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Abstract 

In recent years, deep hashing algorithms have gained a lot of attention in image 

retrieval because of their high efficiency, low memory consumption, and high 

retrieval accuracy. Although a binary hash code with a longer length is technically 

more accurate, it may contain redundant binary values, which is a major problem 

with most hashing algorithms. This thesis proposes a Deep Reinforcement 

Learning-Based Image Hashing Technique, which generates a binary hash code 

database using CNN in the first step, and then adaptively selects the most 

informative bits from each binary hash code in the second step, resulting in a more 

accurate binary hash code database. In our approach, Markov Decision Process 

(MDP) is used to model an efficient binary value selection process, and 

Reinforcement Learning is used to solve it. The most informative bits are identified 

by optimizing mean Average Precision (mAP) during training. Our method is 

shown to produce highly efficient compact binary hash codes with different lengths 

and perform better retrieval than state-of-the-art methods on three public datasets, 

CIFAR-10, NUS-WIDE, and MS-COCO. 

Keywords: Deep Learning, Markov Decision Process, Reinforcement Learning, 

PPO, CNN, Image Hashing 
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Chapter 1 

Introduction 

1.1 Introduction 

Large data sets of high-dimensional raw data analysis are typically computationally 

and memory costly. Due to this, it is frequently essential to translate data into a 

lower-dimensional space as part of the preprocessing step while roughly 

maintaining crucial geometric aspects, such as pairwise L2 distance [1]. Binary 

embedding also known as binary hashing or binary representation, a technique to 

nonlinearly embed high dimensional sets 𝑋 ⊆ ℝ𝑛 to the binary cube {1, −1}𝑚 with 

𝑚 << 𝑛, has developed to further decrease memory requirements and simplify the 

contents of the high dimensional data, such as images [2]. Image hashing is the 

method of employing binary hashing for image datasets, thus rather than directly 

comparing the images, it utilizes this hash instead [2]. As hashes are significantly 

smaller than images, the comparison is quicker and uses less storage. Image hashing 

has applications in image authentication and image retrieval [3], tamper detection 

[4], digital watermarking [5], copy detection [6], digital forensics [7], and reduced-

reference image quality evaluation [8]. For example, people often use image editing 

tools, such as Photoshop and ACDsee software, to process photographs and save 

them in JPEG format with different filenames. Consequently, there may be several 

copies of an image on the computer. These copies have the same visual contents as 

the original image, but their digital representations are different from that of the 

original one. In this case, people can exploit the image hash function to efficiently 

search all similar versions (including the original one and its copies) of the image 

from a large-scale image database. 

On the other hand, there is a vast variety of smart digital devices, internet 

connections, and people all over the world who can use these devices and services 

to create and distribute digital content that may be harmful to others. The 

advancement of digital forgery has posed a significant challenge to multimedia 

authentication and security [2]. Additional layers of prevention are required to 

protect against such crimes and to support Law Enforcement Agencies (LEAs). In 

addition to social awareness and cybersecurity, computer vision techniques such as 

image hashing can be employed to detect, stop, and respond to sophisticated crimes 

such as distributing fake images. In the fight against cybercrimes, such as the 

distribution and consumption of Child Sexual Abuse Material (CSAM), hotlines, 

law enforcement agencies, industry stakeholders, and other child protection 

organizations utilize image hashing technology to detect and remove CSAM [9]. 
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Image hash function takes an image as input and maps it to a compact hash value 

such that perceptually similar images always map to similar values, and different 

values if the images are perceptually different.  

In this thesis, we explore the utilization of deep reinforcement learning for image 

hashing, presenting a novel approach to decision-making. We frame the image 

hashing problem within the framework of a Markov Decision Process (MDP), 

which provides a formal representation of sequential decisions made by an agent. 

Our objective is to construct binary hash codes for images that effectively minimize 

the Hamming distance between images of the same class and maximize the distance 

between images of different classes. The reason for this is that it allows the 

detection and removal of known CSAM items without requiring an analyst to assess 

them again. Using hashing technology is critical because once CSAM exists online, 

it is often shared thousands of times. As a result, analysts and law enforcement are 

relieved of the repetitive review of the same content and the number of people 

watching the abuse is minimized. Furthermore, due to the rapid growth of images 

on the web, large scale image retrieval has been gaining a lot of attention. To 

retrieve images, many hashing methods have been proposed [10], [11]. Image 

hashes provide an automated way of deciding whether two media files are still 

perceptually identical, for example, whether one image is a copy of another, which 

was processed without changing its semantics. Unlike cryptographic hash functions 

such as Message Digest Algorithm (MD5), and Secure Hash Algorithm (SHA-1) 

the image hash function is not sensitive to digital representation of an image. It 

produces the same or very similar hash values for visually identical images no 

matter whether their representations are the same or not. In general, an image hash 

function must have two properties: 

