

A Deep Reinforcement Learning-based

Image Hashing Technique

by

MITRA REZAEI

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Canada

August 2023

Copyright © Mitra Rezaei, 2023

i

Abstract

In recent years, deep hashing algorithms have gained a lot of attention in image

retrieval because of their high efficiency, low memory consumption, and high

retrieval accuracy. Although a binary hash code with a longer length is technically

more accurate, it may contain redundant binary values, which is a major problem

with most hashing algorithms. This thesis proposes a Deep Reinforcement

Learning-Based Image Hashing Technique, which generates a binary hash code

database using CNN in the first step, and then adaptively selects the most

informative bits from each binary hash code in the second step, resulting in a more

accurate binary hash code database. In our approach, Markov Decision Process

(MDP) is used to model an efficient binary value selection process, and

Reinforcement Learning is used to solve it. The most informative bits are identified

by optimizing mean Average Precision (mAP) during training. Our method is

shown to produce highly efficient compact binary hash codes with different lengths

and perform better retrieval than state-of-the-art methods on three public datasets,

CIFAR-10, NUS-WIDE, and MS-COCO.

Keywords: Deep Learning, Markov Decision Process, Reinforcement Learning,

PPO, CNN, Image Hashing

ii

Acknowledgment

I would like to acknowledge all the people without whom this thesis would not have

been fulfilled. First place, I would like to express my sincere gratitude to my

supervisors, Dr. Madjid Allili and Dr. Mohammed Ayoub Alaoui Mhamdi for

accepting to be my supervisor and for always encouraging me to work hard. Thanks

to your time, effort, and understanding, my studies were a success.

I would also like to thank my family, especially my husband, Mehdi, for their

encouragement and support, without which I could not have completed my master's

degree.

Furthermore, I would like to thank all of the faculty members in the Computer

Science department at Bishop's University for their kindness and support. In every

education-related question I had, they always responded promptly.

In closing, I would like to express my gratitude to the Mitacs Foundation for

funding my internship.

iii

Contents

Introduction ..6
1.1 Introduction .. 6
1.2 Review of Hashing Theory .. 8
1.3 Similarity Search .. 11

Background and Literature Review ...16
2.1 Hashing Framework for Images ... 16

2.1.1 Preprocessing .. 16

2.1.2 Feature Extraction .. 17
2.1.3 Feature Compression and Post-Processing ... 18

2.2 Comparison and Decision Making .. 19
2.2.1 Distance Metrics ... 19

2.2.2 Classifiers .. 19
2.3 Previous Work .. 20

2.3.1 Traditional Hashing Methods ... 21

2.3.2 Deep Neural Network Image Hashing ... 23
Proposed Approach ..25

3.1 Deep Reinforcement Learning to Hash... 25
3.2 Markov Decision Process ... 26
3.3 Proposed Approach Components .. 27

3.3.1 CNN-based binary hash code extraction ... 28

3.3.2 Regeneration of binary hash codes by retaining valuable bits 33
Experiments ...37

4.1 Setup and Datasets ... 37

4.2 Experimental Results ... 40
Conclusion and Future works ..44

5.1 Conclusion .. 44
5.2 Future Work.. 44

References or Bibliography ...46

iv

List of Figures

Figure 1.1: Linear and Non-Linear hash function .. 10
Figure 1.2: The general procedure of CBIR. ... 12
Figure 1.3: Examples of distorted image copies under different content-

preserving attacks. ... 14
Figure 2.1: The framework of digital image hashing and content-based

fingerprinting review. ... 16
Figure 2.2: The proposed HashNet for deep learning to hash by continuation, which

is comprised of four key components: (1) Standard convolutional neural network

(CNN), e.g. AlexNet and ResNet, for learning deep image representations, (2) a

fully-connected hash layer (fch) for transforming the deep representation into K-

dimensional representation, (3) a sign activation function (sgn) for binarizing the

K-dimensional representation into K-bit binary hash code, and (4) a novel weighted

cross-entropy loss for similarity- reserving learning from sparse data. 24
Figure 3.1: Markov Decision Process .. 27
Figure 3.2: CNN-based binary hash code extraction ... 30
Figure 3.3: RL-based method to regenerate binary hash codes without unnecessary

bits. .. 35
Figure 4.1: Precision-recall curve @ 64 bits; The experimental result of our

approach and comparison methods on CIFAR-10, NUS-WIDE, MS-COCO 41
Figure 4.2: Precision within Hamming radius 2; The experimental result of our

approach and comparison methods on CIFAR-10, NUS-WIDE, MS-COCO 42
Figure 4.3: Precision curve for top-N @64bits; The experimental result of our

approach and comparison methods on CIFAR-10, NUS-WIDE, MS-COCO 42
Figure 4.4: Some good and bad examples of the top-5 retrieval results on three

benchmark datasets ... 43

v

List of Tables

Table 4.1: mAP of Hamming ranking for different number of bits on three datasets

using AlexNet. .. 40
Table 4.2: mAP of Hamming ranking for different number of bits on NUS-WIDE

& CIFAR-10 using VGG-19. .. 42

CHAPTER 1. INTRODUCTION

6

Chapter 1

Introduction

1.1 Introduction

Large data sets of high-dimensional raw data analysis are typically computationally

and memory costly. Due to this, it is frequently essential to translate data into a

lower-dimensional space as part of the preprocessing step while roughly

maintaining crucial geometric aspects, such as pairwise L2 distance [1]. Binary

embedding also known as binary hashing or binary representation, a technique to

nonlinearly embed high dimensional sets 𝑋 ⊆ ℝ𝑛 to the binary cube {1, −1}𝑚 with

𝑚 << 𝑛, has developed to further decrease memory requirements and simplify the

contents of the high dimensional data, such as images [2]. Image hashing is the

method of employing binary hashing for image datasets, thus rather than directly

comparing the images, it utilizes this hash instead [2]. As hashes are significantly

smaller than images, the comparison is quicker and uses less storage. Image hashing

has applications in image authentication and image retrieval [3], tamper detection

[4], digital watermarking [5], copy detection [6], digital forensics [7], and reduced-

reference image quality evaluation [8]. For example, people often use image editing

tools, such as Photoshop and ACDsee software, to process photographs and save

them in JPEG format with different filenames. Consequently, there may be several

copies of an image on the computer. These copies have the same visual contents as

the original image, but their digital representations are different from that of the

original one. In this case, people can exploit the image hash function to efficiently

search all similar versions (including the original one and its copies) of the image

from a large-scale image database.

On the other hand, there is a vast variety of smart digital devices, internet

connections, and people all over the world who can use these devices and services

to create and distribute digital content that may be harmful to others. The

advancement of digital forgery has posed a significant challenge to multimedia

authentication and security [2]. Additional layers of prevention are required to

protect against such crimes and to support Law Enforcement Agencies (LEAs). In

addition to social awareness and cybersecurity, computer vision techniques such as

image hashing can be employed to detect, stop, and respond to sophisticated crimes

such as distributing fake images. In the fight against cybercrimes, such as the

distribution and consumption of Child Sexual Abuse Material (CSAM), hotlines,

law enforcement agencies, industry stakeholders, and other child protection

organizations utilize image hashing technology to detect and remove CSAM [9].

CHAPTER 1. INTRODUCTION

7

Image hash function takes an image as input and maps it to a compact hash value

such that perceptually similar images always map to similar values, and different

values if the images are perceptually different.

In this thesis, we explore the utilization of deep reinforcement learning for image

hashing, presenting a novel approach to decision-making. We frame the image

hashing problem within the framework of a Markov Decision Process (MDP),

which provides a formal representation of sequential decisions made by an agent.

Our objective is to construct binary hash codes for images that effectively minimize

the Hamming distance between images of the same class and maximize the distance

between images of different classes. The reason for this is that it allows the

detection and removal of known CSAM items without requiring an analyst to assess

them again. Using hashing technology is critical because once CSAM exists online,

it is often shared thousands of times. As a result, analysts and law enforcement are

relieved of the repetitive review of the same content and the number of people

watching the abuse is minimized. Furthermore, due to the rapid growth of images

on the web, large scale image retrieval has been gaining a lot of attention. To

retrieve images, many hashing methods have been proposed [10], [11]. Image

hashes provide an automated way of deciding whether two media files are still

perceptually identical, for example, whether one image is a copy of another, which

was processed without changing its semantics. Unlike cryptographic hash functions

such as Message Digest Algorithm (MD5), and Secure Hash Algorithm (SHA-1)

the image hash function is not sensitive to digital representation of an image. It

produces the same or very similar hash values for visually identical images no

matter whether their representations are the same or not. In general, an image hash

function must have two properties:

• Perceptual Robustness: A hash function should be robust against content-

preserving operations, such as JPEG compression and denoising [12]. Image

hash function should learn the same or similar hashes from those visually

similar images, which may undergo common digital operations, such as image

compression and geometric transformations. Thus, Images and their attacked

versions should have the same hash.

• Discriminative Capability: The discriminative capability in image hashing

refers to the ability of an image hash function to produce distinct hash values

for different images. In other words, it measures how well the hash function can

distinguish between two images and generate different hash codes for them.

The higher the discriminative capability of an image hash function, the lower

the probability of two different images having the same hash value. This

property is essential for tasks such as image retrieval, duplicate detection, and

content-based image recognition, where similar images need to be identified

accurately [13].

CHAPTER 1. INTRODUCTION

8

It should be noted that there exists a constraining relationship between Perceptual

Robustness and Discriminative Capability. The relationship between these two

properties is that they are often trade-offs. An image hash function that is highly

perceptually robust may have lower discriminative capability since it needs to

generate the same hash value for similar images. Similarly, an image hash function

with high discriminative capability may not be as perceptually robust since it needs

to generate different hash values for even slightly different images. Therefore,

designing an image hash function that strikes a balance between these two

properties is crucial, depending on the intended application. For instance, if the

primary application is image retrieval, the high discriminative capability is

desirable, while if the application is image authentication, high perceptual

robustness is more critical. By using binary codes instead of real-valued features,

searching can be greatly sped up and memory costs reduced. For instance, during

the detection of illegal material, if the hash of the original copy of that illegal image

is stored in a database, the found media files are also hashed and these hashes are

searched for in the database. If a very similar hash is found, illegal content has been

detected.

1.2 Review of Hashing Theory

Hashing is a technique for finding nearest neighbors in large-scale datasets that

involves embedding high-dimensional feature descriptors into a similarity-

preserving Hamming space with a low dimension and a fixed length known as a

Hash [11]. Cryptographic Hash Functions (CHFs) are mathematical operations that

convert input data into a fixed-length string of bits, called a Hash value, and are

used to verify the validity of data with varying levels of complexity and difficulty

[9]. Cryptographic hashes add security features to traditional hashes, making it

more difficult to decipher message contents or access recipient information [14].

The applications of CHFs namely, message authentication, user authentication, and

secure matching provide advantages that are highly desirable in information

security. CHFs have two characteristics:

• Collision-free: The output hash of a well-designed CHF is unique for every

input, and collisions are minimized by using mathematical techniques.

• Irreversibility: Since hash functions are one-way procedures, it might be

challenging to infer the input value of a hash function from its result.

Although CHFs are ideal for hashing passwords and PINs, they are not suitable for

image processing or biometrics since perceptually identical photos or biometrics of

the same user can differ at various times or locations. The pixel values of images

or biometrics can be changed so that they remain perceptually the same but have a

significantly different appearance. Nevertheless, we know that when utilizing

CHFs, even the smallest change to the image results in an entirely different hash.

CHAPTER 1. INTRODUCTION

9

The reason is that hash functions used in CHFs are extremely sensitive to variations

and thus incapable of providing effective hashes for images or biometrics. To hash

images without being sensitive to small input changes, Image Hashing has been

proposed as an alternative to CHFs. In other words, binary embedding or image

hashing is a hash function that is robust to minor changes. Therefore, an image

hash function should be resistant to visual manipulation and prevent bit-by-bit

comparison, it should produce a different hash if the visual content differs [15].

The objective of image hashing is to convert high-dimensional feature

vectors into low-dimensional hash codes, so that the hash codes of similar or

near-similar items are as similar or as close as possible, while the hash codes of

dissimilar things are as distinct as possible. Hash functions scramble data and

convert it into a numerical value and no matter how long the input is, the output

value is always of the same length. Message digest functions or hash algorithms

are other names for hash functions. As was previously said, a hash function is

essential in establishing the retrieval accuracy in applications of the hashing

approach. Basically, the generic hashing procedure can be stated as ℎ𝑎𝑠ℎ(𝑥) →

𝑧, where the value of 𝑥 refers to the pixel values of the image’s feature vectors.

The hash function ℎ𝑎𝑠ℎ(.) can be summarized into two main types:

• Linear hash functions,

• Nonlinear hash functions.

