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Abstract 

 

Recent years have seen an increase in the number of Machine learning 

methods for extracting 3D animation information from 2D video input. An 

emerging area within this field is the use of animation skeleton prediction 

to enhance the accuracy. However, these methods usually rely on datasets 

where the ground truth is not precisely known. Instead, it is estimated by 

motion capture suits or manual labeling, both of which are prone to 

artifacts and human error. In this study, this thesis generates a synthetic 

dataset with 100% accurate ground truth using the Unity Game Engine’s 

animation system, and tests some widely used 3D skeleton extraction 

methods on this dataset to determine their accuracy. This thesis defines the 

optimal angle, distance, and pose for positioning a camera in real-world 

applications. Results provide insight into the significance of angle, 

distance, and pose for better predictions, as well as the overall accuracy of 

3D animation recognition methods.  

 

Keywords: deep learning, 3D skeleton extraction, Unity Game Engine, 

Detectron 2, BlazePose, camera positioning. 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgments 
 

I would like to express my deepest gratitude to my supervisor, Dr. Russell 

Butler, for his guidance, support, and invaluable expertise throughout the 

course of MSc project. His unwavering encouragement and insightful 

feedback have been instrumental in shaping the direction and quality of 

this thesis. 

 

I would like to acknowledge the support and encouragement received from 

my husband, daughter and my parents who have provided me with the 

necessary motivation and understanding throughout this challenging 

journey. 

 

I am grateful to the faculty and staff at Bishop’s University for providing a 

conducive academic environment and access to necessary resources. 

Finally, I would like to thank all the research participants and contributors 

who made this study possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Table of Contents 
 
Abstract ........................................................................................................................................................ ii 

Acknowledgments ................................................................................................................................. iii 

List of Figures ........................................................................................................................................... vi 

List of Equations ................................................................................................................................... viii 

Chapter 1 Introduction .......................................................................................................................... 1 

1.1 Background .................................................................................................................................... 1 

1.2 Problem Statement ..................................................................................................................... 1 

1.3 Thesis Objectives ......................................................................................................................... 2 

Chapter 2 Literature Review ............................................................................................................... 3 

2.1 Animation Skeleton Prediction .............................................................................................. 3 

2.1.1 Basic Models for 3D Pose Detection ................................................................................. 3 

2.1.2 State of the Art in Animation Skeleton Prediction ..................................................... 6 

2.3 Background on Unity and Synthetic Dataset Creation .............................................. 13 

Chapter 3 Proposed method ............................................................................................................ 17 

3.1 Synthetic Dataset Creation ................................................................................................... 17 

3.1.1 Virtual Environment and Animation ........................................................................ 17 

3.1.2 Camera Configurations and Physical Properties ................................................. 17 

3.1.3 Data Acquisition and Frame Extraction .................................................................. 18 

3.1.4 Ground Truth Extraction ............................................................................................... 19 

3.2 Deep Learning Models ............................................................................................................ 20 

Chapter 4 Experimental Results ..................................................................................................... 29 

4.1 Training and Evaluation ........................................................................................................ 29 

4.2 Proposed Loss Function ......................................................................................................... 29 

4.3 Performance Analysis ............................................................................................................. 31 

Chapter 5 Discussion ........................................................................................................................... 37 

5.1 Implications of Findings ........................................................................................................ 37 

5.2 Limitations and Challenges .................................................................................................. 37 

5.3 Future Research Directions .................................................................................................. 37 



v 
 

Chapter 6 Conclusion .......................................................................................................................... 39 

6.1 Implications and Benefits for the Readership .............................................................. 39 

6.1.1 Practical Utility .................................................................................................................. 39 

6.1.2 Academic Contributions ................................................................................................ 39 

6.1.3 Industry Impact ................................................................................................................ 40 

Bibliography ............................................................................................................................................ 41 

 

  



vi 
 

List of Figures 
 
Figure 1: Examples of labeling inference and 3D human pose estimation for the 

different models [4]. ............................................................................................ 4 

To evaluate the performance and robustness of the method, the Human3.6M 

dataset is utilized. This dataset offers a large-scale collection of 3D human 

motion capture data with body part labeling annotations. The dataset was 

created by recording the activities of multiple subjects from different viewpoints, 

encompassing a wide range of typical human activities. This dataset includes 

synchronized 2D and 3D data, consisting of time-of-flight data, high-quality 

images, and motion capture data. Additionally, accurate 3D body scans of the 

subjects are provided, along with controlled mixed reality evaluation scenarios. 

By leveraging this dataset, the model generates robust and stable pose 

descriptors that adapt to various human pose configurations (Figure 2)............. 5 

Figure 3: Real image showing multiple people in different poses (left), matching 

sample of the actors in similar poses (middle) and reconstructed 3D poses from 

the dataset (right) [5]. ......................................................................................... 5 

Figure 4: Estimating 3D joint configuration and relative camera pose based on 

2D anatomical landmarks [6]. ............................................................................. 6 

Figure 5: 3D skeleton results on KTH Multiview Football [8] . ............................. 8 

Figure 6: Two-stage pipeline for 3D pose estimation [9]. .................................... 8 

Figure 7: Training convnet to predict per-voxel likelihoods for each joint [10]. ..... 9 

Figure 8: Autoencoder for latent pose representation [11]. ................................. 9 

Figure 9: Semi-supervised training with a 3D pose model  [12]. ........................ 10 

Figure 10: Spatio-temporal graph convolutional network captures both spatial 

and temporal patterns in skeleton sequence [13]. ............................................. 11 

Figure 11: Location estimation of pendulum motion shows the horizontal location 

as time varies, a sine curve, denoted in gray, and three estimated traces, 

denoted in blue, orange and cyan [15]. ............................................................. 12 

