression, feedforward neural network and wide & deep

learning. In 2018 International Conference on Innovation in Engineering and Technology

(ICIET), pages 1–6. IEEE, 2018.

20. B. Navaneeth, M. Suchetha, A dynamic pooling based convolutional neural network

approach to detect chronic kidney disease. Biomed Signal Proce. Control 62, 102068

(2020)

21. A. Brunetti, G.D. Cascarano, I. De Feudis, M. Moschetta, L.Gesualdo, V. Bevilacqua,

Detection and segmentation of kidneys 540 Biomedical Materials & Devices (2023)

1:534–5401 3 from magnetic resonance images in patients with autosomal dominant

polycystic kidney disease, in International Conference on Intelligent Computing. ed. by

D.-S. Huang, K.-H. Jo, Z.-K. Huang (Springer International Publishing, Cham, 2019).

22. Hodneland et al., Inferring genetic characteristics of Japanese Black cattle populations

using genome-wide single nucleotide polymorphism markers. J. Animal Genet. 50(1), 3–

9 (2022).

23. Vasquez-Morales, S. Bourouis, M.M. Khan, Comparative analysis for prediction of

kidney disease using intelligent machine learning methods. Comput. Math. Methods Med.

(2021). https://doi.org/10.1155/2021/6141470.

24. S. Chen, K.S. Kapeleshh, E. Dovgan, M. Luštrek, B.G. Piletič, K. Srinivasan, Y.C. Li, A.

Gradišek, S. Syed-Abdul, "Machine learning prediction models for chronic kidney disease

using national health insurance claim data in Taiwan." medRxiv.

25. Aljaaf, A.J. 2018 Early Prediction of Chronic Kidney Disease Using Machine Learning

Supported by Predictive Analytics. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC). Wellington. New Zealand.

References

53

26. A. Nishanth, T. Thiruvaran, Identifying important attributes for early detection of chronic

kidney disease. IEEE Rev. Biomed. Eng. 11, 208–216 (2018).

27. Boukenze, X. Zheng, Y. Wang, X. Sun, Y. Xiao, Y. Tang, W. Qin, Random forest can

accurately predict the development of endstage renal disease in immunoglobulin a

nephropathy patient. Annals Transl. Med. (2019).

https://doi.org/10.21037/atm.2018.12.11.

28. E.H.A. Rady, A.S. Anwar, Prediction of kidney disease stages using data mining

algorithms. Inform. Med. Unlocked (2019). https://doi.org/10.1016/j.imu.2019.100178

29. Gunaranthe, C. Liu, X. Chen, Prediction of 3-year risk of diabetic kidney disease using

machine learning based on electronic medical records. J. Transl. Med. 20(1), 1–10 (2022).

30. Dietterich, T. G. (2000). Ensemble methods in machine learning. Multiple Classifier

Systems, 1857, 1-15.

31. Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine.

Annals of statistics, 1189-1232.

32. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 785-794).

33. Saini, Anshul. 2021. "Decision Tree Algorithm - a Complete Guide." Analytics Vidhya.

www.analyticsvidhya.com/blog/2021/08/decision-

treealgorithm/?utm_source=reading_list&utm_medium=www.analyticsvidhya.com/blog

/2015/10/basics-logistic-regression/.

34. Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences,

55(1), 119-139.

35. Doe, J. (2018). Entropy-Based Decision Tree Models for Predictive Analytics. Journal of

Machine Learning Research, 15(2), 45-58.

36. Smith, A. (2021). Information Gain Metrics in Decision Tree Algorithms. Data Science

Journal, 8(4), 215-230.

37. Garcia, L. M., & Martinez, S. (2019). Understanding Gini Impurity in Decision Tree

Classification. Journal of Data Science, 6(3), 102-115.

38. Freund, Yoav; Schapire, Robert E. (1995), A decision theoretic generalization of on-line

learning and an application to boosting, Lecture Notes in Computer Science, Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 23-37, doi:10.1007/3-540-59119-2 166,

ISBN 978-3-540-59119-1,retrieved 2022-06-24.

39. Boser, Bernhard E.; Guyon, Isabelle M.; Vapnik, Vladimir N. (1992). ”A training

algorithm for optimal margin classifiers”. Proceedings of the fifth annual workshop on

Computational learning theory -COLT ’92. p. 144. CiteSeerX 10.1.1.21.3818.

doi:10.1145/130385.130401.

40. Friedman, J. (2001). Greedy boosting approximation: a gradient boosting machine. Ann.

Stat. 29, 1189-1232. doi: 10.1214/aos/1013203451.