The generalized linear hash function is illustrated as 𝑠𝑖𝑔𝑛(𝑊𝑥 + 𝑦) → 𝑧 where

𝑊 ∈ ℝp×d and 𝑦 ∈ ℝ𝑃 represent the linear projection matrix and bias vector,

respectively. Hard thresholding function 𝑠𝑖𝑔𝑛(𝑥) equals 1 if x ≥ 0, otherwise

−1. However, in real applications, the linear hash function usually suffers from

low discrimination power [16]. To overcome the low discrimination power of

linear hash functions, researchers have developed nonlinear hash functions by

applying kernel, spherical function, or boosting models to the original feature

before binarization [16]. As opposed to linear hashes, nonlinear operations

enhance feature expressiveness and are more suitable for data collected from

complex real-world scenarios. Figure 1.1 gives a simple example of such a case.

A kernel-based hash function is presented below without loss of generality:

𝑠𝑖𝑔𝑛 (∑𝑊𝑖𝜑(𝑐𝑖, 𝑥) + 𝑦

𝑖

) → 𝑧

(1.1)

where 𝑐𝑖 denotes the randomly sampled data point or cluster center from the

dataset. φ(.) is the kernel function and 𝑊𝑖 represents the weight matrix. In recent

years, deep neural networks have been widely integrated into hashing

frameworks, which can be considered as an advanced form of nonlinear hash

functions with varied activation functions [16].

CHAPTER 1. INTRODUCTION

10

Figure 1.1: Linear and Non-Linear hash function

Image Hashing, which considers changes in the visual domain, is an efficient

multimedia technology that facilitates content identification and comparison,

ensuring reliable and secure multimedia management and retrieval processes. In an

image hashing process, the input is an image, and the output is a compact binary

representation based on the visual content of the input image [15]. Generally, the

compact representation is called an image hash. An image hash is significantly

lower in size than the actual image data since it just comprises the fundamental

perceptual components of a picture. These perceptual components according to

Robin Landa’s book [17] include:

• Shape: The form or outline of objects in the picture.

• Color: The hue, saturation, and brightness of the picture.

• Texture: The surface quality or feel of the objects in the picture.

• Contrast: The difference between light and dark areas in the picture.

• Depth: The perceived distance between objects in the picture.

• Composition: The arrangement of objects and visual elements within the

picture.

• Movement: The appearance of motion or activity in the picture.

• Perspective: The way that objects appear to change in size and position based

on their distance from the viewer.

The image hash’s small size speeds up search processes and reduces memory use.

Note that the robust hash values are not only generated from images, but also

from other multimedia formats, such as audio hashing [18] and video hashing

[19]. In this thesis, we focus on image hashing since it is the most widely

researched with the longest developing history. There are many other academic

terms used for image hashing in literature: perceptual image hashing, robust

image hashing, robust perceptual hash, soft hash, etc. [20]. We use the term

Image Hashing in a broad sense to include all the foregoing technologies.

CHAPTER 1. INTRODUCTION

11

Given a data sample represented by a feature vector 𝑥 ∈ ℝ𝑑, the goal of

hashing techniques is to design an optimal hash function ℎ𝑎𝑠ℎ(.) that

projects 𝑥 from the original high-dimensional space into compact binary space

𝑧: 𝑧 ∈ {−1, 1}𝑔(ℝ𝑑 → ℝ𝑔 𝑎𝑛𝑑 𝑑 ≫ 𝑔) while keeping its true nearest neighbors as

close as possible in the Hamming space [21]. In other words, similar data

samples in the original feature space should be represented with similar binary

codes in the Hamming distance, significantly enhancing retrieval efficiency

while maintaining reasonable accuracy.

1.3 Similarity Search

The Internet era has created a huge amount of data and the explosion of data in

all its forms, like image, text, audio, and video, has led to a multitude of

problems concerning their authenticity and validity [16]. According to public

statistics website, the average number of photos being shared every day on

Flickr is about 1 million. To manage such massive data sources, conducting

reliable and effective content-based similarity retrieval has received a lot of

interest from both industry and academics.

Nearest Neighbor (NN) search, also known as proximity search, is often used

in image retrieval applications, where the task is to find the closest matching

image in a database to a query image [22]. According to Doan et al. [23] the

NN algorithm can be used in this context by computing the similarity between

the query image and the images in the database and selecting the image with

the highest similarity as the closest match. NN has been successful in many

classification and regression problems, including handwritten digits and

satellite image scenes [23]. The cost of finding the exact nearest neighbor is

prohibitively high in the case that the reference database is very large or that

computing the distance between the query item and the database item is costly

[22]. Furthermore, the proliferation of multimedia information such as images

has made the security of media content an important research concern [24].

Thus, multimedia authentication techniques have emerged to verify content

integrity and prevent forgery.

Being a non-parametric method, NN is often successful in classification

situations where the decision boundary is very irregular [16]. Particularly, given

a query feature vector 𝑥𝑞 ∈ ℝ
𝒅, a gallery set consists of 𝑛 feature vectors 𝑋 =

 [𝑥𝑖]𝑖=1
𝑛 ∈ ℝ𝒅×𝒏, 𝑑 is the dimensionality, the NN search problem can be

formulated as 𝑁𝑁(𝑥𝑞) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑑𝑖𝑠𝑡(𝑥𝑞 , 𝑥) , 𝑥 ∈ 𝑋 where 𝑑𝑖𝑠𝑡(.) represents a

specific distance metric (e.g., Euclidean distance) that determines the closest

candidates to 𝑥𝑞 in the feature space [16].

https://expandedramblings.com/index.php/flickr-stats/

CHAPTER 1. INTRODUCTION

12

To further clarify the similarity retrieval process, a simple flowchart of the

general Content-Based Image Retrieval (CBIR) [24] is presented in Figure 1.2

which is taken from [16].

Figure 1.2: The general procedure of CBIR.

This framework of CBIR could be easily extended to the other related tasks

involving different data types. In CBIR, images are first represented with

various feature vectors and then encoded into alternative representations

following certain patterns like encoding function [16]. Here, the encoding

function, which is also the learning objective in most search frameworks,

should be carefully designed to obtain better performance in the upcoming

retrieval tasks. Then, the gallery and query data are pre-computed by the

learned encoding function and their encoded feature vectors are measured under

a distance metric. By sorting those distances in an ascending order, the

candidates from the gallery with the smallest distances are returned as the

relevant (i.e., similar) neighbors to one specific query. Generally speaking, the

search efficiency depends on the computational complexity of the retrieval

phase. Depending on how complex the retrieval phase is, the search efficiency

will vary. At the same time, the search accuracy is usually determined by the

proper design of the encoding mechanism when using fixed feature extractor.

Early works in the research of similarity retrieval perform the

exhaustive/exact NN search in the retrieval process. In practical applications,

such a search strategy (i.e., linear scan) is weak in tackling large datasets with

many samples [21]. Later on, some tree-based search schemes are proposed to

subdivide the feature space for data samples via employing various tree

structures for fast search. As a representative, the K-Dimensional tree (KD-

tree), is a method for indexing the data for quick query response [21]. However,

a disadvantage of this method is that it cannot handle cases with high

dimensions, known as the curse of dimensionality, whose computational costs

CHAPTER 1. INTRODUCTION

13

grow exponentially with increasing dimensions, making it less suitable for

large-scale retrieval applications [16].

Consequently, Approximate Nearest Neighbor (ANN) search has been

developed rapidly, where the Hash-based approaches draw considerable

attention in this research field to overcome the limitations via conducting

efficient retrieval in low-dimensional (i.e., compact) Hamming space [22]. The

ANN approach is more efficient and has been shown to be sufficient and useful

in many practical situations. Additionally, ANN frequently meets search

requirements and greatly reduces search complexity, drawing a lot of research

[22]. The core idea of hashing is to represent the high-dimensional real-valued

original data with a series of compact binary codes while preserving the

semantics as much as possible during the code learning, thus accelerating the

retrieval process without compromising the accuracy. Every duplicate copy of

the image also has the exact same hash value. Thus, it is sometimes referred to

as a Digital Fingerprint.

According to Gionis et al. [25] two advantages of hashing algorithms are

presented as follows:

• Memory requirements are drastically reduced when using compact binary codes

to store huge features and retrieve massive volumes of data.

• It is advantageous to use compact binary code for similarity computation

because Hamming distance computation just requires bitwise operations.

These two benefits make hashing extremely competitive in conducting large-

scale visual-related similarity search tasks. Robust hash functions are closely

related to CHFs in mapping a large input data into a small fixed-length binary

string. The key difference is their tolerance to minor incidental changes in the input

sequence whilst remaining sensitive to large content changes. Given images 𝐼 and

𝐼′ and their perceptually similar copies with a minor distortion 𝐼𝑑 and 𝐼𝑑
′ , and an

image hashing function ℎ𝑎𝑠ℎ𝑘(.) depending on a secret key 𝑘, the required

characteristics of ℎ𝑎𝑠ℎ𝑘(.) can be categorized into the following five groups [26]:

1. Uniqueness: Perceptually distinct images should have unique hashes,

𝑃𝑟(ℎ𝑎𝑠ℎ𝑘(𝐼) ≠ ℎ𝑎𝑠ℎ𝑘(𝐼
′)) ≥ 1 − 𝜏, 0 ≤ 𝜏 < 1, (1.2)

2. Compactness: The hash size should be much smaller than that of the original

image 𝐼,
𝑆𝑖𝑧𝑒(ℎ𝑎𝑠ℎ𝑘(𝐼)) ≪ 𝑠𝑖𝑧𝑒(𝐼), (1.3)

3. Perceptual Robustness: Perceptually identical images should have similar

hashes,

𝑃𝑟(ℎ𝑎𝑠ℎ𝑘(𝐼) ≈ ℎ𝑎𝑠ℎ𝑘(𝐼𝑑)) ≥ 1 − 𝜀, 0 ≤ 𝜀 < 1, (1.4)

CHAPTER 1. INTRODUCTION

14

When images are distributed via the Internet, distortions are inevitable due to lossy

compression and noisy transmission channels, etc. Therefore, image hashing should

be resistant to such distortions and attacks against image identification and retrieval

processes and ensure that perceptually comparable images have similar image

hashes. Figure 1.3 is taken from [26] and displays an original image along with

deformed reproductions of it. These images experienced some content-preserving

distortions and attacks, yet perceptually they are the same in the Human Visual

System (HVS).

Figure 1.3: Examples of distorted image copies under different content-preserving attacks.

The perceptual robustness of image hashing guarantees that these images have very

close hashes if the algorithms are robust enough against these attacks.

4. One-way: Ideally, a hash function should be irreversible, 𝐼 ↦ ℎ𝑎𝑠ℎ𝑘(𝐼)
5. Unpredictability: The hash is intractable without the secret key,

𝑃𝑟(ℎ𝑎𝑠ℎ𝑘(𝐼) ≠ ℎ𝑎𝑠ℎ𝑘′(𝐼)) ≥ 1 − 𝛿, 0 ≤ 𝛿 < 1, (1.5)

Ideally, all the above parameters 𝜀, τ, and 𝛿 should be close to zero for a proper

designed hashing function to generate unique and compact image hashes, which are

robust enough against perceptually insignificant distortions and secure enough to

prevent unauthorized access. In this thesis, we will focus on learning effective

binary representation of an image with deep reinforcement hashing technique.

In this thesis, we explore the utilization of deep reinforcement learning for

image hashing, presenting a novel approach to decision-making. We frame the

image hashing problem within the framework of a MDP, which provides a

formal representation of sequential decisions made by an agent. Our objective

is to construct binary hash codes for images that effectively minimize the

Hamming distance between images of the same class and maximize the

CHAPTER 1. INTRODUCTION

15

distance between images of different classes. Our proposed Deep

Reinforcement Learning-based Image Hashing architecture comprises two key

components: a CNN-based binary hash code extraction module and a binary

hash code regeneration module that retains valuable bits. Firstly, we leverage

CNN, specifically AlexNet [38], to determine which hash code preserves the

similarity between image pairs and their corresponding semantic labels. To

achieve this, we set the output dimension of the last layer of AlexNet to match

the desired length of the extracted hash codes, while keeping all other layers

unchanged. Given the potential limitations of hash functions, which can result

in long binary codes that are the same for different inputs, it becomes crucial to

remove redundant bits while preserving those that maintain uniqueness and

accurately represent the original data. Therefore, in the second step, we employ

the Proximal Policy Optimization (PPO) algorithm [39], which belongs to the

actor-critic family of reinforcement learning algorithms. Actor-critic

algorithms combine value-based and policy-based methods, with the actor

representing the policy that maps states to actions (i.e., hash codes), and the

critic estimating the expected reward for a given state or state-action pair.

Throughout this thesis, we investigate and develop the aforementioned deep

reinforcement learning-based approach to enhance the generation of binary

hash codes for images. By incorporating CNN-based extraction and PPO-based

regeneration, we aim to optimize the preservation of similarity and uniqueness,

thereby providing an improved representation of the original image data. The

rest of the thesis is organized as follows. Chapter 2 briefly reviews image hashing

and content-based fingerprinting and some related works. In Chapter 3, we describe

in detail our new framework of Deep Reinforcement Learning-based Image

Hashing Technique. In Chapter 4, we present the experimental results and

evaluation analysis of our proposed approach, and the thesis concludes in Chapter

5 along with possible future work.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

16

Chapter 2

Background and Literature Review

2.1 Hashing Framework for Images

An image hashing framework refers to a system of methods and algorithms used to

convert an image into a compact digital signature [27]. The purpose of image

hashing is to efficiently represent an image in a compact and unique form, allowing

for tasks such as CBIR, image authentication, and tamper detection [21]. The major

components that are critical to designing a robust and secure digital image hashing

algorithm are shown in Figure 2.1.