• Perceptual Robustness: A hash function should be robust against content-

preserving operations, such as JPEG compression and denoising [12]. Image 

hash function should learn the same or similar hashes from those visually 

similar images, which may undergo common digital operations, such as image 

compression and geometric transformations. Thus, Images and their attacked 

versions should have the same hash. 

• Discriminative Capability: The discriminative capability in image hashing 

refers to the ability of an image hash function to produce distinct hash values 

for different images. In other words, it measures how well the hash function can 

distinguish between two images and generate different hash codes for them. 

The higher the discriminative capability of an image hash function, the lower 

the probability of two different images having the same hash value. This 

property is essential for tasks such as image retrieval, duplicate detection, and 

content-based image recognition, where similar images need to be identified 

accurately [13]. 
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It should be noted that there exists a constraining relationship between Perceptual 

Robustness and Discriminative Capability. The relationship between these two 

properties is that they are often trade-offs. An image hash function that is highly 

perceptually robust may have lower discriminative capability since it needs to 

generate the same hash value for similar images. Similarly, an image hash function 

with high discriminative capability may not be as perceptually robust since it needs 

to generate different hash values for even slightly different images. Therefore, 

designing an image hash function that strikes a balance between these two 

properties is crucial, depending on the intended application. For instance, if the 

primary application is image retrieval, the high discriminative capability is 

desirable, while if the application is image authentication, high perceptual 

robustness is more critical. By using binary codes instead of real-valued features, 

searching can be greatly sped up and memory costs reduced. For instance, during 

the detection of illegal material, if the hash of the original copy of that illegal image 

is stored in a database, the found media files are also hashed and these hashes are 

searched for in the database. If a very similar hash is found, illegal content has been 

detected. 

1.2 Review of Hashing Theory 

Hashing is a technique for finding nearest neighbors in large-scale datasets that 

involves embedding high-dimensional feature descriptors into a similarity-

preserving Hamming space with a low dimension and a fixed length known as a 

Hash [11]. Cryptographic Hash Functions (CHFs) are mathematical operations that 

convert input data into a fixed-length string of bits, called a Hash value, and are 

used to verify the validity of data with varying levels of complexity and difficulty 

[9]. Cryptographic hashes add security features to traditional hashes, making it 

more difficult to decipher message contents or access recipient information [14]. 

The applications of CHFs namely, message authentication, user authentication, and 

secure matching provide advantages that are highly desirable in information 

security. CHFs have two characteristics: 

• Collision-free: The output hash of a well-designed CHF is unique for every 

input, and collisions are minimized by using mathematical techniques. 

• Irreversibility: Since hash functions are one-way procedures, it might be 

challenging to infer the input value of a hash function from its result. 

Although CHFs are ideal for hashing passwords and PINs, they are not suitable for 

image processing or biometrics since perceptually identical photos or biometrics of 

the same user can differ at various times or locations. The pixel values of images 

or biometrics can be changed so that they remain perceptually the same but have a 

significantly different appearance. Nevertheless, we know that when utilizing 

CHFs, even the smallest change to the image results in an entirely different hash. 
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The reason is that hash functions used in CHFs are extremely sensitive to variations 

and thus incapable of providing effective hashes for images or biometrics. To hash 

images without being sensitive to small input changes, Image Hashing has been 

proposed as an alternative to CHFs. In other words, binary embedding or image 

hashing is a hash function that is robust to minor changes. Therefore, an image 

hash function should be resistant to visual manipulation and prevent bit-by-bit 

comparison, it should produce a different hash if the visual content differs [15]. 

The objective of image hashing is to convert high-dimensional feature 

vectors into low-dimensional hash codes, so that the hash codes of similar or 

near-similar items are as similar or as close as possible, while the hash codes of 

dissimilar things are as distinct as possible. Hash functions scramble data and 

convert it into a numerical value and no matter how long the input is, the output 

value is always of the same length. Message digest functions or hash algorithms 

are other names for hash functions. As was previously said, a hash function is 

essential in establishing the retrieval accuracy in applications of the hashing 

approach. Basically, the generic hashing procedure can be stated as ℎ𝑎𝑠ℎ(𝑥)  →

𝑧, where the value of 𝑥 refers to the pixel values of the image’s feature vectors. 