Figure 12: UGCN network structure. Consists of three stages: downsampling, 

upsampling and merging [15]............................................................................ 12 

Figure 13: Synthetic data generation. a) Example background image from LTD 

dataset [34]  b) same scene synthesized in Unity, c) example fall animations d) 

synthetically generated falling person merged with (a), yellow enclosure 

highlighting ROI. ............................................................................................... 15 



vii 
 

Figure 14: Cameras positioned around the character to create a synthetic 

dataset from many different angles and distances. ........................................... 18 

Figure 15: Creating synthetic dataset using Unity Game Engine and Mixamo. . 19 

Figure 16: example of 2D pose landmarks for one skeleton of one frame of 

video. ................................................................................................................ 21 

Figure 17: Seventeen(17) keypoints on a human body. Left: original image, 

middle: list of keypoints, right: location of keypoints on the person’s body [5]. .. 21 

Figure 18: End to end action recognition workflow using Detectron2 and LSTM 

[37]. .................................................................................................................. 22 

Figure 19: BlazePose keypoints [36]................................................................. 24 

Figure 20: Human pose estimation pipeline overview [36]. ............................... 25 

Figure 21: Vitruvian man aligned via two virtual keypoints predicted by the 

BlazePose detector in addition to the face bounding box [36]. .......................... 26 

Figure 22: Tracking network architecture: regression with heatmap supervision 

[36]. .................................................................................................................. 27 

Figure 23: example of 3D animation landmarks for one skeleton of one frame of 

video. ................................................................................................................ 28 

Figure 24: Performance analysis of the Detectron 2 and BlazePose deep 

learning model.The loss value greater than 4 visualized in red, indicating areas 

where the predicted value is far from the ground truth value, while green 

landmarks represent satisfactory prediction. ..................................................... 32 

Figure 25: Animation skeleton surrounded by a 3D grid of green points where 

Each point is a separate camera position. ........................................................ 33 

Figure 26: Azimuth and Elevation values in Cartesian coordinates. .................. 34 

Figure 27: Loss_value for each r, elevation and azimuth value (radians). ......... 35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Equations 
 
(Equation 1) ...................................................................................................... 30 

(Equation 2) ...................................................................................................... 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

Chapter 1 Introduction 

1.1 Background 

 

3D animation plays a crucial role in diverse domains including 

entertainment, gaming, virtual reality, and augmented reality. The 

animation skeleton, comprised of bones and joints representing the human 

figure, is fundamental for animating humanoid models. Typically, to 

animate a 3D character requires some advanced motion capture suits which 

are expensive and require significant setup time. To address these 

limitations, recent research has focused on using Deep Learning to extract 

the 3D pose information directly from 2D video input [1], enabling 3D 

motion capture with a simple webcam [2]. While much progress has been 

made recently in predicting 3D animation from 2D video input, less effort 

has been spent on evaluating these algorithms, in part because it is difficult 

to obtain an accurate ground truth. 

1.2 Problem Statement 

 

Existing methods for predicting 3D animation from 2D video input often 

face challenges in achieving accurate predictions, especially when variables 

such as camera angles and distances come into play. Furthermore, there is 

a lack of comprehensive understanding regarding how these variables 

impact the prediction quality of the animation skeleton, making it difficult 

to optimize machine learning-based animation capture methods. The 

absence of a standardized ground truth, like one that could be created using 

the Unity Game Engine, further complicates the evaluation of these 

methods' performance, underscoring the need for a reliable benchmark 

against which different techniques can be tested and compared. 
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1.3 Thesis Objectives 

 

The thesis aims to achieve the following objectives: 

 

1. Develop a synthetic dataset of human-being skeleton animation. 

2.  Evaluate different ML techniques of 3D animation prediction based 

on the developed dataset. 

3. Determined optimal camera and distances for capturing 3D 

animation from 2D Image. 



Chapter 2: Literature Review 

Chapter 2  Literature Review 

2.1 Animation Skeleton Prediction 

 

This section provides an in-depth exploration of the basic models used for 

3D pose detection and the current state of the art in this field. 

2.1.1 Basic Models for 3D Pose Detection 

Before the era of deep learning, early methods for 3D human pose 

estimation were based on handcrafted features [4]–[6]refers to methods 

where features used for modeling and prediction are manually designed 

and selected by domain experts rather than being learned from the data by 

a machine learning model. This process often involves applying domain-

specific knowledge to derive features from raw data that the model might 

not be able to learn itself. Some commonly used handcrafted features in 

pose estimation include Scale-Invariant Feature Transform (SIFT), Sped Up 

Robust Features (SURF), Histogram of Oriented Gradients (HOG), and 

edge features. 

 

For instance, the HOG feature descriptor, used in many pose 

estimation applications, captures the distribution of local intensity 

gradients or edge directions, which can provide useful information about 

the pose of a person in an image. 

 

However, there are several disadvantages to using handcrafted features in 

pose estimation: 

1. Limited Generalization: Handcrafted features may not generalize 

well to new data or different tasks. The features that work well on 

one dataset or problem might not be effective on another. 

2. High Dimensionality: The dimensionality of handcrafted features 

can become quite high, especially for complex problems like pose 
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estimation, which can increase computational cost and make the 

model prone to overfitting. 

3. Time and Effort: Designing and selecting effective handcrafted 

features can require a significant amount of time, effort, and domain 

expertise. 

4. Lack of Flexibility: Handcrafted features are static and do not adapt 

based on the data or task. This contrasts with learned features, 

which can automatically adjust themselves based on the data and 

task. 

 

In the field of 3D pose detection, various handcrafted feature-based 

methods have been explored to estimate the spatial configuration of human 

bodies. One notable approach is presented in the paper [4]. This method 

focuses on 3D pose estimation from RGB images and takes inspiration from 

the RGB-D imagery capabilities observed in Kinect systems (Figure 1). 