4 Figure 2.1: The framework of digital image hashing and content-based fingerprinting review.

2.1.1 Preprocessing

Prior to feature extraction, the preprocessing step filters the image content. As a

result, some distortions, such as additive noise, are prevented from affecting the

robustness of features. As part of the preprocessing, some works normalize images

into a standardized format, which can facilitate the feature extraction process. The

common pre-processing operations applied on digital images are illustrated as

follows:

• Color Space Dimension Reduction: Color images are first converted to

grayscale images to reduce the computational cost for feature extraction (e.g.,

3D to 2D) [28]. Another way is based on the color space transform that converts

RGB space to Hue-Saturation-Value (HSV) space. The conversion from RGB

color space to HSV color space is nonlinear. Let 𝐻 be the Hue of a pixel in the

HSV model, 𝑆 be the Saturation and 𝑉 be the Brightness, respectively. Thus,

their values can be determined in the Equations below:

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

17

𝐻 =

{

 (−𝐵 + 𝐺) ×

𝜋
3

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝑅 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)

(−𝑅 + 𝐵) ×
𝜋
3

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝐺 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)

(−𝐺 + 𝑅) ×
𝜋
3

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝐵 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 𝑅 = 𝐺 = 𝐵

(2.1)

𝑆 = {

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) ≠ 0

0 , 𝑖𝑓 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) = 0

(2.2)

𝑉 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) (2.3)

• Resizing: Images are resized to a predefined size (usually very small, e.g., 256

× 384) as a default format. Resizing has two benefits: first, it is significantly

less computationally expensive, improves the effectiveness of hash production,

and enables quick indexing and retrieval. Second, characteristics retrieved from

images with a defined size are more resistant to geometric attacks like changing

aspect ratios.

• Filtering: It is a productive method for making the derived characteristics more

noise resistant. Digital images can be processed to reduce noise using some

well-known filters, like the median filter and the Gaussian filter. The image

hashing system must be resistant to blurring distortions since these low-pass

filters would also remove certain picture content information and produce

blurred images.

• Illumination Normalization: In computer vision and image processing,

illumination normalization is a technique used to account for differences in

lighting conditions across distinct images. It seeks to eliminate or minimize the

impacts of illumination variations, such as shadows, highlights, and overall

brightness, in order to increase the precision and dependability of ensuing

image analysis activities.

2.1.2 Feature Extraction

In image hashing and fingerprinting algorithms, feature extraction is one of the

fundamental modules. The image features are extracted from the transformed image

to generate the feature vector of 𝐿 features where 𝐿 ≪ 𝑀 × 𝑁. A digital image

hash is unique since it is derived from distinctive features of digital images [26].

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

18

Nevertheless, if two digital images are perceptually identical, then the extracted

features, and therefore the image hashes, should be as similar as possible even when

the images are subject to additive noise, blurring, geometric attacks, and other

content-preserving techniques.

According to the related literature review, most previous works have focused on

finding robust features that can withstand distortions and attacks, which are

summarized as follows:

• Image Pixels: Image pixel values are the raw features that could be directly

used for hash generation. However, an 𝑁 × 𝑁 image will have a feature vector

with length 𝑁2, which can be quite high dimensional. Therefore, a dimension

reduction technique that could preserve the local similarity is required.

• Invariant Feature Transform: Coefficients in a transformed domain can be

important features and sufficiently resistant to a broad class of attacks and

distortions. There are several state-of-the-art transforms that can be used to

extract robust features, including Discrete Cosine Transform (DCT) and

Discrete Wavelet Transform (DWT).

• Convolutional Neural Network: A neural network which is designed to

process multi-dimensional data like image and time series data is called a

Convolutional Neural Network (CNN). The main benefit of CNNs is that

automatic feature extraction is offered. The input data is initially forwarded to

a feature extraction network, and then the extracted features can be fed into a

hash function to produce related binary hash code.

2.1.3 Feature Compression and Post-Processing

Compactness is an important characteristic of image hashing. Since substantial

characteristics can be condensed into brief real-valued or even binary sequences,

this can essentially be thought of as a dimension-reduction procedure. Some typical

methods of compression are summarized as follows:

• Quantization: It is widely employed for converting continuous feature space

to finite discrete feature space and helpful for further signature encoding [29].

Popular approaches include interval quantization, binary quantization using

threshold, and so on for image hash generation.

• Random Projection: It is one of the state-of-the-art dimension reduction

techniques to project data in a high dimensional space into a lower dimensional

space, while preserving the local similarity of the data [30]. The random

projection approach can result in performances comparable to that of the

conventional dimension reduction methods such as Principal Component

Analysis (PCA) but be computationally more efficient.

https://www.sciencedirect.com/topics/computer-science/neural-networks
https://www.sciencedirect.com/topics/computer-science/time-series-data

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

*: The Hamming distance operator is ⊕

19

2.2 Comparison and Decision Making

Following the framework of image hashing or content-based fingerprinting, a

compact and secure hash is generated and associated with the corresponding

original image in database as an index. When a query hash is received, it will be

compared with the existing hashes based on the selected distance metrics and the

corresponding image will be retrieved according to the classifiers. Hence, the

distance metrics to measure the similarity between hashes and the classifiers to

make decisions are also two important issues in hashing and fingerprinting

schemes.

2.2.1 Distance Metrics

Given two hashes 𝐻1 = {ℎ1(1), ℎ1(2), … , ℎ1(𝑘)} and 𝐻2 = {ℎ2(1), ℎ2(2),… , ℎ2(𝑘)} of

two images 𝐼1 and 𝐼2 with length 𝑘, the following distance metrics are usually

employed:

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑑𝑖𝑠𝑡(𝐻1, 𝐻2) = √∑ (ℎ1(𝑖) − ℎ2(𝑖))
2𝑘

𝑖=1
(2.4)

𝐿1 𝑁𝑜𝑟𝑚 ∶ 𝑑𝑖𝑠𝑡(𝐻1, 𝐻2) = ∑ |ℎ1(𝑖) − ℎ2(𝑖)|
𝑘
𝑖=1 (2.5)

 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∶ 𝑑𝑖𝑠𝑡(𝐻1, 𝐻2) = ∑ |ℎ1(𝑖) ⊕
∗ ℎ2(𝑖)|

𝑘
𝑖=1 (2.6)

The choice of distance metrics depends on the type of hashes. When the generated

hashes are real-valued vectors, Euclidean distance or L1 Norm is usually employed.

Otherwise, Hamming distance should be used for binary hashes. Hamming

distances are preferable for the lower computational cost, while Euclidean distance

or L1 Norm provide higher identification accuracy with the cost of the more

computational burden.

2.2.2 Classifiers

After the similarity between hashes is measured by the selected distance metrics,

classifiers are employed to make the decision for content identification. In most

image hashing and fingerprinting algorithms, the simple nearest neighbor classifier

or threshold-based classifiers are usually used for making decisions. Hash codes

are classified using 𝐷𝑖𝑠𝑡(𝐻1, 𝐻2) ≤ 𝜉, where ξ is the selected threshold [33].

Although there are a lot of advanced classification methods proposed in machine

learning, they are rarely employed in the image hashing area. The underlying reason

is as follows: image hashing is an infinite clustering problem, which takes each

original image as a new cluster and all its perceptually identical copies are assumed

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

20

to lie in the neighborhood of the centroid (e.g., the original image). Hence, if

advanced supervised classifiers, such as Support Vector Machine (SVM), are

employed, they could only deal with the finite classification problems and must be

re-trained, whenever a new original image is registered in a dataset or collection of

images [10]. The re-training process may incur heavy computational cost when

thousands of images are registered and training advanced classifiers to deal with

classification for infinite classes is not feasible in practice.

2.3 Previous Work

The existing hashing methods can be divided into two categories: Traditional

Hashing methods and Deep Neural Network (DNN) Image Hashing [33]. Image

retrieval performance is limited by traditional hashing methods because they use

handcrafted features as image representations, which cannot adequately represent

the image content. The current deep hashing methods, also, have two major

disadvantages. Firstly, to train most DNN methods, data is often broken into smaller

sets termed "mini batches" and then processed. This is because mini-batch

optimization, while widely used for training neural networks, has several

drawbacks. One significant disadvantage is the potential loss of generalization due

to the stochastic nature of mini-batch sampling, introducing noise into gradient

estimates and leading to less stable optimization and suboptimal convergence.

Selecting an appropriate batch size is crucial, as a small batch size can result in

noisy gradients and slow convergence, while a large batch size may lead to memory

limitations and longer training times. Additionally, mini-batch optimization is

susceptible to getting trapped in local minima, particularly with small batch sizes,

hindering the model’s ability to find the global minimum of the loss function. The

choice of learning rate and its schedule presents challenges, requiring careful tuning

to balance rapid convergence and preventing overshooting. Moreover, the frequent

weight updates inherent to mini-batch optimization introduce increased

computational overhead compared to batch optimization, where weights are

updated after processing the entire dataset. Secondly, most existing methods

generate redundant hash codes [33]. It may even be possible to throw away some

bits of the generated hash codes without harming the retrieval accuracy. According

to Shaik et al. [3] these redundant or even harmful bits can come from two sources.

One source is the dataset that contains noisy data and, the second one, mini-batch

training approaches only preserve local similarity relationships in the generated

hash codes. Mini-batch methods, employed in training deep learning models,

involve optimizing the model’s parameters using subsets of the entire dataset in

each iteration. While this approach accelerates the optimization process, it can

inadvertently emphasize local relationships between data points present in each

mini batch. As a consequence, the model may become biased towards capturing

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

21

local patterns or features, neglecting broader global features that contribute to the

overall structure and semantics of the data. In the context of image hashing, this

means that the generated hash codes might prioritize encoding similarities and

dissimilarities within the sampled mini batches, potentially overlooking important

global characteristics that could aid in accurate and efficient retrieval.

Consequently, this local focus could lead to suboptimal hash codes that lack the

holistic understanding needed for effective image representation and retrieval

across the entire dataset. Existing hashing methods can also be categorized into two

classes [33]: data-dependent and data-independent. Data-dependent methods can

be further divided into Unsupervised and Supervised methods based on their use of

side information. To learn hashing functions, unsupervised methods do not require

label information. In the following, we will briefly review traditional hashing

approaches and DNN image hashing.

2.3.1 Traditional Hashing Methods

As a traditional hashing method, Fei-Fei et al. [31] in Bag-of-Visual-Words, model

images as patches. A patch 𝑥 is the basic unit of an image, all patches are indexed

by {1, … , 𝑇}. Bag-of-Visual-Words aims to develop a model that best represents the

distribution of these patches across the categories of scenes. A scene or image is a

sequence of 𝑁 patches denoted by 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑛 is the 𝑛𝑡ℎ patch of

the image. In recognition, all the patches first are identified in the unknown image.

Then a category model that fits best the distribution of the patches of the image will

be found. A category is a collection of 𝐼 images denoted by 𝐷 = {𝑋1, 𝑋2, … , 𝑋𝐼}.

Choosing a category label, such as a mountain scene, is the next step. Based on the

mountain class, they determine which intermediate theme(s) to pick for each patch

while generating the scene. The patch is created by selecting a particular theme

from a variety of possible themes. For example, if a “rock” theme is selected, this

will in turn privilege some patches that occur more frequently in rocks (e.g., slanted

lines). Now the theme favoring more horizontal edges is chosen, one can draw a

patch, which is likely to be a horizontal line segment. The process of drawing both

the theme and patch repeat many times, eventually forming an entire bag of patches

that would construct an image of mountains. According to [31] the process that

generates an image 𝑖 formally from the model is as follows:

Choose a category label 𝑐 ~ 𝑝(𝑐|𝜂) for each image, where 𝑐 is a variable that

takes on values from the set {1, … , 𝐶} where 𝐶 represents the total number of

categories. Each image is assigned a category label, denoted by 𝑐 which

corresponds to a specific category or class. 𝜂 is a C-dimensional vector of a

multinomial distribution. Now for a particular image in category 𝑐, we want to draw

a parameter that determines the distribution of the intermediate themes (e.g., how

“water”, “sky” etc. are distributed for this scene). This is done by choosing

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

22

𝜋~ 𝑝(𝜋|𝑐, 𝜃) for each image. 𝜋 is the parameter of a multinomial distribution for

choosing the themes. θ is a matrix of size 𝐶 × 𝐾, where 𝜃𝑐 is the 𝐾-dimensional

Dirichlet parameter conditioned on the category c. 𝐾 is the total number of themes.