41. Brown, P. J., & White, H. (2000). An Exponential Approach to AdaBoost Classification.

Machine Learning, 42(3), 271-297.

42. Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences,

55(1), 119-139.

https://doi.org/10.21037/atm.2018.12.11
https://doi.org/10.1016/j.imu.2019.100178
http://www.analyticsvidhya.com/blog/2021/08/decision-tree
http://www.analyticsvidhya.com/blog/2021/08/decision-tree

References

54

43. Friedman, J. (2001). Greedy boosting approximation: a gradient boosting machine. Ann.

Stat. 29, 1189-1232. doi: 10.1214/aos/1013203451.

44. https://www.analyticsvidhya.com/blog/2022/11/top-10-interview-questions-on-gradient-

boosting/

45. Friedman, J.H. (2001). Greedy Function Approximation: A Gradient Boosting Machine.

The Annals of Statistics, 29(5), 1189-1232.

46. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 785-794). ACM.

47. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,... & Yu, T. (2017). LightGBM:

A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information

Processing Systems (pp. 3149-3157).

48. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), 533-536.

49. https://waww.quora.com/What-is-the-differences-between-artificial-neural-network-

computer-science-and-biological-neural-network.

50. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.

51. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

52. Haykin, S. (1994). Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall.

53. Patrick Monamo, Vukosi Marivate, and Bheki Twala. Unsupervised learning for robust

bitcoin fraud detection. In 2016 Information Security for South Africa (ISSA), pages 129–

134. IEEE, 2016.

54. Ji Li, Chunxiang Gu, Fushan Wei, and Xi Chen. A survey on blockchain anomaly detection

using data mining techniques. In Blockchain and Trustworthy Systems: First International

Conference, BlockSys 2019, Guangzhou, China, December 7–8, 2019, Proceedings 1,

pages 491–504. Springer, 2020.

55. Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia. Dissecting ponzi

schemes on ethereum: identification, analysis, and impact. Future Generation Computer

Systems, 102:259–277, 2020.

56. Qi Yuan, Baoying Huang, Jie Zhang, Jiajing Wu, Haonan Zhang, and Xi Zhang. Detecting

phishing scams on ethereum based on transaction records. In 2020 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 1–5, 2020.

57. Rabia Musheer Aziz, Mohammed Farhan Baluch, Sarthak Patel, and Abdul Hamid Ganie.

Lgbm: a machine learning approach for ethereum fraud detection. International Journal of

Information Technology, pages 1–11, 2022.

58. Dua D, Graff C. UCI Machine Learning Repository. URL:

http://archive.ics.uci.edu/ml2017.

59. Bruno Mazorra, Victor Adan, and Vanesa Daza. Do not rug on me: Zero-dimensional scam

detection. https://arxiv.org/abs/2201.07220, 2022.

60. Gupta, S., & Johnson, M. (2018). Understanding and Visualizing Confusion Matrices in

Classification. Journal of Machine Learning Research, 12(3), 245-260.

61. Fawcett, Tom. "An introduction to ROC analysis." Pattern recognition letters 27.8 (2006):

861-874.

62. Bhandari, Pritha . 2020. "Interquartile Range | Understand, Calculate & Visualize IQR."

Scribbr. www.scribbr.com/statistics/interquartile-range/.

https://www.analyticsvidhya.com/blog/2022/11/top-10-interview-questions-on-gradient-boosting/
https://www.analyticsvidhya.com/blog/2022/11/top-10-interview-questions-on-gradient-boosting/
http://archive.ics.uci.edu/ml2017
http://www.scribbr.com/statistics/interquartile-range/

References

55

63. Smith, J. A., & Johnson, R. B. (Year). “Evaluation metrics in machine learning: A

comprehensive review.” Journal of Data Science, 12(3), 45-60.

64. "RBC Count Information | Mount Sinai - New York."

65. MedlinePlus. 2021. "White Blood Count (WBC): MedlinePlus Medical Test."

medlineplus.gov.

66. "PCV - Understand the Test." Labtestsonline.org.uk. June 30, 2022.

67. Mayo Clinic. 2022. "Hemoglobin Test - Mayo Clinic."

68. Cleveland Clinic. 2022. "Albumin Blood Test: What It Is, Purpose, Procedure & Results."

my.clevelandclinic.org.

69. American Kidney Fund. 2022. "Serum Creatinine Test." www.kidneyfund.org. January 5,

2022.

70. Smith, J. D., & Williams, A. R. (2020). Relationship Between Specific Gravity and

Chronic Kidney Disease Progression. Journal of Nephrology, 25(2), 87-99.

71. https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