The hash function ℎ𝑎𝑠ℎ(. ) can be summarized into two main types: 

• Linear hash functions,   

• Nonlinear hash functions. 

The generalized linear hash function is illustrated as 𝑠𝑖𝑔𝑛(𝑊𝑥 + 𝑦)  → 𝑧 where 

𝑊 ∈ ℝp×d and 𝑦 ∈ ℝ𝑃 represent the linear projection matrix and bias vector, 

respectively. Hard thresholding function 𝑠𝑖𝑔𝑛(𝑥) equals 1 if x ≥ 0, otherwise 

−1. However, in real applications, the linear hash function usually suffers from 

low discrimination power [16]. To overcome the low discrimination power of 

linear hash functions, researchers have developed nonlinear hash functions by 

applying kernel, spherical function, or boosting models to the original feature 

before binarization [16]. As opposed to linear hashes, nonlinear operations 

enhance feature expressiveness and are more suitable for data collected from 

complex real-world scenarios. Figure 1.1 gives a simple example of such a case. 

A kernel-based hash function is presented below without loss of generality: 

𝑠𝑖𝑔𝑛 (∑𝑊𝑖𝜑(𝑐𝑖, 𝑥) + 𝑦

𝑖

) → 𝑧 
 

(1.1) 

where 𝑐𝑖 denotes the randomly sampled data point or cluster center from the 

dataset. φ(.) is the kernel function and 𝑊𝑖 represents the weight matrix. In recent 

years, deep neural networks have been widely integrated into hashing 

frameworks, which can be considered as an advanced form of nonlinear hash 

functions with varied activation functions [16].  
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Figure 1.1: Linear and Non-Linear hash function 

Image Hashing, which considers changes in the visual domain, is an efficient 

multimedia technology that facilitates content identification and comparison, 

ensuring reliable and secure multimedia management and retrieval processes. In an 

image hashing process, the input is an image, and the output is a compact binary 

representation based on the visual content of the input image [15]. Generally, the 

compact representation is called an image hash. An image hash is significantly 

lower in size than the actual image data since it just comprises the fundamental 

perceptual components of a picture. These perceptual components according to 

Robin Landa’s book [17] include: 

• Shape: The form or outline of objects in the picture. 

• Color: The hue, saturation, and brightness of the picture. 

• Texture: The surface quality or feel of the objects in the picture. 

• Contrast: The difference between light and dark areas in the picture. 

• Depth: The perceived distance between objects in the picture. 

• Composition: The arrangement of objects and visual elements within the 

picture. 

• Movement: The appearance of motion or activity in the picture. 

• Perspective: The way that objects appear to change in size and position based 

on their distance from the viewer. 

The image hash’s small size speeds up search processes and reduces memory use. 

Note that the robust hash values are not only generated from images, but also 

from other multimedia formats, such as audio hashing [18] and video hashing 

[19]. In this thesis, we focus on image hashing since it is the most widely 

researched with the longest developing history. There are many other academic 

terms used for image hashing in literature: perceptual image hashing, robust 

image hashing, robust perceptual hash, soft hash, etc. [20]. We use the term 

Image Hashing in a broad sense to include all the foregoing technologies. 
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Given a data sample represented by a feature vector 𝑥 ∈ ℝ𝑑, the goal of 

hashing techniques is to design an optimal hash function ℎ𝑎𝑠ℎ(. ) that 

projects 𝑥 from the original high-dimensional space into compact binary space 

𝑧: 𝑧 ∈ {−1, 1}𝑔(ℝ𝑑 → ℝ𝑔 𝑎𝑛𝑑 𝑑 ≫ 𝑔) while keeping its true nearest neighbors as 

close as possible in the Hamming space [21]. In other words, similar data 

samples in the original feature space should be represented with similar binary 

codes in the Hamming distance, significantly enhancing retrieval efficiency 

while maintaining reasonable accuracy. 

1.3 Similarity Search 

The Internet era has created a huge amount of data and the explosion of data in 

all its forms, like image, text, audio, and video, has led to a multitude of 

problems concerning their authenticity and validity [16]. According to public 

statistics website, the average number of photos being shared every day on 

Flickr is about 1 million. To manage such massive data sources, conducting 

reliable and effective content-based similarity retrieval has received a lot of 

interest from both industry and academics. 