For each 𝑁 patches 𝑥𝑛 in the image:

• Choose a theme 𝑧𝑛 ∼ Mult(π). 𝑧𝑛 is a K-dim unit vector. 𝑧𝑛
𝑘 = 1 indicates that

the 𝑘𝑡ℎ theme is selected (e.g., “rock” theme).

• Choose a patch 𝑥𝑛 ~ 𝑝(𝑥𝑛|𝑧𝑛, 𝛽) where 𝛽 is a matrix of size 𝐾 × 𝑇. 𝐾 is again

the number of themes and 𝑇 is the total number of patches. Therefore, we have

𝛽𝑘𝑡 = 𝑝(𝑥𝑛
𝑡 = 1|𝑧𝑛

𝑘 = 1)
Given the parameters θ, η and 𝛽, we can now write the full generative equation of

the model. It is the joint probability of a theme mixture π, a set of 𝑁 themes 𝑧, 𝑎 set

of 𝑁 patches 𝑥 and the category 𝑐, as shown in Equation 2.7:

𝑝(𝑥, 𝑧, 𝜋, 𝑐 |𝜃, 𝜂, 𝛽) = 𝑝(𝑐|𝜂)𝑝(𝜋|𝑐, 𝜃) (2.7)

The Dirichlet parameter 𝜃 for each category is a category-level parameter, sampled

once in the process of generating a category of scenes. The multinomial variables

𝜋 are scene-level variables, sampled once per image. Finally, the discrete theme

variable 𝑧 and patch 𝑥 are patch-level variables, sampled every time a patch is

generated. Fei-Fei et al. [31] train and test their model on a dataset containing 13

categories of natural scenes, making it the largest dataset of its kind at that date. In

their model when detecting or creating an image, the combined likelihood of

patches, themes, and categories is computed. However, in extensive datasets like

ImageNet, which contain over 20,000 categories and more than 14 million images,

the manually designed features employed as image representations are inadequate

for accurately capturing the content of an image. This is due to the fact that the

identified image can potentially belong to hundreds or even thousands of

categories. This approach also limits the performance of single-image retrieval

because it imposes long-term computation and is applicable to datasets that are

labeled. Indyk et al. [25] propose Locality Sensitive Hashing (LSH) as a data-

independent unsupervised method to image hashing which is also the most

representative one. LSH uses randomly generated hash functions that hash data

points or image features into buckets in such a way that data points within a bucket

have a high probability of being the same, while data points farther apart are likely

to be in different buckets. LSH maps images into binary codes while preserving

cosine similarity using random projections derived from Gaussian distributions.

The probability of collision of two points 𝑝 and 𝑞 is closely related to the distance

between them. Specifically, the larger the distance, the smaller the collision

probability. This intuition is formulized as follows [47]. Let 𝑑𝑖𝑠𝑡(. , .) be a distance

function of elements from a set 𝑆, and for any 𝑝 ∈ 𝑆 let 𝛽(𝑝, 𝑑) denote the set of

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

23

elements from 𝑆 within the distance 𝑑 from 𝑝. A family 𝐻 of functions from 𝑆 to 𝑈

is called (𝑟1, 𝑟2, 𝑝1, 𝑝2) −sensitive for 𝑑𝑖𝑠𝑡(. , .) if for any 𝑞, 𝑝 ∈ 𝑆:

{
𝑖𝑓 𝑝 ∈ 𝛽(𝑞, 𝑟1) 𝑡ℎ𝑒𝑛 𝑃𝑟𝐻[ℎ(𝑞) = ℎ(𝑝)] ≥ 𝑝1,

𝑖𝑓 𝑝 ∉ 𝛽(𝑞, 𝑟2) 𝑡ℎ𝑒𝑛 𝑃𝑟𝐻[ℎ(𝑞) = ℎ(𝑝)] ≤ 𝑝2.

(2.8)

In the above definition, probabilities are considered with respect to the random

selection of a function ℎ from the family 𝐻. In order for a locality-sensitive family

to be useful, it has to satisfy the inequalities 𝑝1 > 𝑝2 and 𝑟1 < 𝑟2. It is worth noting

that if 𝑑𝑖𝑠𝑡(. , .) corresponds to the Hamming distance 𝑑𝑖𝑠𝑡𝐻(. , .), the family of

projections on a single coordinate is an example of a locality-sensitive family.

However, achieving satisfactory performance in LSH typically requires generating

longer codes and employing multiple hashing tables. Observe that if 𝑑𝑖𝑠𝑡(. , .) is

the Hamming distance 𝑑𝑖𝑠𝑡𝐻(. , .), then the family of projections on one coordinate

is locality sensitive. Therefore, based on the supported statements, we can say that

the family of projections on one coordinate is a specific instance of a locality-

sensitive family that satisfies the desired properties. Nevertheless, effective LSH

implementations often involve generating longer codes and utilizing multiple

hashing tables to ensure desired performance levels.

2.3.2 Deep Neural Network Image Hashing

Deep neural networks (DNNs) have been successful on many computer-vision

tasks, like image classification and object detection, and now image retrieval using

deep hashing methods has shown promising results by leveraging powerful feature

representation capabilities. Cao et al. [27] propose HashNet, a supervised method

for image hashing. It utilizes data-dependent hash encoding schemes to enhance

image retrieval, outperforming data-independent methods like LSH. HashNet

leverages DNNs to encode nonlinear hash functions, enabling more efficient

learning of end-to-end feature representation and hash coding. In similarity search

problems, we are given a training set of 𝑁 points {𝑥𝑖}𝑖=1
𝑁 , each represented by a 𝑑-

dimensional feature vector 𝑥𝑖 ∈ ℝ
𝑑. Some pairs of points 𝑥𝑖 and 𝑥𝑗 are provided

with similarity labels 𝑠𝑖𝑗 :

{
𝑠𝑖𝑗 = 1 𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟

 𝑠𝑖𝑗 = 0 𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑎𝑟𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟

(2.9)

The goal of deep learning to hash is to learn nonlinear hash function 𝑓 ∶ 𝑥 ⟶ ℎ ∈
 {−1, 1}𝑘 from input space 𝑅𝑑 to Hamming space {−1, 1}𝑘 using DNNs, which

encodes each point 𝑥 into compact 𝑘-bit binary hash code ℎ = 𝑓(𝑥) such that the

similarity information between the given pairs 𝑆 can be preserved in the compact

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

24

hash codes. In supervised hashing, the similarity set 𝑆 = {𝑠𝑖𝑗 } can be constructed

from semantic labels of data points or relevance feedback from click-through data

in real retrieval systems. Figure 2.2 taken from [27] shows the HashNet architecture

for solving the data imbalance and ill-posed gradient problems. The architecture

accepts pairwise input images {𝑥𝑖 , 𝑥𝑗 , 𝑠𝑖𝑗 } and processes them through an end-to-

end pipeline of deep representation learning and binary hash coding:

1. A CNN for learning deep representation of each image xI
2. A fully connected hash layer, fch, for transforming the deep representation into

k-dimensional representation zI ∈ ℝ
k

3. A sign activation function h = sgn(z) for binarizing the k-dimensional

representation zI into k-bit binary hash code hI ∈ {−1, 1}k

4. A weighed cross-entropy loss for similarity-preserving learning from

imbalanced data

According to Cao et al. in [27] the ill-posed gradient problem of the non-smooth

activation function ℎ = 𝑠𝑔𝑛(𝑧) is addressed using a continuation approach. This

approach begins with a smoothed activation function 𝑦 = 𝑡𝑎𝑛ℎ(𝛽𝑥) and gradually

increases the non-smoothness by raising the value of 𝛽 as the training progresses.

Eventually, the function transitions back to the original sign activation function.

This technique is employed to mitigate optimization challenges associated with the

original sign activation function.

5 Figure 2.2: The proposed HashNet for deep learning to hash by continuation, which is comprised of four key

components: (1) Standard convolutional neural network (CNN), e.g. AlexNet and ResNet, for learning deep

image representations, (2) a fully-connected hash layer (fch) for transforming the deep representation into K-

dimensional representation, (3) a sign activation function (sgn) for binarizing the K-dimensional representation

into K-bit binary hash code, and (4) a novel weighted cross-entropy loss for similarity- reserving learning from

sparse data.

CHAPTER 3. PROPOSED APPROACH

25

Chapter 3

Proposed Approach

3.1 Deep Reinforcement Learning to Hash

Binary embedding a.k.a hashing enables efficient linear scan for two reasons. First,

computing Hamming distances is much faster than computing distances between

high-dimensional floating-point vectors. Second, the entire dataset consumes much

smaller memory so, it may reside in fast memory rather than hard disk. Traditional

image hashing methods take a feature vector as input and produce a compact binary

vector. According to Wang et al. [34], in order to overcome the challenge of directly

learning the optimal binary code, many traditional methods employ a two-step

approach. In the training phase, they initially relax the discrete constraint, allowing

for continuous solutions. Later, during the testing phase, these continuous solutions

are rounded to obtain the binary code. However, such an inconsistency between

training and testing could result in an undesired performance. Moreover, since the

binary embedding procedure is independent of the feature extraction stage, the

performance of traditional image hashing methods is constrained by the quality of

original features.

To address this problem, deep hashing is recently proposed to jointly optimize

the feature extraction and binary embedding steps [34]. Typically, most deep

hashing methods first adopt a CNN or multi-layer perceptron to extract the real-

value representation of the input image, then quantize the real-value representation

to binary code. Thanks to the simultaneous optimization of feature extraction and

binary embedding steps, deep hashing, especially deep supervised hashing, has

demonstrated superior retrieval performance than those traditional hashing

methods. Nevertheless, the train/test inconsistency in deep hashing is even more

severe than in traditional hashing, due to the inherent conflict between hashing and

back propagation [30][34].

One inherent conflict between the two techniques is that backpropagation

requires the ability to perform gradient-based optimization on the inputs, which is

not possible when the inputs have been hashed. Hashing is a non-differentiable

function, meaning it does not have a gradient and therefore cannot be used in

backpropagation. Another conflict is that hashing is a deterministic process,

meaning the same input will always produce the same output. This makes it difficult

to update the weights of the network during training, as the same input will always

produce the same output, making it hard to learn from the data. For example, a rigid

sign function, whose gradient is either zero or does not exist, is often necessary for

CHAPTER 3. PROPOSED APPROACH

26

binarizing the real-value representation to binary code in deep hashing approaches.

Meanwhile, DNNs require all components to be differentiable, so that the

parameters of the network could be gradually updated by back-propagation. Deep

hashing methods generally approximate rigid sign functions by smooth functions

such as sigmoid and Hyperbolic Tangent (tanh) in the training phase to facilitate

the backward pass of the network [34]. After the training is completed, the rigid

sign function is harnessed to output the binary code. Such inconsistency could lead

to sub-optimal performance. Also, sigmoid or tanh unit is known as inappropriate

for deep learning, as their gradients are nearly zero for most inputs. A tiny gradient

could cause vanishing gradient problem, which is exactly why ReLU activation

function is required to overcome this problem, allowing models to learn faster and

perform better. Deep Learning (DL) and Reinforcement Learning (RL) are both

methods that learn autonomously. The difference between them is that DL involves

learning from a training set, then applying that learning to a new data set, while RL

involves dynamically learning through receiving continuous feedback by taking

actions in each environment to maximize rewards. Due to its ability to make

accurate decisions even on unknown data, RL has recently been used to generate

image hashes. On the other hand, according to the possibility of using DNNs as the

function approximator in an RL system, the term deep reinforcement learning arises

which is a significant technical part to fulfill this thesis.

3.2 Markov Decision Process

MDP is a decision-making model in continuous, discrete, stochastic, and sequential

environments [35]. As shown in Figure 3.1 the MDP represents a straightforward

approach to achieving a goal through learning from interaction. The learner or

decision maker is called the Agent. An agent interacts with the Environment

through its choices, which are called Actions. As the agent selects an action, the

environment responds to the action by presenting a new situation, called State, to

it. The environment also provides rewards, special numerical values that agent

seeks to maximize through its actions. The agent’s objective is to select actions to

maximize a long-term measure of total reward. The Equation 3.1 represents the

Transition Function (T) and Reward Function (R) in an MDP, describing the

process of transitioning from state 𝑠 to state 𝑠′ by taking a specific action 𝑎.

T(s, a, s′) = P[St+1 = s
′ | St = s, At = a]

Rt = E[Rt+1 | St = s, At = a]
(3.1)

A method of learning known as RL, which is based on MDP, arises when an

agent has to learn how to behave through trial-and-error interactions with a dynamic

environment. Deep reinforcement learning has achieved breakthroughs in human-

level performance in games like AlphaZero [36].

CHAPTER 3. PROPOSED APPROACH

27

6 Figure 3.1: Markov Decision Process

In this thesis, we formulate image hashing as an MDP and solve it with deep

reinforcement learning. Image hashing approaches are often addressed through

unsupervised or supervised learning, but rarely through RL, while in recent studies,

RL techniques have been used to obtain binary codes. Yuan et al. [37] propose a

deep hashing CNN that generates binary codes and optimizes their deep hashing

network using policy gradients from RL theory. Zhang et al. [33] as a further step,

treat a batch of images as environment, triplet-loss as reward, and adjust the

combination of hashing function to maximize the reward in RL.