 

 
 

Figure 1: Examples of labeling inference and 3D human pose estimation for the 

different models [4]. 

 

The approach operates on three layers to accurately estimate human 

poses. Firstly, the method performs 2D human body part labeling by 

identifying and labeling the various parts of the human body in each 2D 

image. Next, it employs label-sensitive pooling over a hierarchical region 
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decomposition of the body. This step dynamically computes regions in a 

hierarchical manner and performs a second-order label-sensitive pooling 

over these regions. Lastly, the approach utilizes a continuous-valued pose 

regression technique that employs iterative structured-output modeling to 

provide contextualization based on 3D pose estimates. 

 

To evaluate the performance and robustness of the method, the 

Human3.6M dataset is utilized. This dataset offers a large-scale collection 

of 3D human motion capture data with body part labeling annotations. The 

dataset was created by recording the activities of multiple subjects from 

different viewpoints, encompassing a wide range of typical human 

activities. This dataset includes synchronized 2D and 3D data, consisting 

of time-of-flight data, high-quality images, and motion capture data. 

Additionally, accurate 3D body scans of the subjects are provided, along 

with controlled mixed reality evaluation scenarios. By leveraging this 

dataset, the model generates robust and stable pose descriptors that adapt 

to various human pose configurations (Figure 2). 

 

 
 

Figure 3: Real image showing multiple people in different poses (left), matching 

sample of the actors in similar poses (middle) and reconstructed 3D poses from the 

dataset (right) [5]. 

 

Another noteworthy study [5], also uses the Human3.6M dataset. 

The researchers behind this study present a set of large-scale statistical 

models and evaluation baselines for the dataset. The experiments 

demonstrate the improved performance achieved by training models on 

the Human3.6M dataset compared to existing public datasets. The authors 

believe that the availability of this dataset and the developed tools will 

facilitate advancements in computer vision and machine learning, leading 
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to the development of more robust 3D human sensing systems for real-

world settings.  

 

Furthermore, the paper [6]  introduces an activity-independent 

method for recovering the 3D configuration of a human figure using 2D 

locations of anatomical landmarks in a single image. The method leverages 

a large motion capture corpus as a surrogate for visual memory and solves 

for an anthropometrically regular body pose, considering camera 

perspective. By representing human pose as a sparse linear embedding, the 

proposed method achieves efficient convergence through closed-form 

computations (Figure 3). 

 

 
Figure 4: Estimating 3D joint configuration and relative camera pose based on 2D 

anatomical landmarks [6]. 

 

It is important to note that while these handcrafted feature-based 

methods have shown promising results, they also have certain limitations. 

For instance, the third method mentioned may encounter challenges in 

images with strong perspective effects or poses that deviate significantly 

from the mean pose. Despite these limitations, these basic models provide 

valuable insights and form the foundation for the development of more 

advanced and sophisticated methods in 3D pose detection. 

 

2.1.2 State of the Art in Animation Skeleton 

Prediction 

 

In recent years, significant advancements in 3D animation prediction have 

been achieved using deep neural networks. These approaches can be 
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categorized into two types, each leveraging unique methods to improve 

accuracy and performance. 

 

The first type focuses on predicting 3D animation directly from 2D 

images. For instance, the paper [7] introduces a deep convolutional neural 

network (CNN) for 3D human pose estimation from monocular images. 

This method employs a multi-task framework that simultaneously trains 

pose regression and body part detectors. Additionally, a pre-training 

strategy is utilized, where the pose regressor is initialized using a network 

trained for body part detection. The authors demonstrate that the deep 

CNN has effectively learned the correlations and dependencies between 

different body parts, leading to improved performance on the Human3.6M 

dataset. 

 

Another approach, presented in [8], directly regresses the 3D pose 

from an aligned spatial-temporal feature map. This method utilizes motion 

information from consecutive video frames to determine the 3D pose of 

individuals. Unlike traditional methods that compute candidate poses in 

individual frames and link them in post-processing, this approach directly 

regresses from a spatio-temporal volume of bounding boxes to a 3D pose. 

By compensating for motion in consecutive frames, the method achieves 

better pose estimation results and outperforms existing methods on 

benchmarks such as Human3.6M, HumanEva, and KTH Multiview 

Football (Figure 4). 
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Figure 5: 3D skeleton results on KTH Multiview Football [8] . 

 

In the second type, approaches adopt a two-stage pipeline. Initially, 

a 2D pose sequence is predicted by a 2D pose estimator from a video frame-

by-frame. Subsequently, another estimator lifts the 2D poses to the 3D 

space. For example, [9] proposes a simple baseline composed of fully-

connected layers for 3D human pose estimation (Figure 5). This work 

explores the limitations of existing methods and focuses on understanding 

the sources of error in 3D pose estimation. The authors demonstrate that 

by training their system on the output of a conventional 2D detector, it 

achieves state-of-the-art results on the Human3.6M benchmark. 

 

 
Figure 6: Two-stage pipeline for 3D pose estimation [9]. 

 

Other researchers have made significant contributions to improving 

the representation and modeling of 3D human poses. The paper [10] 

introduces a fine discretization of the 3D space and trains a ConvNet to 

predict per-voxel likelihoods for each joint. This approach provides a more 

natural representation for 3D human pose estimation and surpasses direct 

regression methods (Figure 6). 



9 
 

 
Figure 7: Training convnet to predict per-voxel likelihoods for each joint [10]. 

   

Moreover, [11] utilizes an auto-encoder to learn a latent pose 

representation that captures the dependencies between joints. The 

combination of Convolutional Neural Networks (CNNs) with auto-

encoders leads to enhanced prediction accuracy compared to state-of-the-

art methods (Figure 7). 