Nearest Neighbor (NN) search, also known as proximity search, is often used 

in image retrieval applications, where the task is to find the closest matching 

image in a database to a query image [22]. According to Doan et al. [23] the 

NN algorithm can be used in this context by computing the similarity between 

the query image and the images in the database and selecting the image with 

the highest similarity as the closest match. NN has been successful in many 

classification and regression problems, including handwritten digits and 

satellite image scenes [23]. The cost of finding the exact nearest neighbor is 

prohibitively high in the case that the reference database is very large or that 

computing the distance between the query item and the database item is costly 

[22]. Furthermore, the proliferation of multimedia information such as images 

has made the security of media content an important research concern [24]. 

Thus, multimedia authentication techniques have emerged to verify content 

integrity and prevent forgery. 

Being a non-parametric method, NN is often successful in classification 

situations where the decision boundary is very irregular [16]. Particularly, given 

a query feature vector 𝑥𝑞 ∈ ℝ
𝒅, a gallery set consists of 𝑛 feature vectors 𝑋 =

 [𝑥𝑖]𝑖=1 
𝑛 ∈  ℝ𝒅×𝒏, 𝑑 is the dimensionality, the NN search problem can be 

formulated as 𝑁𝑁(𝑥𝑞) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑑𝑖𝑠𝑡(𝑥𝑞 , 𝑥) , 𝑥 ∈ 𝑋 where 𝑑𝑖𝑠𝑡(. ) represents a 

specific distance metric (e.g., Euclidean distance) that determines the closest 

candidates to 𝑥𝑞 in the feature space [16].  

https://expandedramblings.com/index.php/flickr-stats/
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To further clarify the similarity retrieval process, a simple flowchart of the 

general Content-Based Image Retrieval (CBIR) [24] is presented in Figure 1.2 

which is taken from [16]. 

 
Figure 1.2: The general procedure of CBIR. 

This framework of CBIR could be easily extended to the other related tasks 

involving different data types. In CBIR, images are first represented with 

various feature vectors and then encoded into alternative representations 

following certain patterns like encoding function [16]. Here, the encoding 

function, which is also the learning objective in most search frameworks, 

should be carefully designed to obtain better performance in the upcoming 

retrieval tasks. Then, the gallery and query data are pre-computed by the 

learned encoding function and their encoded feature vectors are measured under 

a distance metric. By sorting those distances in an ascending order, the 

candidates from the gallery with the smallest distances are returned as the 

relevant (i.e., similar) neighbors to one specific query. Generally speaking, the 

search efficiency depends on the computational complexity of the retrieval 

phase. Depending on how complex the retrieval phase is, the search efficiency 

will vary. At the same time, the search accuracy is usually determined by the 

proper design of the encoding mechanism when using fixed feature extractor.  

Early works in the research of similarity retrieval perform the 

exhaustive/exact NN search in the retrieval process. In practical applications, 

such a search strategy (i.e., linear scan) is weak in tackling large datasets with 

many samples [21]. Later on, some tree-based search schemes are proposed to 

subdivide the feature space for data samples via employing various tree 

structures for fast search. As a representative, the K-Dimensional tree (KD-

tree), is a method for indexing the data for quick query response [21]. However, 

a disadvantage of this method is that it cannot handle cases with high 

dimensions, known as the curse of dimensionality, whose computational costs 
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grow exponentially with increasing dimensions, making it less suitable for 

large-scale retrieval applications [16]. 

Consequently, Approximate Nearest Neighbor (ANN) search has been 

developed rapidly, where the Hash-based approaches draw considerable 

attention in this research field to overcome the limitations via conducting 

efficient retrieval in low-dimensional (i.e., compact) Hamming space [22]. The 

ANN approach is more efficient and has been shown to be sufficient and useful 

in many practical situations. Additionally, ANN frequently meets search 

requirements and greatly reduces search complexity, drawing a lot of research 

[22]. The core idea of hashing is to represent the high-dimensional real-valued 

original data with a series of compact binary codes while preserving the 

semantics as much as possible during the code learning, thus accelerating the 

retrieval process without compromising the accuracy. Every duplicate copy of 

the image also has the exact same hash value. Thus, it is sometimes referred to 

as a Digital Fingerprint. 

According to Gionis et al. [25] two advantages of hashing algorithms are 

presented as follows: 

• Memory requirements are drastically reduced when using compact binary codes 

to store huge features and retrieve massive volumes of data. 

• It is advantageous to use compact binary code for similarity computation 

because Hamming distance computation just requires bitwise operations. 