3.3 Proposed Approach Components

Using deep reinforcement learning to hash, we introduce a new decision-making

approach. Our image hashing problem can be represented within the framework of

an MDP, which is a formal formulation of sequential decisions made by an agent.

We consider binary space as the environment where the agent moves an image

towards the binary codes using a set of actions. The purpose of our agent is to

construct a binary code for each image that minimizes the Hamming distance

between images of the same class and maximizes the Hamming distance between

images of different classes. Our Deep Reinforcement Learning-based Image

Hashing architecture consists of two parts:

• CNN-based binary hash code extraction,

• Regeneration of binary hash codes by retaining valuable bits.

Our first step determines which hash code preserves the similarity between each

pair of images and their semantic labels using CNN. As our CNN, we use AlexNet

[38]. The output dimension of the last layer in AlexNet is set to the length of the

extracted hash codes, while all other layers remain unchanged. Due to the weakness

of the hash functions, which can result in long binary hash codes that may also be

the same for two different inputs, we must remove redundant bits while keeping

valuable ones that preserve the uniqueness and most accurately represent the

original data. Redundant bits, if present, tend to contribute unnecessary similarities

CHAPTER 3. PROPOSED APPROACH

28

between distinct inputs, potentially leading to collisions in the hash codes. By

removing these redundant bits, we emphasize the unique characteristics of each

input, making it less likely for different inputs to share the same hash code. This

process enhances the discriminative power of the hash codes, reducing the chances

of false positive similarities and improving the overall accuracy and effectiveness

of the image hashing method in preserving similarity relationships between images

and their semantic labels. Therefore, in the second step, we take advantage of PPO

[39]. PPO is an actor-critic style algorithm, where the critic tries to fit the value

function and the actor aims to update the policy distribution in the direction

suggested by the critic.

3.3.1 CNN-based binary hash code extraction

Learning to hash involves representing a set of training images in the form of

feature vectors 𝑿 = {𝑥𝑖}𝑖=1
𝑛 ∈ ℝ𝑛×𝐷 , where 𝑥𝑖 can be image feature or raw pixels of

an image. As part of supervised hashing, images are annotated with semantic labels

𝒀 = {𝑦𝑖}𝑖=1
𝑛 ∈ {0, 1}𝑛×𝑚 where 𝑚 is the total number of semantic categories. For

example, 𝑦𝑖𝑗 = 1, means the 𝑖𝑡ℎ image belongs to the 𝑗𝑡ℎ category, and there can

be multiple categories for an image.

A similarity matrix 𝑺 ∈ {−1,+1}𝑛×𝑛 is constructed to illustrate similarities

between two images, where 𝑺𝒊𝒋 = +1 means the 𝑖𝑡ℎ image and the 𝑗𝑡ℎ image are

similar, otherwise 𝑺𝒊𝒋 = −1 means the 𝑖𝑡ℎ image and the 𝑗𝑡ℎ image are dissimilar.

When at least one semantic category is shared between two images, they are

considered similar. There is a relationship between semantic labels and similarity

matrix in the sense that semantic labels can be used to classify data into different

categories, and similarity matrix can be used to measure the similarity between

different pieces of data and classify it into different semantic labels. The

relationship between semantic label 𝒀 and the similarity matrix 𝑺 in shown in

Equation 3.2:

𝑺 = min(𝒀𝒀𝑇 , 𝟏) × 2 − 𝟏 (3.2)

Where 𝒀𝑇 represents the transpose of 𝒀, min(.) is an element-wise minimum

function, and 𝟏 is a matrix whose elements are all ones. Deep learning to hashing

is learning a non-linear hash function 𝐻𝑎𝑠ℎ(·) that maps the images from the

original feature space to a compact binary space, while preserving the similarity

relationships as shown in Equation 3.3:

𝐻𝑎𝑠ℎ(𝑿) = 𝒁
𝑿 = {𝑥𝑖}𝑖=1

𝑛 ∈ ℝ𝑛×𝑑 , 𝒁 = {𝒛𝑖}𝑖=1
𝑛 ∈ {−1,+1}𝑛×𝑘

(3.3)

CHAPTER 3. PROPOSED APPROACH

29

where 𝑘 is the length of hash code (𝑘 bits). After that, we can use the Hamming

distance to measure the number of bits that differ between every two hash codes.

The complete scheme of the stage CNN-based binary hash code extraction is shown

in Figure 3.2. Our first step in this stage is to extract a set of hash codes that

preserves the original similarity relationships globally. As shown in Equation 3.4,

Hamming distance, and inner product of two hash codes are naturally related.

𝐻𝑑𝑖𝑠𝑡(𝒛𝑖, 𝒛𝑗) =
1

2
 (𝑘 − 𝒛𝑖𝒛𝑗

𝑇)
(3.4)

where 𝑘 is the length of a hash code. As can be seen, Hamming distances decrease

with an increasing inner product. The inner product of two hash codes can therefore

be viewed as a factor of affinity, which we can use to reconstruct the original

similarity relationship as follows:

min
𝑍
ℒ1 = ||𝒁𝒁

𝑇 − 𝑘𝑺||
2

2
 (3.5)

as the variable 𝒁 exists in a binary space, optimizing Equation 3.5 would require

exponential time. Therefore, it is necessary to eliminate the binary constraint from

𝒁. This can be achieved by employing the sigmoid function, a continuous function,

to approximate 𝒁. The resulting approximation, denoted as 𝒁̃, serves as a

demonstration of 𝒁 in real space, as depicted in Equation 3.6:

min
𝒁̃
ℒ1 = ||𝒁̃𝒁̃

𝑇
− 𝑘𝑺||

2

2

(3.6)

after the optimization, we can get 𝒁 by simply applying the sign function 𝑠𝑖𝑔𝑛(.)
to 𝒁̃:

𝒁 = 𝑠𝑖𝑔𝑛(𝒁̃) 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑔𝑛(𝑥) = {
−1, 𝑥 < 0

+1, 𝑥 ≥ 0

(3.7)

however, there may exist a large gap between 𝒁 and 𝒁̃. This gap is called

quantization error and is damaging to the retrieval accuracy.

To reduce the quantization error a regularization term is added to the Equation 3.6:

min
𝒁̃
ℒ1 = ||𝒁̃𝒁̃

𝑇
− 𝑘𝑺||

2

2

 + | |𝒁̃| - 1|
(3.8)

where 𝟏 is a matrix, whose elements are all ones. The similarity matrix 𝑺 is a 𝑛 × 𝑛

matrix, where 𝑛 is the number of training images. While 𝑺 can make a full

description of the original similarity relationships, it is too big to be stored in

memory.

CHAPTER 3. PROPOSED APPROACH

30

7 Figure 3.2: CNN-based binary hash code extraction

Since we already know how to construct 𝑺 through the semantic label 𝒀 according

to Equation 3.2, we then substitute 𝑺 with 𝒀 as follows:

min
𝑍̃
ℒ1 = ||𝒁̃𝒁̃

𝑇
− 𝑘(min(𝒀𝒀𝑇 , 𝟏) × 2 − 𝟏)||

2

2

 + | |𝒁̃| - 1|
(3.9)

now we can calculate the similarity relationship in a block-wise style. Suppose the

block size is ℎ × 𝑤, and 𝑛 is divisible by ℎ and 𝑤, so Equation 3.9 can be

reformulated as:

min
𝑍̃
ℒ1 = ∑ ∑ ||𝒁̃𝑟,𝑟+ℎ−1𝒁̃

𝑇
𝑐,𝑐+𝑤−1

𝑛
𝑤
 −1

𝑐=0

𝑛
ℎ
 −1

𝑟=0

− 𝑘 (min(𝒀𝑟,𝑟+ℎ−1𝒀
𝑇
𝑐,𝑐+𝑤−1, 𝟏) × 2 − 𝟏)||

2

2
 + | |𝒁̃| − 𝟏|

 (3.10)

where 𝒀𝑟,𝑟+ℎ−1 is the 𝑟𝑡ℎ row to the (𝑟 + ℎ − 1)𝑡ℎ row of 𝒀, the same goes for 𝒁̃.

Now we can perform the optimization in a block-wise way, which is shown as the

red block on the similarity matrix in Figure 3.2. This red block will slide over the

whole similarity matrix 𝑺. Here, the gradient descent method is utilized to optimize

in Equation 3.10, in which the gradient will be calculated for each block and then

added together. This accumulated gradient will back-propagate only once, and thus

the similarity relationships in each block are preserved. To facilitate the subsequent

hash code mapping, we transform the generated hash codes 𝒁 from {−1,+1}𝑛 × 𝑘 to

{0, 1}𝑛 × 𝑘, which is denoted as 𝑩 = {𝒃𝑖}𝑖=1
𝑛 =

1

2
(𝒁 + 𝟏). According to what we

CHAPTER 3. PROPOSED APPROACH

31

discussed before, there exist two major disadvantages of current deep hashing

methods. First, most of them are trained in a mini-batch-based style which makes

them only able to preserve local similarity relationships. Additionally, this mini-

batch-based training strategy must sample from the entire collection of image pairs,

which has a magnitude of 𝑂(𝑛2). Consequently, training time is greatly increased

by this inefficiency in data sampling. Therefore, there are two differences between

the block-wise similarity calculation and the mini-batch-based method. Firstly, the

block-wise calculation accumulates gradient information and, therefore, preserves

global similarity information, whereas the mini-batch method usually updates

parameters every time a batch is run. Secondly, the block-wise calculation only

involves semantic labels, and no image features are involved, and thus is incredibly

faster than the mini-batch-based hashing method which needs to involve image

features. In this part to establish the similarity between each pair of images, we only

need to know the labels (i.e., semantic annotations).

The process of block-wise hash code extraction is shown in Algorithm 1. Using

the hash codes extracted from semantic label and similarity matrix we are able to

map training images to them. This mapping is accomplished using DNNs and is

formulated as a multi-label classification problem. In this process, we use AlexNet

as the CNN architecture to generate output by taking training images as input. The

output of the AlexNet is denoted as 𝐹(𝑥𝑖; Ө) ∈ ℝ
𝑘 where Ө is the parameter of the

network, and 𝑘 is the length of the hash code. After that, the multi-binary cross-

entropy loss is calculated for the output of CNN and the hash code of semantic

labels extracted at the previous stage. The multi-binary cross-entropy loss is a

measure of how well the binary hash codes that are generated by CNN model match

the binary hash codes of semantic labels. The calculation of Multi-binary cross-

entropy loss is shown in Equation 3.11:

min
Ө
ℒ2 = − ∑𝒃𝑖

𝑛

𝑖=1

log (𝜎 (𝐹(𝒙𝑖; Ө))) + (𝟏 − 𝒃𝑖) log (𝟏 − 𝜎 (𝐹(𝒙𝑖; Ө))) (3.11)

where σ(.) is the Sigmoid function. We use the sigmoid function here because it is

a mathematical logistic function with a characteristic that can take any real value

and map it between 0 and 1.

Algorithm 1: Hash Code Extraction using Block-wise Similarity Calculation

Input: Training image labels: 𝒀 = {𝒚𝒊}𝒊=𝟏
𝒏 , Hash code length: 𝒌, Number of epochs:

𝒕𝟏, Window height: 𝒉, Window width: 𝒘.

for 𝒕 = 𝟏: 𝒕𝟏 do

 for 𝒓 = 𝟎:
𝒏

𝒉
 − 𝟏 do

 for 𝒄 = 𝟎:
𝒏

𝒘
 − 𝟏 do

 Calculate the block loss and block gradient according to Equation 3.10.

CHAPTER 3. PROPOSED APPROACH

32

 Add the gradient to the overall gradient.

 end

 end

 Update 𝒁̃ according to the overall gradient.

 end

 Output: Get binary hash codes. 𝒁 = 𝒔𝒊𝒈𝒏(𝒁̃). Transform 𝒁 from {−𝟏,+𝟏}𝒏 ×𝒌 to

{𝟎, 𝟏}𝒏 ×𝒌 : 𝑩 = {𝒃𝒊}𝒊=𝟏
𝒏 =

𝟏

𝟐
(𝒁 + 𝟏).

Since we map features extracted from images to 0 or 1, this mapping is a binary

classification. In order to optimize AlexNet model we use Stochastic Gradient

Descent (SGD) as an optimization algorithm. In order to update the parameters of

the model using SGD we take the derivative of the multi-binary cross-entropy loss

function. The gradient, as represented by the derivative in Equation 3.12, provides

essential guidance for minimizing the loss function. It reveals the direction in which

the loss function decreases the most, allowing us to adjust the model’s parameters

accordingly. By updating the parameters in the opposite direction of the gradient,

we actively work towards minimizing the loss function and improving the model’s

performance. In gradient-based optimization, the primary objective is to minimize

the loss function. Although the gradient points in the direction of steepest ascent,

which corresponds to the maximum increase in the loss function, we adjust the

model’s parameters in the opposite direction of the gradient, enabling us to move

in the direction of steepest descent. This iterative process gradually steers the model

towards optimal parameter values that minimize the loss function. In summary, the

correct approach involves adjusting the parameters in the opposite direction of the

gradient, ultimately minimizing the loss function.