 

 
Figure 8: Autoencoder for latent pose representation [11]. 

 

Further advances have been made in incorporating temporal 

information for video-based 3D human pose estimation. The paper [12] 

proposes a fully convolutional model that utilizes dilated temporal 

convolutions over 2D keypoint trajectories. By exploiting temporal 

information, the model achieves superior results on benchmark datasets 

such as Human3.6M and HumanEva-I. Similarly [13] introduces a 
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framework that leverages matrix factorization for sequential 3D pose 

estimation. This approach addresses the limitations of existing frameworks 

and offers an efficient solution to estimate 3D human pose from sequential 

inputs (Figure 8). 

 

 
Figure 9: Semi-supervised training with a 3D pose model  [12]. 

 

The effectiveness of graph-based models has been demonstrated in 

3D pose estimation. The Spatial-Temporal Graph Convolutional Networks 

(ST-GCN) introduced in [14] leverage spatial-temporal graphs to capture 

both spatial and temporal patterns in skeleton sequences. The ST-GCN 

model outperforms previous state-of-the-art approaches in action 

recognition tasks, such as those evaluated on the Kinetics and NTU-RGBD 

datasets (Figure 9). 
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Figure 10: Spatio-temporal graph convolutional network captures both spatial and 

temporal patterns in skeleton sequence [13]. 

 
 

A recent publication  [15]  presents a new loss function called motion 

loss for the training of models designed for monocular 3D human pose 

estimation from videos. The unique feature of this loss function is its 

operation principle: it calculates the loss by comparing the motion pattern 

of the model's prediction against the ground truth key point trajectories. To 

facilitate the calculation of motion loss, the authors have introduced 

pairwise motion encoding, a straightforward yet potent representation for 

keypoint motion (Figure 10). 
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Figure 11: Location estimation of pendulum motion shows the horizontal location 

as time varies, a sine curve, denoted in gray, and three estimated traces, denoted in 

blue, orange and cyan [15]. 

Finally, new graph convolutional network architecture, named U-

shaped GCN (UGCN) was designed to better optimize the model using 

motion loss. This architecture is unique because it is capable of capturing 

both short-term and long-term motion information, thereby effectively 

leveraging the supervision from the motion loss. 

 

The authors tested UGCN with the motion loss on two large scale 

benchmarks: Human3.6M and MPI-INF-3DHP. The results surpassed 

other state-of-the-art models by a significant margin. Additionally, the 

model demonstrated a strong ability to produce smooth 3D sequences and 

recover keypoint motion (Figure 11). 

 

 
 

Figure 12: UGCN network structure. Consists of three stages: downsampling, 

upsampling and merging [15]. 
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Ultimately, the proposed motion loss could inspire other skeleton-

based tasks such as action forecasting, action generation, and pose tracking, 

showcasing its potential for broader applications. 
 

These recent advances in deep learning-based models for 3D human 

pose estimation showcase the progress made in improving accuracy, 

handling occlusions, and leveraging temporal information. These methods 

have surpassed previous benchmarks and offer valuable insights for 

further research in the field of computer vision and human pose analysis. 

2.3 Background on Unity and Synthetic Dataset 

Creation 

 

In the era of deep learning, where models demand voluminous amounts of 

data, synthetic data generation has become increasingly important. This is 

especially pertinent given the GDPR [16], [17] restrictions on acquiring 

large-scale personal visual data. Synthetic datasets have proven crucial in 

the thermal spectrum domain, particularly for sensitive data. Two main 

methods exist for the generation of synthetic data: (1) Direct mapping from 

the RGB domain and (2) Using virtual environment engines [18]. 

 

The former approach often employs Generative Adversarial 

Networks (GANs) in supervised (paired data) and unsupervised (unpaired 

data) contexts [18]–[23]. Research shows that supervised GANs, due to the 

presence of RGB-thermal image pairs, provide superior results [19], [21]. 

However, for projects where only thermal video footage is available, this 

method is unfeasible. 

 

Virtual environment engines comprise the latter approach. Despite 

numerous such engines for visual spectrum synthetic data generation, 

including CARLA for Advanced Driver Assistance System (ADAS) [24], 

VIVID for indoor navigation [25], Gazebo for multi-robot simulations [26], 

and Habitat 2.0 for home assistants [26], there have been comparatively 

fewer implementations for thermal datasets. Nevertheless, some 

researchers have successfully used game engines like Unity [27] and Unreal 
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[28] to generate photorealistic synthetic data. Pramerdorfer et al. [29] and 

Bongini et al. [30], for example, have used Blender [31] and Unity [27] 

respectively, combining 3D foreground objects with real background 

images to create synthetic thermal datasets. 

 

The process of generating synthetic thermal foreground videos in 

the paper employs the game engine Unity [27]. Scenarios of individuals 

performing actions like walking, running, jumping, and falling into water 

at a harbor are digitally depicted. These synthetic videos are later combined 

with generated background instances. 

 

This generation process has two main stages. Initially, 3D models of 

human figures, along with a variety of animations, are selected. Mixamo 

[32] is utilized for this task, which is a free library offering a variety of 

human-like characters and motion-captured animations. For this project, a 

collection of 79,998 unique foreground video sequences was chosen, each 

sequence comprising three consecutive frames and illustrating actions such 

as jumps and falls. 

 

In the subsequent stage, the parameters of the thermal camera used 

for recording the Long-term Thermal Drift (LTD) dataset [33] are replicated 

in the Unity camera. This is accomplished using the Universal Render 

Pipeline in Unity in conjunction with physical camera settings. A synthetic 

scene is then modeled within Unity, featuring primitive objects placed in 

locations where real-world objects might block the camera's view of 

individuals walking on the street. These real-world objects are chosen 

heuristically after analyzing videos from the LTD dataset. The position and 

orientation of the Unity camera are adjusted to closely resemble the real-

world camera's perspective. 