These two benefits make hashing extremely competitive in conducting large-

scale visual-related similarity search tasks. Robust hash functions are closely 

related to CHFs in mapping a large input data into a small fixed-length binary 

string. The key difference is their tolerance to minor incidental changes in the input 

sequence whilst remaining sensitive to large content changes. Given images 𝐼 and 

𝐼′ and their perceptually similar copies with a minor distortion 𝐼𝑑 and 𝐼𝑑
′  , and an 

image hashing function ℎ𝑎𝑠ℎ𝑘(. ) depending on a secret key 𝑘, the required 

characteristics of ℎ𝑎𝑠ℎ𝑘(. ) can be categorized into the following five groups [26]: 

1. Uniqueness: Perceptually distinct images should have unique hashes, 

𝑃𝑟(ℎ𝑎𝑠ℎ𝑘(𝐼)  ≠  ℎ𝑎𝑠ℎ𝑘(𝐼
′)) ≥ 1 −  𝜏, 0 ≤  𝜏 <  1, (1.2) 

2. Compactness: The hash size should be much smaller than that of the original 

image 𝐼, 
𝑆𝑖𝑧𝑒(ℎ𝑎𝑠ℎ𝑘(𝐼)) ≪  𝑠𝑖𝑧𝑒( 𝐼), (1.3) 

3. Perceptual Robustness: Perceptually identical images should have similar 

hashes, 

𝑃𝑟(ℎ𝑎𝑠ℎ𝑘(𝐼)  ≈  ℎ𝑎𝑠ℎ𝑘(𝐼𝑑))  ≥ 1 −  𝜀, 0 ≤ 𝜀 < 1, (1.4) 
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When images are distributed via the Internet, distortions are inevitable due to lossy 

compression and noisy transmission channels, etc. Therefore, image hashing should 

be resistant to such distortions and attacks against image identification and retrieval 

processes and ensure that perceptually comparable images have similar image 

hashes. Figure 1.3 is taken from [26] and displays an original image along with 

deformed reproductions of it. These images experienced some content-preserving 

distortions and attacks, yet perceptually they are the same in the Human Visual 

System (HVS). 

 

Figure 1.3: Examples of distorted image copies under different content-preserving attacks. 

The perceptual robustness of image hashing guarantees that these images have very 

close hashes if the algorithms are robust enough against these attacks. 

4. One-way: Ideally, a hash function should be irreversible, 𝐼 ↦ ℎ𝑎𝑠ℎ𝑘(𝐼) 
5. Unpredictability: The hash is intractable without the secret key, 

𝑃𝑟( ℎ𝑎𝑠ℎ𝑘(𝐼)  ≠  ℎ𝑎𝑠ℎ𝑘′(𝐼)) ≥ 1 −  𝛿, 0 ≤  𝛿 <  1, (1.5) 

Ideally, all the above parameters 𝜀, τ, and 𝛿 should be close to zero for a proper 

designed hashing function to generate unique and compact image hashes, which are 

robust enough against perceptually insignificant distortions and secure enough to 

prevent unauthorized access. In this thesis, we will focus on learning effective 

binary representation of an image with deep reinforcement hashing technique. 

In this thesis, we explore the utilization of deep reinforcement learning for 

image hashing, presenting a novel approach to decision-making. We frame the 

image hashing problem within the framework of a MDP, which provides a 

formal representation of sequential decisions made by an agent. Our objective 

is to construct binary hash codes for images that effectively minimize the 

Hamming distance between images of the same class and maximize the 
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distance between images of different classes. Our proposed Deep 

Reinforcement Learning-based Image Hashing architecture comprises two key 

components: a CNN-based binary hash code extraction module and a binary 

hash code regeneration module that retains valuable bits. Firstly, we leverage 

CNN, specifically AlexNet [38], to determine which hash code preserves the 

similarity between image pairs and their corresponding semantic labels. To 

achieve this, we set the output dimension of the last layer of AlexNet to match 

the desired length of the extracted hash codes, while keeping all other layers 

unchanged. Given the potential limitations of hash functions, which can result 

in long binary codes that are the same for different inputs, it becomes crucial to 

remove redundant bits while preserving those that maintain uniqueness and 

accurately represent the original data. Therefore, in the second step, we employ 

the Proximal Policy Optimization (PPO) algorithm [39], which belongs to the 

actor-critic family of reinforcement learning algorithms. Actor-critic 

algorithms combine value-based and policy-based methods, with the actor 

representing the policy that maps states to actions (i.e., hash codes), and the 

critic estimating the expected reward for a given state or state-action pair. 