∂ℒ2
∂F

= − ∑(1 − 𝒃𝑖

𝑛

𝑖=1

) 𝜎 (𝐹) − 𝒃𝑖(𝟏 − 𝜎 (𝐹)) (3.12)

The hash function that is created is denoted as ℎ(𝒙𝑖; Ө), and the hash codes are

denoted as 𝑪 = {𝒄𝑖}𝑖=1
𝑛 ∈ {0, 1}𝑛×𝑘. Using a threshold, we can obtain them as

shown in Equation 3.13:

ℎ(𝒙𝑖; Ө) = 𝒄𝑖 = 𝐼(𝜎 (𝐹(𝒙𝑖; Ө)) ≥ 0.5)

𝐼(𝑏𝑜𝑜𝑙) = {
1, 𝑖𝑓 𝑏𝑜𝑜𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒

0, 𝑖𝑓 𝑏𝑜𝑜𝑙 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

(3.13)

where 𝐼(𝑏𝑜𝑜𝑙) is an element-wise indicator function. We have shown that by having

semantic labels, we can generate a hash code for each label to preserve the original

similarity relationship. But what if we have a new unseen image without knowing

its semantic label? We show that we can also map it to a hash code so that this hash

CHAPTER 3. PROPOSED APPROACH

33

code matches well with those hash codes of labeled images. Algorithm 2 shows the

process of mapping training images to hash codes.

Algorithm 2: Hash Code Mapping via Multi-Binary Classification

Input: Extracted hash codes: 𝐁 = {𝐛𝐢}𝐢=𝟏
𝐧 , Number of epochs: 𝐭𝟐.

for 𝐭 = 𝟏: 𝐭𝟐 do

 for 𝑖 = 𝟏: 𝐧 do

 Feed the image 𝐱𝐢 and its extracted hash code 𝐛𝐢, into CNN, and compute

multi-binary cross-entropy loss according to Equation 3.11, and back-propagate.

 end

 end

 Output: hash function 𝑭(𝐱𝐢; Ө) and hash code 𝑪

3.3.2 Regeneration of binary hash codes by retaining

valuable bits

As a hash function goes from a big continuous or discrete space 𝑿 to a smaller

binary space 𝑩, it is a many-to-one function, so different files may yield the same

hash value which is said that a collision has happened. In most hash codes

generated, especially the long ones, bit redundancy usually exists. To address the

problem of bit redundancy, we model the sequential bit selection problem as a MDP

and solve it using an RL algorithm with retrieval performance as a reward to

improve its bit selection policy uniformly. Hence, given the binary code 𝑪

generated in the previous stage, we select one optimal bit at each time step 𝑡. This

bit is chosen to offer the most informative binary codes when combined with the

bits that have already been chosen. In other words, the previously selected bits are

the last state and are necessary to select the current bit, thereby meeting the Markov

property. With such analysis, this formulation gives rise to a finite MDP, defined

by the tuple 𝑴 = (𝑺,𝑨, 𝑷, 𝒓, 𝜸), where the state space 𝑆 and the action space 𝐴 are

discrete and finite, 𝑃 is the Markov transition probability function 𝑷: 𝑺 × 𝑨 × 𝑺 →
[0, 1], 𝒓 represents the reward function 𝒓: 𝑺 × 𝑨 → [𝑹𝑚𝑖𝑛, 𝑹𝑚𝑎𝑥] and 𝜸 is the

discount factor. The main components of the MDP in our algorithm are detailed in

the following:

• State Space: The state in our RL method is an array of binary hash codes. For

each state 𝑠 ∈ 𝐒, s = {0, 1}𝑘 where 𝒌 is the original binary hash code length.

Each state 𝑠 can be represented as a binary string of length 𝑘, where 𝑘 represents

the original binary hash code length. The value 1 indicates a bit at the specified

position has been selected, and the value 0 indicates the bit is not selected. In

the initial state 𝑠0, a vector of zero is always used.

• Action Space: We define an action as choosing a particular bit from a binary

code; for example, the expression 𝒂𝒕 = 𝑖 means that the 𝑖𝑡ℎ bit was chosen at

CHAPTER 3. PROPOSED APPROACH

34

time step 𝑡. 𝑨 = {1, 2, … , 𝑘}, where 𝑘 is the original hash code length, defines

the action space. As long as the matching bit has not already been selected, the

action is valid. The agent’s goal is to discover a strategy for choosing the desired

number of bits. The agent interacts with the environment during the training phase

to learn the bit selection policy.

• State Transition Function: Taking an action 𝑎𝑡 ∈ 𝐀, the state 𝑠𝑡 transitions to

a new state 𝑠𝑡+1 with the bit selected by 𝑎𝑡 turned to 1 deterministically.

Therefore, the state transition distribution is a deterministic, 𝑷(𝑠 =
 𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡) = 1.

• Reward Function: The reward function is a crucial component in MDPs since

it quantifies the immediate benefit of a state transition. In other words, it maps

each state-action pair to a numerical reward that the agent receives upon taking

the action in that state. The goal of the agent is to maximize the expected sum

of these rewards over time. We select mean Average Precision (mAP) as the

reward function. Precision is defined as the fraction of true positive predictions

among all positive predictions made by the classifier. Recall, on the other hand,

is defined as the fraction of true positive predictions among all actual positive

instances in the dataset. In other words, recall measures the completeness of

the algorithm in choosing relevant bits. We select a bit at each step and directly

optimize mAP as a reward in order to select more valuable bits in binary hash

codes which have redundancy. Because of the correlation between bits in the

hash bit selection problem, we cannot determine the quality of bit selections

until the bit selection is completed. As a result, there is no reward in the bit

selection process. Once completed and the goal code length is reached, the

entire sequential bit selection process is equivalent to applying selection

function 𝑭 on original database codes 𝑪. Thus, we obtain the target binary hash

codes 𝑪′ = 𝑭(𝑪). Then, a subset of 𝑪′ is randomly sampled as query binary

codes to compute mAP as a reward, which represents the quality of the selected

bits. Specifically, the reward function 𝑟𝑡 is defined as shown in Equation 3.14:

𝑟𝑡 = {
0, 𝑖𝑓 1 ≤ 𝑡 ≤ 𝑝 − 1

𝑚𝐴𝑃 with the selected bits, 𝑖𝑓 𝑡 = 𝑝
 (3.14)

according to this formulation of the rewards, hash bit selection contributes

directly to optimal retrieval performance. It is worth noting that, while we use

mAP as a reward during training, we simply use the labels of training images

as supervision.

Figure 3.3 displays the full design of our suggested RL-based method to regenerate

binary hash codes without unnecessary bits. As we mentioned before, by learning

a hash bit selection function 𝑭(ℎ(𝐱𝐢)) 𝑤ℎ𝑒𝑟𝑒 ℎ(𝐱𝐢) = 𝑪, we can generate a new

database of binary hash codes, named 𝑪′ with code length 𝒑, from the original

CHAPTER 3. PROPOSED APPROACH

35

database of generated binary hash codes with code length 𝒌, where 𝒑 < 𝒌. It is

worth mentioning that 𝑪′ = {𝑐𝑖
′}𝑖=1
𝑛 ∈ {0, 1}𝑛×𝑝. Our chosen RL algorithm is PPO

[39], which performs impressively in a variety of applications. According to

[48][49], PPO is a widely used RL algorithm that has shown impressive results in

many applications with discrete action spaces. It is considered a type of actor-critic

algorithm [35], which is a class of RL algorithms that combine both value-based

and policy-based methods.

8 Figure 3.3: RL-based method to regenerate binary hash codes without unnecessary bits.

An actor-critic algorithm consists of two main components: an Actor network

and a critic network. The actor network is responsible for learning the policy, which

is mapping from states to actions. It is trained to select actions that maximize the

expected cumulative reward. The critic network, also known as the value function,

estimates the expected future cumulative reward for each state or state-action pair.

It is trained to predict the value of the current policy. PPO is an on-policy RL

algorithm that uses a neural network to approximate the policy and value functions.

The main idea behind PPO is to keep the updates to the policy within a predefined

range, which helps to ensure stability and improve the learning process. PPO

combines ideas from both value-based and policy-based methods and has been

shown to perform well on a wide range of RL tasks. We train with all the data in an

episode, so the batch size is equal to 𝒑, where 𝒑 is the target binary hash code length

and at the conclusion of the episode, PPO optimizes mAP as the reward and hopes

to select more useful bits among redundant bits in hash binary codes by doing this.

The agent chooses bits to create a target database of binary hash codes 𝑪′ during

the test step. In order to evaluate the states in our RL, we use a value network that

CHAPTER 3. PROPOSED APPROACH

36

maps states to state values and a policy network that maps states to the probability

of actions.

The value network receives the state 𝒔𝒕 as input at time step 𝑡 and produces a

real number 𝒗 = 𝑽𝑤(𝑠𝑡) ∈ ℝ as output, i.e., state value. The policy network takes

𝑠𝑡 as input, and outputs the probability distribution of actions π = 𝝅Ө(𝑠𝑡) ∈ ℝ
𝑘,

where 𝑤 is the parameters of the value network, and Ө is the parameters of the

policy network. The value network and the policy network both have two

completely connected 256-neuron hidden layers. The SoftMax activation layer is

the final layer of the policy network, and it outputs a probability distribution of

actions. However, the policy’s calculated action can be incorrect, meaning that the

bit corresponding to this action may have already been chosen previously. The

repeated bits are not logical for producing informative and compact binary

representation, and the policy with incorrect actions may not converge during

training. Therefore, we use −∞ to mask the SoftMax’s input for the invalid action,

or the bits that have already been chosen. The following formulation represents the

policy’s overall probability distribution:

𝜋Ө(𝑎𝑡 = 𝑖 | 𝑠𝑡) = {
𝜋𝑖 , 𝑖𝑓 𝑠𝑡

𝑖 = 0,

0, 𝑖𝑓 𝑠𝑡
𝑖 = 1,

 (3.15)

where 𝑖 ∈ {1,・・・, 𝑘} indicates the 𝑖𝑡ℎ bit of the state, and 𝝅𝒊 denotes the output

of the policy network for the 𝑖𝑡ℎ bit, with ∑ 𝜋Ө(𝑎𝑡 = 𝑖 | 𝑠𝑡) = 1
𝑘
𝑖=1 . Algorithm 3

provides a summary of the learning method used to choose valued bits via RL.

Algorithm 3: Hash Code Re-generation using Actor-Critic

Input: Original database hash codes: 𝑪 = {𝒄𝐢}𝐢=𝟏
𝐧×𝒌, Generated hash code length: 𝒑

Prerequisite: Initialize policy parameters Ө and value function parameters 𝒘;

repeat

 for 𝒂𝒄𝒕𝒊𝒐𝒏 = 𝟏, 𝟐,… , 𝒌 do

 Run policy 𝝅Ө𝒐𝒍𝒅 to select a bit.

 end

 Compute the mAP as a reward using the selected bits.

 Optimize network parameters Ө and 𝒘.

 Ө𝒐𝒍𝒅 ← Ө

Until convergence

Use policy 𝝅Ө to select bits to obtain 𝑪′.
Output: Database of Binary Hash codes 𝑪′

CHAPTER 4. EXPERIMENTS

37

Chapter 4

Experiments

We evaluate our approach against several state-of-the-art hashing methods. The

evaluation is conducted on three widely used datasets: CIFAR-10, NUS-WIDE and

MS-COCO. In many tasks related to computer vision and image processing, these

datasets are used as standard benchmarks.

4.1 Setup and Datasets

The CIFAR-10 [32] dataset (Canadian Institute for Advanced Research, 10

categories) is a subset of the Tiny Images dataset and consists of 60000 32x32 color

images. We randomly select 1000 images, 100 images per category, as the query

set. We select 5000 images, 500 images per category, as the training set, and keep

the remaining images in the database.

The NUS-WIDE [40] is a public image dataset containing 269,648 images with

a total of 5,018 tags collected from Flickr.com. These images are manually

annotated with 81 semantic concepts, including objects and scenes. By keeping the

top 21 concepts, we randomly select 2,100 images as the query set, 100 images per

concept. The rest of the images are all as the database. We further randomly select

10,500 images from the database as the training set.

The MS-COCO (Microsoft Common Objects in Context) [41] dataset is a

large-scale object detection, image segmentation, and captioning dataset published

by Microsoft. We use the first release, which contains 82,783 training images and

40,504 validation images, where each image is labeled by some of 80 semantic

concepts. There are 122,218 images in this dataset with semantic labels in total. We

randomly sample 5,000 images as query images and treat the remaining as the

database. Additionally, we randomly select 10,000 images from the database as

training images.