 

The resulting synthetic scene in Unity, as shown in (Figure 12), 

includes objects that may obscure the camera's view (colored pink), the 

background from real images (green), and a waterfront area (gray). A 

synthetic individual shown in the process of falling is also included in the 
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scene. The real-world background is presented on a rendered texture 

behind the synthetic scene. 

 
 

Figure 13: Synthetic data generation. a) Example background image from LTD 

dataset [34]  b) same scene synthesized in Unity, c) example fall animations d) 

synthetically generated falling person merged with (a), yellow enclosure 

highlighting ROI. 

 

 

The Unity camera provides versatile settings that allow for 

capturing animations from various viewpoints, facilitating diverse 

perspectives and comprehensive visualization of animated sequences. 

 

Utilizing the Perception package [35] provided by Unity [27], a 

multitude of combinations of 3D meshes, animations, and backgrounds are 
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generated. Rendered masks of people are subsequently employed in post-

processing to seamlessly merge the synthetic foreground with the 

background. 



Chapter 4: Experimental Results 

Chapter 3 Proposed method 

3.1 Synthetic Dataset Creation 

The pivotal role of the synthetic dataset in this research aims to address the 

challenges posed by the lack of precise ground truth data. The chosen tool 

for this ambitious task is the Unity Game Engine, recognized for its high 

fidelity and flexible rendering capabilities. 

 

3.1.1 Virtual Environment and Animation 

A robust virtual environment was designed to emulate real-world 

scenarios. Within this space, the placing a humanoid model and 

subsequently animated it. These animations weren't random; they were 

precisely choreographed using Mixamo [32], a platform known for its vast 

array of human movement simulations. These movements spanned a range 

of activities, from mundane daily tasks to complex athletic maneuvers, 

ensuring a diverse data set. 

 

3.1.2 Camera Configurations and Physical Properties 

The versatility of the dataset demanded a vast array of camera angles and 

distances. Programmatically, using C# scripts in Unity, it dynamically 

adjusted camera attributes. These scripts governed aspects such as 

distance, angle, speed, focal length, aperture, and shutter speed, ensuring 

the perfect capture setting for every frame. This programmatic approach 

not only achieved precision but also allowed for replicability and 

consistency across multiple captures, as visualized in (Figure 13). 
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Figure 14: Cameras positioned around the character to create a synthetic dataset 

from many different angles and distances. 

 

3.1.3 Data Acquisition and Frame Extraction 

With the humanoid model enacting the pre-selected animations, the 

cameras, configured through the C# scripts, recorded the sequences. Key 

frames were then algorithmically extracted from this extensive footage, 

ensuring it encapsulated the nuances of the model's movements from an 

array of perspectives (Figure 14). 
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Figure 15: Creating synthetic dataset using Unity Game Engine and Mixamo. 

 

3.1.4 Ground Truth Extraction 

A cornerstone of the synthetic dataset's reliability is its meticulous 

representation of the ground truth. For every extracted frame, it  accurately 

identified both the position and rotation of each joint in the animation 

skeleton. This detailed information was obtained through an automated 

extraction process designed within Unity using C#. To facilitate easy access 

and further evaluations, all the data points – positions and rotations – for 

each joint across all frames were systematically saved in a CSV file. This 

comprehensive approach ensures that each frame in the dataset is a precise 

representation of the model's pose, capturing both its structure and 

orientation. 

 

Harnessing the flexibility of Unity, combined with the precise 

programmatic strategy in C#, the synthetic dataset emerges as a paradigm 

of accuracy and detailed granularity in 3D animation prediction. 
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3.2 Deep Learning Models 

 

In this thesis, two state-of-the-art predicted skeleton deep learning models 

were tested on the synthetic data: 1) Detectron 2 [5] and 2) BlazePose [36]. 

 

  Detectron 2 is a computer vision framework developed by Facebook 

AI Research [5]. Built on the PyTorch library1, Detectron 2 offers a flexible 

and efficient platform for a wide range of computer vision tasks, including 

pose estimation. Detectron 2 leverages advanced object detection 

algorithms and convolutional neural network (CNN) architectures to 

precisely estimate the 2D pose landmarks for each frame of the video 

(Figure 15). The model initially locates various body parts in every frame, 

extracting valuable information about the body posture and the locations 

of 17 key points on the person's body (Figure 16) [9]. This accurate and fine-

grained pose estimation forms the foundation for subsequent analysis. 

 

 
1 https://github.com/facebookresearch/detectron2 
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Figure 16: example of 2D pose landmarks for one skeleton of one frame of video. 

 

 

Figure 17: Seventeen(17) keypoints on a human body. Left: original image, middle: 

list of keypoints, right: location of keypoints on the person’s body [5]. 

To further classify and analyze the action being performed, the 

motion of the body parts over time is carefully examined. This task is 

accomplished using the Long Short-Term Memory (LSTM) network, a 

recurrent neural network (RNN). The LSTM network takes the sequence of 

keypoints from multiple frames and learns to capture the temporal 

dynamics of the body movement. By leveraging the capabilities of the 
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LSTM network, the model can accurately classify actions based on the 

observed motion patterns (Figure 17). 

The combined workflow of Detectron 2 and the LSTM network 

facilitates end-to-end action recognition. Detectron 2 provides the initial 

pose estimation, capturing the detailed posture information in each frame, 

while the LSTM network analyzes the temporal evolution of the body's 

motion. By integrating these two models, the research project achieves a 

comprehensive understanding of the animation skeleton's behavior and 

enables accurate classification of actions. 

 

Figure 18: End to end action recognition workflow using Detectron2 and LSTM [37]. 
 