Throughout this thesis, we investigate and develop the aforementioned deep 

reinforcement learning-based approach to enhance the generation of binary 

hash codes for images. By incorporating CNN-based extraction and PPO-based 

regeneration, we aim to optimize the preservation of similarity and uniqueness, 

thereby providing an improved representation of the original image data. The 

rest of the thesis is organized as follows. Chapter 2 briefly reviews image hashing 

and content-based fingerprinting and some related works. In Chapter 3, we describe 

in detail our new framework of Deep Reinforcement Learning-based Image 

Hashing Technique. In Chapter 4, we present the experimental results and 

evaluation analysis of our proposed approach, and the thesis concludes in Chapter 

5 along with possible future work. 
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Chapter 2 

Background and Literature Review 

2.1 Hashing Framework for Images 

An image hashing framework refers to a system of methods and algorithms used to 

convert an image into a compact digital signature [27]. The purpose of image 

hashing is to efficiently represent an image in a compact and unique form, allowing 

for tasks such as CBIR, image authentication, and tamper detection [21]. The major 

components that are critical to designing a robust and secure digital image hashing 

algorithm are shown in Figure 2.1. 

 
4 Figure 2.1: The framework of digital image hashing and content-based fingerprinting review. 

2.1.1 Preprocessing 

Prior to feature extraction, the preprocessing step filters the image content. As a 

result, some distortions, such as additive noise, are prevented from affecting the 

robustness of features. As part of the preprocessing, some works normalize images 

into a standardized format, which can facilitate the feature extraction process. The 

common pre-processing operations applied on digital images are illustrated as 

follows: 

• Color Space Dimension Reduction: Color images are first converted to 

grayscale images to reduce the computational cost for feature extraction (e.g., 

3D to 2D) [28]. Another way is based on the color space transform that converts 

RGB space to Hue-Saturation-Value (HSV) space. The conversion from RGB 

color space to HSV color space is nonlinear. Let 𝐻 be the Hue of a pixel in the 

HSV model, 𝑆 be the Saturation and 𝑉 be the Brightness, respectively. Thus, 

their values can be determined in the Equations below: 
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𝐻 =  

{
 
 
 
 

 
 
 
 (−𝐵 + 𝐺) × 

𝜋
3

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝑅 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)

(−𝑅 + 𝐵) × 
𝜋
3

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝐺 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)

(−𝐺 + 𝑅) × 
𝜋
3

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝐵 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,                                    𝑖𝑓      𝑅 = 𝐺 = 𝐵

 

(2.1) 

𝑆 =  {

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)

𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)
,         𝑖𝑓 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)  ≠ 0

0                                                    ,         𝑖𝑓 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) =  0

 

(2.2) 

𝑉 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵)         (2.3) 

• Resizing: Images are resized to a predefined size (usually very small, e.g., 256 

× 384) as a default format. Resizing has two benefits: first, it is significantly 

less computationally expensive, improves the effectiveness of hash production, 

and enables quick indexing and retrieval. Second, characteristics retrieved from 

images with a defined size are more resistant to geometric attacks like changing 

aspect ratios. 

• Filtering: It is a productive method for making the derived characteristics more 

noise resistant. Digital images can be processed to reduce noise using some 

well-known filters, like the median filter and the Gaussian filter. The image 

hashing system must be resistant to blurring distortions since these low-pass 

filters would also remove certain picture content information and produce 

blurred images. 

• Illumination Normalization: In computer vision and image processing, 

illumination normalization is a technique used to account for differences in 

lighting conditions across distinct images. It seeks to eliminate or minimize the 

impacts of illumination variations, such as shadows, highlights, and overall 

brightness, in order to increase the precision and dependability of ensuing 

image analysis activities. 

2.1.2 Feature Extraction 

In image hashing and fingerprinting algorithms, feature extraction is one of the 

fundamental modules. The image features are extracted from the transformed image 

to generate the feature vector of 𝐿 features where 𝐿 ≪ 𝑀 ×  𝑁. A digital image 

hash is unique since it is derived from distinctive features of digital images [26]. 



 

 

 

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

 

 

 

 

 

 

18 

 

Nevertheless, if two digital images are perceptually identical, then the extracted 

features, and therefore the image hashes, should be as similar as possible even when 

the images are subject to additive noise, blurring, geometric attacks, and other 

content-preserving techniques. 