Following standard evaluation protocol as previous work [27], two images i and

j are considered similar if they share at least one semantic label (𝑠𝑖𝑗 = 1) otherwise,

they are dissimilar and (𝑠𝑖𝑗 = 0). We compare retrieval performance of our

approach with six classical or state-of-the-art hashing methods including:

• Deep Reinforcement Learning for Image Hashing (DRLIH) [33]: It is a

deep reinforcement learning hashing network which uses RNN as agents to take

previous hash function’s error into account.

• HashGAN [42]: It is a technique for learning compact binary hash codes from

a variety of images produced by generative models as well as actual photos.

CHAPTER 4. EXPERIMENTS

38

• CNNH (Convolutional Neural Network Hashing) [43]: It uses CNN to learn

a compact binary code for a data point. It typically consists of three main

components: a feature extractor, a hash function, and a quantization function.

• DNNH (Deep Neural Network Hashing) [44]: A DNN is trained to produce a

high-dimensional continuous feature representation of the data point, and then

a quantization function is applied to the feature representation to produce a

binary code. DNNH was introduced as a generalization of CNNH.

• SDH [45] is a supervised method, which leverages label information to obtain

hash codes by integrating hash code generation and classifier training.

• HashNet [46] directly learns the binary hash codes and addresses the ill-posed

gradient and data imbalance problems in an end-to-end framework of deep

feature learning and binary hash encoding.

In each of the aforesaid hashing methods, the results are obtained from their

authors’ implementations. To be able to directly compare results to published

reports, all methods used the same training and testing data. We evaluate the

retrieval quality based on four standard evaluation metrics:

• Mean Average Precision (mAP) is the mean value of Average Precision over

many queries which is a measure of the effectiveness of a retrieval system or

algorithm. Average Precision (AP) is calculated for a single query or a single

class in the case of object detection. It measures the average precision value at

different recall levels. Precision is computed at each point where a relevant item

is retrieved, and then the average is taken over these precision values. For a

given query, the AP is defined as follows:

𝐴𝑃 =
1

𝑅
 ∑

𝑘

𝑅𝑘

𝑛

𝑘=1

 × 𝑟𝑒𝑙𝑘
(4.1)

where 𝑛 is the size of database, 𝑅 is the number of relevant images in database,

𝑅𝑘 is the number of relevant images in the top 𝑘 returns, and 𝑟𝑒𝑙𝑘 is an indicator

function that is 1 if the 𝑘-th image is relevant and 0 otherwise.

Precision measures the fraction of positive detections that are actually correct,

while recall measures the fraction of all positive instances that are detected. The

formula of mAP is defined as follows:

1

𝑛
∑𝐴𝑃𝑖

𝑛

𝑖=0

(4.2)

where 𝐴𝑃𝑖 is the Average Precision for the 𝑖-th query or class. Since the

calculation of 𝐴𝑃 involves sorting a large index array, it is believed to be slow.

However, with the help of GPU, all mAP calculations can be accelerated

through parallelism.

CHAPTER 4. EXPERIMENTS

39

• Precision-Recall curves (PR) are commonly used to evaluate the performance

of binary classification algorithms in computer vision and machine learning. A

PR curve plots the precision values on the y-axis and the corresponding recall

values on the x-axis. The curve is generated by varying the classification or

retrieval threshold of the system and calculating the precision and recall values

at each threshold. Typically, the curve starts at a high recall value (e.g., 1) with

a lower precision value and gradually moves towards a lower recall value (e.g.,

0) with a higher precision value.

• Precision curves within Hamming distance 2 (P@H ≤ 2) is a variation of the

standard Precision-Recall (PR) curves, used to evaluate the performance of a

binary hash function used in image retrieval, but only for those retrieved items

that have a Hamming distance of at most 2 from the query item. It allows us to

evaluate the performance of the hash function in terms of how well it can

retrieve similar items in the presence of slight variations (e.g., slight rotation,

scaling, noise).

• Precision curves with respect to the numbers of top returned samples

(P@N) are a variation of the standard Precision-Recall (PR) curves, used to

evaluate the performance of a retrieval system or algorithm. A P@N curve plots

the precision of the retrieval system at different recall levels, but only for the

top 𝑁 returned samples. The x-axis represents the number of returned samples,

and the y-axis represents the precision. Following the HashNet algorithm, we

adopt MAP@54000 for CIFAR-10, MAP@5000 for NUS-WIDE, and

MAP@5000 for MS-COCO respectively.

When performing the block-wise hash code extraction, we use the standard gradient

descent method, adopt Adam as the optimizer, and set the learning rate to 1.0. For

mapping images to their semantic binary hash codes, we try AlexNet as the hash

encoder, fine-tune all layers but train the last layer from scratch. Since we train the

last layer from scratch, we set its learning rate 10 times large as the one in previous

layers. The learning rate for previous layers is set to 10−5. The learning rate for the

last layer is set to 10−4. The mini-batch size is set to 32. To implement the RL in a

way that is both consistent with the public implementation of PPO and allows for

the regeneration of binary hash codes and the removal of unnecessary hash bits:

1. A discount factor γ equal to 0.99 is chosen.

2. To accelerate training, we train all of the data in one episode, thus the batch size

should be 𝑃, which is the target binary hash code length.

About the method called DRLIH [33] that leverages the power of RL as well we

make a comparison with it in Table 4.2, following the same setting in it and using

VGG-19 as the CNN. We adopt the VGG-19 network as the feature extractor

network for mapping input features to the learned binary codes from semantic

labels. As mentioned in the DRLIH method the first 18 layers of VGG-19 network

follow the exact same settings as this network.

CHAPTER 4. EXPERIMENTS

40

4.2 Experimental Results

Table 4.1 presents the mAP results of all methods using AlexNet, where all classical

and state-of-the-art results which are shown in HashGAN [42] are used in our

evaluation. SDH is a shallow hashing method that is on top of Table 4.1, whereas

deep hashing methods are on the bottom. As we mentioned before, mAP provides

a single scalar value that summarizes the overall performance of a retrieval or

detection system. In fact, a higher mAP value indicates better performance and

accuracy in retrieving relevant results. Our approach demonstrates superior

performance compared to HashGAN, a deep hashing method, in terms of average

mAP on three datasets: CIFAR-10, NUS-WIDE, and MS-COCO. The margins of

improvement are substantial, with 7.1%, 8.71%, and 6% respectively. This success

can be attributed to our algorithm’s focus on preserving global similarity

relationships and utilizing block-wise calculations, as opposed to constructing a

small similarity matrix from a limited sample set. As a result, our approach

consistently preserves the entire similarity matrix, providing a more comprehensive

representation of image similarities compared to approaches relying on smaller

sample-based matrices. We are also able to increase the average mAP on three

datasets by 47.4%, 28%, and 36% compared to SDH, the best shallow hashing

method with deep features as input.

Table 4.1: mAP of Hamming ranking for different number of bits on three datasets using AlexNet.

Method
CIFAR-10 NUS-WIDE MS-COCO

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SDH[45] 0.461 0.520 0.553 0.568 0.588 0.611 0.638 0.667 0.555 0.564 0.572 0.580

CNNH[43] 0.476 0.472 0.489 0.501 0.570 0.583 0.593 0.600 0.564 0.574 0.571 0.567
DNNH[44] 0.559 0.558 0.581 0.583 0.598 0.616 0.635 0.639 0.593 0.603 0.605 0.610

HashNet[46] 0.643 0.667 0.675 0.687 0.662 0.699 0.711 0.716 0.687 0.718 0.730 0.736
HashGAN[42] 0.668 0.731 0.735 0.749 0.715 0.737 0.744 0.748 0.697 0.725 0.741 0.744

Ours 0.727 0.790 0.788 0.780 0.790 0.798 0.805 0.807 0.748 0.767 0.790 0.776

Two insights are evident from the mAP results. Firstly, SDH as a shallow

hashing method is unable to learn compact hash codes and discriminative deep

representations across the end-to-end architecture, demonstrating why deep

hashing methods are superior. Secondly, by jointly conserving similarity

information and managing the quantization error, HashGAN, a deep hashing

approach, learns fewer lossy hash codes and greatly outperforms the original

CNNH and DNNH methods.

Our method outperforms the state-of-the-art HashGAN significantly for two key

reasons. First, by using block-wise calculation in our technique, we want to

preserve global similarity. As a result, it can always maintain the entire similarity

matrix rather than a limited similarity matrix created from a mini batch. Because of

this, we can fully preserve the global similarity relationships through block-wise

CHAPTER 4. EXPERIMENTS

41

hash code inference, whereas mini-batch-based approaches struggle to sample

enough pairs from training data. Second, we can reduce 64-bit hash codes to 16-bit,

32-bit, and 48-bit versions by removing any redundant bits. Redundant bits are

those that do not contribute significantly to the representation of the image.

Redundant or potentially detrimental bits in hash codes can arise from two primary

sources. The first source is the presence of noisy data within the dataset itself. The

second source stems from the prevalent use of mini-batch training strategies, which

limits the ability of the generated hash codes to preserve global similarity

relationships and instead focuses on local similarities. There are two advantages to

removing redundant bits. At first, it only needs to be trained once, and different de-

redundancy settings can be used to generate hash codes of various lengths, greatly

accelerating the training process for hashing algorithms. Second, we can create

more valuable and compact hash codes by removing irrelevant bits from longer

hash codes. Table 4.1 shows that the benefits for shorter codes (16 to 48 bits) are

bigger than those for longer codes (64 bits).

Using Precision-Recall curves, we measure the retrieval performance of three

datasets, and as can be seen in Figures 4.1 (a), (b), and (c), our proposed approach

outperforms all comparison methods by a significant margin.

9 Figure 4.1: Precision-recall curve @ 64 bits; The experimental result of our approach and comparison

methods on CIFAR-10, NUS-WIDE, MS-COCO

The performance in Precision within Hamming radius 2 (P@H≤2) is very

important for efficient image retrieval since the Hamming ranking only requires

O(1) time cost for each query, which enables really fast pruning. Based on Figures

4.2 (a), (b), and (c), our approach achieves the highest P@H ≤ 2 on all three

benchmark datasets. This proves that our hashing approach is able to learn more

compact hash codes than all comparison methods to establish a more efficient and

accurate Hamming ranking. Considering shorter hash codes will assign more

images per hamming distance than longer codes, this improvement will be

particularly noticeable.

CHAPTER 4. EXPERIMENTS

42

10 Figure 4.2: Precision within Hamming radius 2; The experimental result of our approach and comparison

methods on CIFAR-10, NUS-WIDE, MS-COCO

In Figures 4.3 (a), (b), and (c), we show retrieval performance based on Precision

curves with respect to different numbers of top returned samples (P@N), and we

see that our proposed approach outperforms all the comparison methods.

11 Figure 4.3: Precision curve for top-N @64bits; The experimental result of our approach and comparison

methods on CIFAR-10, NUS-WIDE, MS-COCO

We make a comparison with DRLIH in Table 4.2, following the same setting in

DRLIH and using VGG 19 as the CNN. DRLIH treats a batch of images as the

environment, triplet-loss as the reward, and adjusts a combination of hashing

functions to maximize the reward in reinforcement learning. However, the hard

binary constraint in DRLIH is compromised, and train/test inconsistency still exists.

As a result, we can see that our method somewhat beats DRLIH.

Table 4.2: mAP of Hamming ranking for different number of bits on NUS-WIDE & CIFAR-10 using VGG-19.

Method

CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DRLIH[29] 0.816 0.843 0.855 0.853 0.823 0.846 0.845 0.853

Ours 0.857 0.876 0.881 0.883 0.839 0.862 0.868 0.871

CHAPTER 4. EXPERIMENTS

43

Results from Table 4.2 show that we are also able to increase the average mAP on

CIFAR-10 and NUS-WIDE datasets by 3.9%, and 2.7% compared to DRLIH as a

deep reinforcement learning approach to image hashing.

As a further evaluation step for our hashing method based on deep reinforcement

learning, the top-5 retrieval results on three benchmark datasets are displayed in

Figure 4.4 along with some good and bad instances. These bad examples can be

attributed to several reasons, some of which are applicable to all three datasets and

others to particular datasets. Because the training set is too small in relation to the

database for all three datasets, this poor retrieval example problem is primarily

caused by that. The noisy label, or more precisely, the missing label, is a significant

issue with NUS-WIDE. The greatest retrieval challenge with CIFAR-10 is the low

resolution of the images.

12 Figure 4.4: Some good and bad examples of the top-5 retrieval results on three benchmark datasets

CHAPTER 5. CONCLUSION AND FUTURE WORKS

44

Chapter 5

Conclusion and Future works

5.1 Conclusion

The concept of image hashing refers to the process of converting images from high-

dimensional space into low-dimensional binary codes while preserving their

perceptual similarities. Most existing deep learning-based methods are inefficient

at the binarization of image data because they are trained in a mini-batch style and

can’t preserve global similarity relationships. To solve this problem, we propose a

deep reinforcement learning-based technique for image hashing. We initially use

each image’s labels to generate hash codes in a block-wise style. The features

retrieved from a picture are next mapped into the binary hash codes of the first stage

using AlexNet, a particular kind of CNN. The majority of hashing techniques result

in redundant bits in hash codes, which increase the likelihood of collisions, and

cannot ensure the uniqueness of the hash codes created. In particular, we learn a

hash bit selection policy at this stage, which maximizes mean Average Precision

(mAP) during training to identify the most informative bits. We formulate the hash

bit selection as an MDP. Therefore, we apply a well-known RL method known as

PPO, an actor-critic algorithm style, choosing the informative bits, to remove

unneeded bits from the binary hash code we learned. As a result, our binary hash

codes are guaranteed to be unique and collision risk is minimized. In our

experiments, we demonstrate the effectiveness of our approach using three widely

used datasets, CIFAR-10, NUS-WIDE, and MS-COCO.