In the conducted experiment, when utilizing Detectron 2 to predict 2D 

poses for approximately 2,000 frames, the prediction time was found to be 

around 15 minutes. This was achieved with GPU acceleration enabled on 

Google Colab. 

Following the prediction of 2D coordinates by Detectron 2, 

BlazePose (Full Body)  [38] model [39] was employed to predict the 

corresponding 3D coordinates for each skeleton in every frame. BlazePose, 
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developed by Mediapipe, utilizes a convolutional neural network (CNN) 

architecture to estimate the 3D coordinates of human pose landmarks. 

The current standard for human body pose is the COCO topology, 

which comprises 17 landmarks distributed across the torso, arms, legs, and 

face. However, the COCO keypoints exclude ankle and wrist points, 

thereby lacking essential information about the scale and orientation of 

hands and feet. This limitation significantly affects practical applications 

such as fitness and dance. To address this issue, a more comprehensive set 

of keypoints is required to facilitate the subsequent use of domain-specific 

pose estimation models, including those for hands, face, or feet. 

BlazePose introduces a novel topology consisting of 33 keypoints, 

encompassing the COCO, BlazeFace, and BlazePalm topologies. This 

expanded set of keypoints enables the determination of body semantics 
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solely through pose prediction, maintaining consistency with the face and 

hand models (Figure 18) [36]. 

 

Figure 19: BlazePose keypoints [36] 

For pose estimation, BlazePose consists of two machine learning 

models: a Detector and an Estimator (Figure 19). Using a detector, this 

pipeline first locates the pose region-of-interest (ROI) within the frame. The 

tracker subsequently predicts all 33 pose keypoints from this ROI. Note 

that for video use cases, the detector is run only on the first frame. For 
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subsequent frames it derives the ROI from the previous frame’s pose 

keypoints as discussed below. 

 

Figure 20: Human pose estimation pipeline overview [36]. 

 

To achieve real-time performance of the complete machine learning 

pipeline, which includes pose detection and tracking models, each 

component must exhibit high efficiency, processing frames within a few 

milliseconds. To address this requirement, the strongest signal regarding 

the position of the torso is obtained from the person's face. This is due to 

its high-contrast features and relatively consistent appearance. Therefore, 

a fast and lightweight pose detector is developed by leveraging the 

assumption that the head should be visible in the context of a single-person 

use case. 

Consequently, a face detector is trained based on the sub-

millisecond BlazeFace model, serving as a proxy for the pose detector. It 

should be noted that this model solely detects the person's location within 

the frame and cannot be utilized for individual identification. In contrast to 

the Face Mesh and MediaPipe hand tracking pipelines [36], where the 

region of interest is derived from predicted keypoints, the human pose 

tracking approach incorporates the explicit prediction of two additional 
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virtual keypoints. These keypoints effectively describe the human body's 

center, rotation, and scale in the form of a circle. 

Inspired by Leonardo's Vitruvian man, the midpoint of a person's 

hips, the radius of the circle encompassing the entire person, and the incline 

angle of the line connecting the midpoints of the shoulders and hips are 

predicted. This methodology ensures consistent tracking, even in complex 

scenarios like specific yoga asanas. The figure below illustrates this 

approach, highlighting how the inclusion of these additional keypoints and 

circle-based representations contributes to robust pose tracking (Figure 20). 

 

Figure 21: Vitruvian man aligned via two virtual keypoints predicted by the 

BlazePose detector in addition to the face bounding box [36]. 

The pose estimation component of the pipeline is responsible for 

predicting the precise locations of all 33 keypoints associated with the 

human body. Each keypoint is characterized by three degrees of freedom, 

namely the x and y coordinates and visibility. Furthermore, the two virtual 

alignment keypoints mentioned earlier are also taken into account in the 

prediction. In contrast to existing approaches that rely on computationally 

intensive heatmap prediction, a regression-based approach is employed in 
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the model. This approach is supervised by a combined heatmap and offset 

prediction for all keypoints. 

Regarding the tracking network architecture [36], the training 

process consists of two stages. Initially, a loss function incorporating both 

heatmap and offset information is used to train the center and left tower of 

the network. Subsequently, the heatmap output is removed, and the focus 

shifts to training the regression encoder, which corresponds to the right 

tower of the network. This approach effectively utilizes the heatmap as a 

supervisory signal to guide the training of a lightweight embedding. The 

diagram below illustrates this architecture, demonstrating the integration 

of regression-based prediction and heatmap supervision (Figure 21) [36]. 

 

Figure 22: Tracking network architecture: regression with heatmap supervision 

[36]. 

Finally the model was trained on a synthetic dataset [36] to learn the 

mapping between the 2D coordinates of  frames and the corresponding 3D 

coordinates of the animation skeleton. 
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During the study, when employing BlazePose for 3D animation 

predictions on roughly 2,000 frames, the processing duration was observed 

to be close to 20 minutes. This computation was conducted with GPU 

acceleration activated on Google Colab. 

By leveraging the power of both Detectron 2 and BlazePose, this 

research project successfully predicted the 3D coordinates (Figure 22) of the 

animation skeleton, enabling accurate and comprehensive analysis of the 

skeletal motion. 

 

Figure 23: example of 3D animation landmarks for one skeleton of one frame of 

video. 
 
 
 



Chapter 4: Experimental Results 

Chapter 4  Experimental Results 

4.1 Training and Evaluation     

 

The synthetic dataset was partitioned into training, validation, and testing 

sets. The pre-trained deep learning model was employed on the training 

set using an appropriate loss function and optimization algorithm. The 

model's performance was evaluated on the validation set to monitor 

training progress and select the best-performing model based on 

predefined metrics. 