According to the related literature review, most previous works have focused on 

finding robust features that can withstand distortions and attacks, which are 

summarized as follows: 

• Image Pixels: Image pixel values are the raw features that could be directly 

used for hash generation. However, an 𝑁 × 𝑁 image will have a feature vector 

with length 𝑁2, which can be quite high dimensional. Therefore, a dimension 

reduction technique that could preserve the local similarity is required. 

• Invariant Feature Transform: Coefficients in a transformed domain can be 

important features and sufficiently resistant to a broad class of attacks and 

distortions. There are several state-of-the-art transforms that can be used to 

extract robust features, including Discrete Cosine Transform (DCT) and 

Discrete Wavelet Transform (DWT). 

• Convolutional Neural Network: A neural network which is designed to 

process multi-dimensional data like image and time series data is called a 

Convolutional Neural Network (CNN). The main benefit of CNNs is that 

automatic feature extraction is offered. The input data is initially forwarded to 

a feature extraction network, and then the extracted features can be fed into a 

hash function to produce related binary hash code. 

2.1.3 Feature Compression and Post-Processing 

Compactness is an important characteristic of image hashing. Since substantial 

characteristics can be condensed into brief real-valued or even binary sequences, 

this can essentially be thought of as a dimension-reduction procedure. Some typical 

methods of compression are summarized as follows: 

• Quantization: It is widely employed for converting continuous feature space 

to finite discrete feature space and helpful for further signature encoding [29]. 

Popular approaches include interval quantization, binary quantization using 

threshold, and so on for image hash generation. 

• Random Projection: It is one of the state-of-the-art dimension reduction 

techniques to project data in a high dimensional space into a lower dimensional 

space, while preserving the local similarity of the data [30]. The random 

projection approach can result in performances comparable to that of the 

conventional dimension reduction methods such as Principal Component 

Analysis (PCA) but be computationally more efficient. 

https://www.sciencedirect.com/topics/computer-science/neural-networks
https://www.sciencedirect.com/topics/computer-science/time-series-data
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2.2 Comparison and Decision Making  

Following the framework of image hashing or content-based fingerprinting, a 

compact and secure hash is generated and associated with the corresponding  

original image in database as an index. When a query hash is received, it will be 

compared with the existing hashes based on the selected distance metrics and the 

corresponding image will be retrieved according to the classifiers. Hence, the 

distance metrics to measure the similarity between hashes and the classifiers to 

make decisions are also two important issues in hashing and fingerprinting 

schemes. 

2.2.1 Distance Metrics 

Given two hashes 𝐻1 = {ℎ1(1), ℎ1(2), … , ℎ1(𝑘)} and 𝐻2 = {ℎ2(1), ℎ2(2),… , ℎ2(𝑘)} of 

two images 𝐼1 and 𝐼2 with length 𝑘, the following distance metrics are usually 

employed: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑑𝑖𝑠𝑡(𝐻1, 𝐻2) =  √∑ (ℎ1(𝑖) − ℎ2(𝑖))
2𝑘

𝑖=1   
(2.4) 

𝐿1 𝑁𝑜𝑟𝑚 ∶  𝑑𝑖𝑠𝑡(𝐻1, 𝐻2) =  ∑ |ℎ1(𝑖) − ℎ2(𝑖)|
𝑘
𝑖=1   (2.5) 

                                𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∶  𝑑𝑖𝑠𝑡(𝐻1, 𝐻2) =  ∑ |ℎ1(𝑖)  ⊕
∗  ℎ2(𝑖)|

𝑘
𝑖=1   (2.6) 

The choice of distance metrics depends on the type of hashes. When the generated 

hashes are real-valued vectors, Euclidean distance or L1 Norm is usually employed. 

Otherwise, Hamming distance should be used for binary hashes. Hamming 

distances are preferable for the lower computational cost, while Euclidean distance 

or L1 Norm provide higher identification accuracy with the cost of the more 

computational burden. 

2.2.2 Classifiers 

After the similarity between hashes is measured by the selected distance metrics, 

classifiers are employed to make the decision for content identification. In most 

image hashing and fingerprinting algorithms, the simple nearest neighbor classifier 

or threshold-based classifiers are usually used for making decisions. Hash codes 

are classified using 𝐷𝑖𝑠𝑡(𝐻1, 𝐻2)  ≤  𝜉, where ξ is the selected threshold [33]. 