5.2 Future Work

In this thesis, we encountered some limitations related to the PPO algorithm. One

limitation is its sensitivity to hyperparameters, requiring careful tuning for optimal

performance and stability. To address this, future work can explore advanced

hyperparameter optimization techniques and adaptive learning rate schedules.

Another drawback is PPO’s sample inefficiency, necessitating a large number of

samples for effective learning. To overcome this, future research can focus on

efficient exploration strategies, data augmentation techniques, and knowledge

transfer methods to improve learning efficiency and reduce data requirements.

Furthermore, advancements in optimization methods, such as alternative

algorithms or integration of advanced techniques from other fields, can help

overcome limitations and enhance PPO’s performance and applicability in various

domains. By addressing these challenges, future work can improve the

CHAPTER 5. CONCLUSION AND FUTURE WORKS

45

effectiveness and efficiency of PPO, contributing to the advancement of

reinforcement learning as a powerful decision-making paradigm.

Another possible future work can stand on conducting an ablation study where

the policy-based bit selection step is omitted. This study could help quantify the

contribution and effectiveness of the policy-based approach in our image hashing

method. By comparing the performance of our method with and without the policy-

based bit selection, we can gain insights into how much improvement is attributed

to this specific component. This analysis would provide a clearer understanding of

the role and impact of the policy-based approach in optimizing the binary hash

codes and further validate its importance in our proposed approach.

As another avenue for future work, we plan to extend our image hashing method

to Video Fingerprinting, enabling the identification of specific frames in videos by

considering their temporal differences. Additionally, we aim to explore the

integration of our approach with Blockchain technology, providing unique and

immutable binary hash codes for transactions and blocks. These advancements

would expand the application and enhance the reliability and security of image

hashing in video analysis and Blockchain-based systems.

46

References or Bibliography

[1] Jinjie Zhang, and Rayan Saab, “Faster Binary Embeddings for Preserving Euclidean

Distances,” arXiv:2010.00712v2. Mar 10, 2021.

[2] R. Biswas, and P. Blanco, “State of the Art: Image Hashing,” arXiv:2108.11794. Aug

26, 2021.

[3] Shaik, A.S., Karsh, R.K., Islam, M. et al. “A review of hashing based image

authentication techniques.” Multimed Tools Appl 81, 2489–2516 (2022).

[4] Pun CM, Yan CP, Yuan XC (2018) “Robust image hashing using progressive feature

selection for tampering detection.” Multimed Tools Appl 77(10):11609–11633

[5] Qiu-Yu Zhang and Guo-Rui Wu, “Digital Image Copyright Protection Method Based

on Blockchain and Perceptual Hashing,” in International Journal of Network Security,

Vol.25, No.1, PP.10-24, Jan 2023.

[6] Srivastava, Mayank & Siddiqui, Jamshed & Ali, Mohammad. (2019). “A Review of

Hashing based Image Copy Detection Techniques.” Cybernetics and Information

Technologies. 19. 3-27. 10.2478/cait-2019-0012.

[7] A. R. Javed, W. Ahmed, M. Alazab, Z. Jalil, K. Kifayat and T. R. Gadekallu, “A

Comprehensive Survey on Computer Forensics: State-of-the-Art, Tools, Techniques,

Challenges, and Future Directions,” in IEEE Access, vol. 10, pp. 11065-11089, 2022, doi:

10.1109/ACCESS.2022.3142508.

[8] M. Yu, Z. Tang, X. Zhang, B. Zhong and X. Zhang, “Perceptual Hashing With

Complementary Color Wavelet Transform and Compressed Sensing for Reduced-

Reference Image Quality Assessment,” in IEEE Transactions on Circuits and Systems for

Video Technology, vol. 32, no. 11, pp. 7559-7574, Nov 2022.

[9] H.E. Lee, T. Ermakova, V. Ververis, B. Fabian, “Detecting child sexual abuse material

A comprehensive survey,” Forensic Science International: Digital Investigation, Volume

34, 2020.

[10] S. Zhang, J. Li, M. Jiang, and B. Zhang, “Scalable discrete supervised multimedia

hash learning with clustering,” IEEE Transactions on Circuits and Systems for Video

Technology (TCSVT), 2017.

[11] Chenggang Yan, Biao Gong, Yuxuan Wei, and Yue Gao, “Deep Multi-View

Enhancement Hashing for Image Retrieval,” arXiv:2002.00169v2, 16 Jun 2020.

[12] M. Meenalochini, K. Saranya, G.V. Rajkumar, and A. Mahto, “Perceptual Hashing

for Content Based image Retrieval,” In IEEE 3rd International Conference on

Communication and Electronics Systems (ICCES), 2018.

https://ieeexplore.ieee.org/xpl/conhome/8717974/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8717974/proceeding

47

[13] Liming Xu, Xianhua Zeng, Bochuan Zheng, Weisheng Li, “Multi-Manifold Deep

Discriminative Cross-Modal Hashing for Medical Image Retrieval” In IEEE Transactions

on Image Processing, 2022.

[14] Du, Ling & Ho, Anthony & Cong, Runmin. (2020). “Perceptual hashing for image

authentication: A survey. Signal Processing: Image Communication.” 81.

10.1016/j.image.2019.115713.

[15] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for indexing big data:

a survey,” Proceedings of the IEEE, vol. 104, no. 1, pp. 34–57, 2016.

[16] Wu, Gengshen, “Learning effective binary representation with deep hashing technique

for large-scale multimedia similarity search.”/ Lancaster University, 2020. 180 p.

[17] Robin Landa, “Graphic Design Solutions. Cengage Learning”, 2019.

[18] Anup Singh, Kris Demuynck, Vipul Arora, “Simultaneously Learning Robust Audio

Embeddings and balanced Hash codes for Query-by-Example,” arXiv:2211.11060v1

[eess.AS]. 20 Nov 2022

[19] Qiang Ma, Ling Xing, “Perceptual hashing method for video content authentication

with maximized robustness “, EURASIP Journal on Image and Video Processing. 21 Nov

2021.

[20] Ou, Yang & Rhee, Kyung Hyune. (2010). “A Survey on Image Hashing for Image

Authentication.” IEICE Transactions. 93-D. 1020-1030. 10.1587/transinf. E93.D.1020.

[21] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning to hash,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 769–790,

2017.

[22] Alexandr Andoni, Piotr Indyk, Ilya Razenshteyn, “Approximate Nearest Neighbor

Search in High Dimensions”, arXiv:1806.09823, 26 Jun 2018.

[23] K. D. Doan, P. Yang and P. Li, "One Loss for Quantization: Deep Hashing with

Discrete Wasserstein Distributional Matching," 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2022, pp. 9437-9447, Doi:

10.1109/CVPR52688.2022.00923.

[24] Ibtihaal M. Hameed, Sadiq H. Abdulhussain, and Basheera M. Mahmmod, “Content-

based image retrieval: A review of recent trends”, Cogent Engineering, 8:1, 1927469, 2021.

[25] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions via

hashing,” in International Conference on Very Large Data Bases (VLDB), vol. 99, no. 6,

1999, pp. 518–529.

[26] Lv, X. (2013). “Robust digital image hashing algorithms for image identification”.

University of British Columbia.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
https://www.research.lancs.ac.uk/portal/en/publications/learning-effective-binary-representation-with-deep-hashing-technique-for-largescale-multimedia-similarity-search(769fbbdc-ab9c-4643-8ade-67afc44928b4).html
https://www.research.lancs.ac.uk/portal/en/publications/learning-effective-binary-representation-with-deep-hashing-technique-for-largescale-multimedia-similarity-search(769fbbdc-ab9c-4643-8ade-67afc44928b4).html
https://www.amazon.com/Robin-Landa/e/B001H6KSYO/ref=dp_byline_cont_book_1
https://jivp-eurasipjournals.springeropen.com/
https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-021-00577-z#article-info
https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-021-00577-z#article-info

48

[27] Z. Cao, M. Long, J. Wang, and P. S. Yu, “HashNet: Deep learning to hash by

continuation,” in The IEEE International Conference on Computer Vision (ICCV), October

2017.

[28] Huajian Liu, Sang-Heon Lee, and Javaan Singh Chahl, “Transformation of a high-

dimensional color space for material classification,” Journal of the Optical Society of

America A 34(4):523 2017.

[29] Dongmei Mo, W. Wong, Xianjing Liu, Yao Ge, “Concentrated hashing with

neighborhood embedding for image retrieval and classification,” In International Journal

of Machine Learning and Cybernetic, 03 January 2022.

[30] A. Alzu'bi, A. Abuarqoub, “Deep learning model with low-dimensional random

projection for large-scale image search“, Engineering Science and Technology, Pages 911-

920, August 2020.

[31] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural scene

categories,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2005, pp. 524–531.

[32] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”

2009.

[33] Jian Zhang, Yuxin Peng, and Zhaoda Ye. “Deep reinforcement learning for image

hashing.” arXiv preprint arXiv:1802.02904, 2018.

[34] Wang, Z., Hong, W., and Yuan, J. “Deep reinforcement learning with label embedding

reward for supervised image hashing”. arXiv preprint arXiv:2008.03973 (2020)

[35] Richard S Sutton and Andrew G Barto. “Reinforcement learning: An introduction.”

1998.

[36] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L.

Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, “Mastering Chess

and Shogi by Self-Play with a General Reinforcement Learning Algorithm”,

arXiv:1712.01815, 5 Dec 2017.

[37] Xin Yuan, Liangliang Ren, Jiwen Lu, and Jie Zhou. “Relaxation-free deep hashing via

policy gradient”. In ECCV, 2018.

[38] A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet classification with deep

convolutional neural networks”, in: Proceedings of the NIPS, 2012, pp. 1097–1105.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[40] T.S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y.T. Zheng, “Nus-Wide: a real-world web

image database from national university of Singapore”, in: ICMR, 2009, pp. 1–9.

https://www.researchgate.net/profile/Huajian-Liu-3
https://www.researchgate.net/profile/Sang-Heon-Lee-9
https://www.researchgate.net/scientific-contributions/Javaan-S-Chahl-2144452427
https://www.researchgate.net/journal/Journal-of-the-Optical-Society-of-America-A-1520-8532
https://www.researchgate.net/journal/Journal-of-the-Optical-Society-of-America-A-1520-8532
https://www.semanticscholar.org/author/Dongmei-Mo/51094580
https://www.semanticscholar.org/author/W.-Wong/145417367
https://www.semanticscholar.org/author/Xianjing-Liu/2155879931
https://www.semanticscholar.org/author/Yao-Ge/2068911956
https://link.springer.com/journal/13042
https://link.springer.com/journal/13042
https://link.springer.com/article/10.1007/s13042-021-01466-7#article-info
https://www.sciencedirect.com/journal/engineering-science-and-technology-an-international-journal
https://arxiv.org/abs/1712.01815

49

[41] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan P. Dollar, C.L.

Zitnick, “Microsoft COCO: common objects in context”, in: Proceedings of the ECCV,

2014, pp. 740–755.

[42] Y. Cao, B. Liu, M.S. Long, J.M. Wang, “HashGAN: deep learning to hash with pair

conditional Wasserstein GAN”, in: Proceedings of the CVPR, 2018, pp. 1287–1296.

[43] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. “Supervised hashing for image retrieval

via image representation learning,” In AAAI, pages 2156–2162. AAAI, 2014.

[44] H. Lai, Y. Pan, Y. Liu, and S. Yan. “Simultaneous feature learning and hash coding

with deep neural networks,” In CVPR. IEEE, 2015.

[45] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete hashing,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 37–45.

[46] Z. Cao, M. Long, J. Wang, and P. S. Yu, “HashNet: Deep learning to hash by

continuation,” in The IEEE International Conference on Computer Vision (ICCV), Oct

2017.

[47] P. Indyk and R. Motwani. “Approximate Nearest Neighbor-Towards Removing the

Curse of Dimensionality. In Proceedings of the 30th Symposium on Theory of

Computing”, 1998, pp. 604-613.

[48] Yunhao Tang, Shipra Agrawal “Discretizing Continuous Action Space for On-Policy

Optimization.” arXiv:1901.10500v4 [cs.LG] 19 Mar 2020.

[49] Chloe Ching-Yun Hsu Celestine Mendler-Dünner Moritz Hardt. “Revisiting Design

Choices in Proximal Policy Optimization”, arXiv:2009.10897v1 [cs.LG] 23 Sep 2020.