As mentioned above, the experiments it conducted involved 

applying deep learning models, Detectron and BlezePose, to the synthetic 

datasets it generated. The primary objective was to measure their 

performance and the accuracy of the landmark predictions it made on the 

animation skeletons. Due to differences in how Unity’s mecanim animation 

system and Blazepose keypoint represent the human skeleton, the 

performance of the model was evaluated using a customized loss function, 

which incorporates the center of mass and normalized coordinates for each 

joint in the animation skeleton. This custom loss function allows for the 

comparison of the predicted joint positions with the ground truth data, 

taking into account variations in scale and position. 

4.2 Proposed Loss Function 

In this project we deigned a customized Loss function to quantify the 

dissimilarity between the predicted 3D coordinates of the animation 

skeleton (blazepose keypoints)  and the ground truth coordinates (Unity 

mecanim). The loss function consideres the Center of Mass (COM) of the 

skeleton and accountes for the differences in positions and orientations 

across the video frames. This comprehensive loss function served as a 
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metric to evaluate the accuracy of the deep learning model's predictions. 

The loss function is defined as follows: 

a. Calculate the Center of Mass (COM)[40] for both the ground truth 

and predicted joint positions. 

 

To calculate the COM for each dimension (x,y,z)  separately : 

Let [x1,y1,z1],[x2,y2,z2],…,[xn,yn,zn] represent the joint positions. 

Calculate the mean position along each dimension : 

 
𝑥_𝑚𝑒𝑎𝑛 = ((𝑥1 +  𝑥2 +  … +  𝑥𝑛))/ 𝑛 
𝑦_𝑚𝑒𝑎𝑛 = ((𝑦1 +  𝑦2 +  … +  𝑦𝑛))/ 𝑛 
𝑧_𝑚𝑒𝑎𝑛 = ((𝑧1 +  𝑧2 +  … +  𝑧𝑛))/ 𝑛 

 

For each landmark of all frames,the new predicted or ground truth 

landmarks can be obtained by subtracting the COM: 

Let landmarks(x,y,z)represent the original landmarks. 

Subtract the mean of all joint positions for each joint by Calculate the 

new_(pred_landmarks or) new_(gt_landmarks as): 
 

𝑛𝑒𝑤_(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ) =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠(𝑥, 𝑦, 𝑧) −
 (𝑥_𝑚𝑒𝑎𝑛, 𝑦_𝑚𝑒𝑎𝑛, 𝑧_𝑚𝑒𝑎𝑛 )  
 𝑛𝑒𝑤_(𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ) =
 𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠(𝑥, 𝑦, 𝑧)  −  (𝑥_𝑚𝑒𝑎𝑛, 𝑦_𝑚𝑒𝑎𝑛, 𝑧_𝑚𝑒𝑎𝑛 ).  

(Equation 1) 

 

b. Normalize all joint coordinates to ensure consistent scaling[41]. 

To normalize the coordinates between 0 and 1: 

Find the maximum value for each dimension (x,y,z)of each landmark. 

 
𝑔𝑡_(𝑐𝑜𝑜𝑟𝑑_max_𝑥   ) =  max (𝑥_𝑐𝑜𝑜𝑟𝑑 ) 
𝑔𝑡_(𝑐𝑜𝑜𝑟𝑑_max_𝑦   ) =  max (𝑦_𝑐𝑜𝑜𝑟𝑑 ) 
𝑔𝑡_(𝑐𝑜𝑜𝑟𝑑_max_𝑧   ) =  max (𝑧_𝑐𝑜𝑜𝑟𝑑 ) 

 

Divide each coordinate (x,y,z)separately by the corresponding 

maximum value. 

Normalize the coordinates and store them in "gt_normalized" and 

"pred_normalized".  
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Now, the loss function can be calculated between the ground truth 

frame and predicted frame. (Equation 2) 

 
 

c. Evaluate the performance of the model by comparing the normalized 

and mean-subtracted ground truth and predicted joint positions (As 

shown in Equation 1). 

 

In the analysis, the computation of the customized loss function for 

approximately 2,000 frames took about 5 hours. This time frame was 

achieved with GPU acceleration enabled on Google Colab . 

 

4.3 Performance Analysis  

 

The performance of the deep learning models was assessed using the 

testing set, comprising video frames and their corresponding animation 

skeleton coordinates. The evaluation results revealed promising 

performance in predicting the animation skeleton solely from 2D video 

input. Instead of using traditional evaluation metrics such as MSE, RMSE, 

and MAE, the focus was placed on analyzing the predicted skeleton in 

conjunction with the associated loss function. 

The loss function provided insights into the accuracy of the model's 

predictions. Landmarks associated with a loss value greater than 4 were 

visualized in red, indicating areas where the model struggled to accurately 

predict the skeleton and the predicted value is far from the ground truth 

value. Conversely, landmarks with a loss value less than 4 were displayed 

in green, indicating satisfactory predictions (Figure 23). 
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Figure 24: Performance analysis of the Detectron 2 and BlazePose deep learning 

model.The loss value greater than 4 visualized in red, indicating areas where the 

predicted value is far from the ground truth value, while green landmarks represent 

satisfactory prediction. 
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Figure 25: Animation skeleton surrounded by a 3D grid of green points where Each 

point is a separate camera position. 

To quantify model performance, this thesis calculated loss function 

for each point in the grid, and then converted the grid points to spherical 

coordinates (Radius, Azimuth, and Elevation). Radius is distance from 

camera to skeleton. Azimuth and Elevation, traditionally used in 

applications such as the tracking of celestial bodies, are measures that 

define coordinates in a three-dimensional space. For instance, they can 

identify a point's position in the sky. Azimuth indicates the direction to 

face, while Elevation specifies the vertical angle to look up. Both are 

measured in degrees or radians. 

Azimuth ranges from 0° to 360°, beginning with North at 0°. As one 

turns to the right (in a clockwise direction), East corresponds to 90°, South 

to 180°, and West to 270°, eventually returning to North, which is 360° and 

also 0°. Thus, an Azimuth of, say, 45° implies that the point of interest is 

located towards the northeast. 
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Elevation, also measured in degrees, can range from 0°, representing 

a point just at the observer's horizon, to 90°, indicating a point directly 

overhead, often referred to as "the zenith". 

In the ensuing diagram (Figure 25), the yellow circles (cameras) 

serve as an exemplification of such points. The green circle bears an 

Azimuth of approximately 200°, signifying a location southwest of the 

observer, and an Elevation of around 60°, indicating a position about 2/3 of 

the way up in the sky from the observer's perspective. 

Hence, in a given context, "START AZIMUTH" indicates the 

direction where the point(camera) of interest appears at one horizon, "MAX 

ELEVATION" specifies the maximum height the point(camera)  reaches in 

the sky, and "END AZIMUTH" indicates the direction where the point 

(camera)  of interest disappears at the other horizon. 

 

Figure 26: Azimuth and Elevation values in Cartesian coordinates. 

The three plots (Figure 26) represent the analysis of camera 

configurations and their impact on the prediction accuracy of character 

joints.  
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Figure 27: Loss_value for each r, elevation and azimuth value (radians). 

The first plot, the "r plot," displays the relationship between the 

distance of the camera from the character (r-axis) and the corresponding 

loss value (y-axis). The x-axis of the r plot ranges from 0 to approximately 

8, indicating the variation in camera distances in meters. A local-minima is 

observed at a distance of ~4 meters, indicating that the camera should be 

placed 4 meters from the subject for optimal results. 

The second plot “elevation” illustrates the relationship between the 

elevation angle of the camera (x-axis) and the associated loss value (y-axis). 

The x-axis of the elevation plot ranges from -2 to 2, representing the range 

of elevation angles in radians. This plot allows us to analyze how changes 

in camera elevation impact the accuracy of predicted character joints.  

The third plot, the "azimuth plot," presents the relationship between 

the azimuth angle of the camera (x-axis) and the corresponding loss value 
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(y-axis). The x-axis of the azimuth plot ranges from 0 to approximately 5, 

indicating the azimuth angle variations. The face of the character is 

positioned in front of the azimuth angle 0, indicating that the camera 

should be placed head-on to the subject. 

These three plots collectively provide a comprehensive 

understanding of the camera configurations used in the project and their 

effects on the accuracy of character joint predictions. In practical 

applications, when using BlazePose and MediaPipe, the camera should be 

placed facing the subject at a distance of 5 meters.  



Chapter 5: Discussion 

Chapter 5 Discussion 

5.1 Implications of Findings 

Using a synthetic dataset created in Unity, it was able to constructs a 100% 

accurate ground truth to investigate the performance of MediaPipe and 

Blazepose approach to animation prediction based on raw video input. 

Based on the outcome of our experiment, the camera should be placed 

facing the subject at a distance of approximately 4 meters. Other angles and 

distances will yield accurate animation predictions. 

5.2 Limitations and Challenges 

 

While the proposed deep learning-based methods shows promising 

results, several limitations and challenges should be acknowledged. The 

reliance on synthetic datasets introduces a gap between the synthetic 

environment and real-world scenarios. The model's performance may be 

impacted by variations in lighting conditions, occlusions, and other factors 

encountered in real-world video inputs. Additionally, the complexity of 

the animation and the inherent limitations of deep learning algorithms can 

pose challenges in accurately predicting intricate movements and poses. 
 

5.3 Future Research Directions 

 

Future research should focus on three main priorities: 

 

1. Improving the synthetic dataset. The virtual environment had basic 

lighting, simple character models and background. A more realistic 

virtual environment would give results more relevant to a real-

world application. 

 



 

38 
 

2. Testing more models. Here, this thesis tested only BlazePose and 

MediaPipe, but as shown in the literature review there are many 

animation skeleton prediction models to choose from. It would be 

interesting to see which performs best using this thesis’s automated 

approach with a known ground truth. 

 

3.  Examine if averaging the results across multiple cameras 

simultaneously could improve performance. The thesis’s loss 

function was based on a single camera, which inevitably suffers 

from occlusion artifacts and scaling problems. If multiple cameras 

were positioned around the model, recording video simultaneously, 

this thesis could combine their predictions and possibly achieve a 

more accurate result



Chapter 5: Conclusion 

Chapter 6 Conclusion 

In this research, the primary focus was the evaluation of current methods 

for predicting animation skeletons from monocular video inputs. The 

study illuminated significant insights, pinpointing the optimal 

combinations of angles and distances that enhance prediction accuracy and 

filling a notable gap in the existing literature. The methodology employed 

encompasses data preprocessing, the use of pre-trained models, the 

customization of a loss function, and an in-depth performance analysis. 

 

Beyond presenting results, this research offers a deeper 

understanding of the myriad factors influencing animation skeleton 

prediction. The broader ramifications of these findings are manifold: 

 

6.1 Implications and Benefits for the Readership 

6.1.1 Practical Utility 

The findings serve as a roadmap for those venturing into the realm of 

animation skeleton prediction using monocular video inputs, guiding them 

to the configurations that yield the best results. 

 

6.1.2 Academic Contributions 

We are the first to systematically evaluate the performance of state-of-the-

art deep learning algorithm for animation skeleton prediction. This study 

will lay the groundwork for future investigations into the accuracy of 3D 

animation prediction. 
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6.1.3 Industry Impact 

 With the animation and gaming industry in a state of rapid evolution, this 

research offers insights that can help studios and developers refine their 

animation capture techniques. 

 

In conclusion, this study stands as a comprehensive guide for those 

delving into the complexities of animation prediction. By emphasizing the 

nuances of angles, distances, and poses, it paves the way for future 

innovations in this field.
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