Although there are a lot of advanced classification methods proposed in machine 

learning, they are rarely employed in the image hashing area. The underlying reason 

is as follows: image hashing is an infinite clustering problem, which takes each 

original image as a new cluster and all its perceptually identical copies are assumed
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to lie in the neighborhood of the centroid (e.g., the original image). Hence, if 

advanced supervised classifiers, such as Support Vector Machine (SVM), are 

employed, they could only deal with the finite classification problems and must be 

re-trained, whenever a new original image is registered in a dataset or collection of 

images [10]. The re-training process may incur heavy computational cost when 

thousands of images are registered and training advanced classifiers to deal with 

classification for infinite classes is not feasible in practice. 

2.3 Previous Work 

The existing hashing methods can be divided into two categories: Traditional 

Hashing methods and Deep Neural Network (DNN) Image Hashing [33]. Image 

retrieval performance is limited by traditional hashing methods because they use 

handcrafted features as image representations, which cannot adequately represent 

the image content. The current deep hashing methods, also, have two major 

disadvantages. Firstly, to train most DNN methods, data is often broken into smaller 

sets termed "mini batches" and then processed. This is because mini-batch 

optimization, while widely used for training neural networks, has several 

drawbacks. One significant disadvantage is the potential loss of generalization due 

to the stochastic nature of mini-batch sampling, introducing noise into gradient 

estimates and leading to less stable optimization and suboptimal convergence. 

Selecting an appropriate batch size is crucial, as a small batch size can result in 

noisy gradients and slow convergence, while a large batch size may lead to memory 

limitations and longer training times. Additionally, mini-batch optimization is 

susceptible to getting trapped in local minima, particularly with small batch sizes, 

hindering the model’s ability to find the global minimum of the loss function. The 

choice of learning rate and its schedule presents challenges, requiring careful tuning 

to balance rapid convergence and preventing overshooting. Moreover, the frequent 

weight updates inherent to mini-batch optimization introduce increased 

computational overhead compared to batch optimization, where weights are 

updated after processing the entire dataset. Secondly, most existing methods 

generate redundant hash codes [33]. It may even be possible to throw away some 

bits of the generated hash codes without harming the retrieval accuracy. According 

to Shaik et al. [3] these redundant or even harmful bits can come from two sources. 

One source is the dataset that contains noisy data and, the second one, mini-batch 

training approaches only preserve local similarity relationships in the generated 

hash codes. Mini-batch methods, employed in training deep learning models, 

involve optimizing the model’s parameters using subsets of the entire dataset in 

each iteration. While this approach accelerates the optimization process, it can 

inadvertently emphasize local relationships between data points present in each 

mini batch. As a consequence, the model may become biased towards capturing 
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local patterns or features, neglecting broader global features that contribute to the 

overall structure and semantics of the data. In the context of image hashing, this 

means that the generated hash codes might prioritize encoding similarities and 

dissimilarities within the sampled mini batches, potentially overlooking important 

global characteristics that could aid in accurate and efficient retrieval. 

Consequently, this local focus could lead to suboptimal hash codes that lack the 

holistic understanding needed for effective image representation and retrieval 

across the entire dataset. Existing hashing methods can also be categorized into two 

classes [33]: data-dependent and data-independent. Data-dependent methods can 

be further divided into Unsupervised and Supervised methods based on their use of 

side information. To learn hashing functions, unsupervised methods do not require 

label information. In the following, we will briefly review traditional hashing 

approaches and DNN image hashing. 

2.3.1 Traditional Hashing Methods 

As a traditional hashing method, Fei-Fei et al. [31] in Bag-of-Visual-Words, model 

images as patches. A patch 𝑥 is the basic unit of an image, all patches are indexed 

by {1, … , 𝑇}. Bag-of-Visual-Words aims to develop a model that best represents the 

distribution of these patches across the categories of scenes. A scene or image is a 

sequence of 𝑁 patches denoted by 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑛 is the 𝑛𝑡ℎ patch of 

the image. In recognition, all the patches first are identified in the unknown image. 

Then a category model that fits best the distribution of the patches of the image will 

be found. A category is a collection of 𝐼 images denoted by 𝐷 = {𝑋1, 𝑋2, … , 𝑋𝐼}. 

Choosing a category label, such as a mountain scene, is the next step. Based on the 

mountain class, they determine which intermediate theme(s) to pick for each patch 

while generating the scene. The patch is created by selecting a particular theme 

from a variety of possible themes. For example, if a “rock” theme is selected, this 

will in turn privilege some patches that occur more frequently in rocks (e.g., slanted 

lines). Now the theme favoring more horizontal edges is chosen, one can draw a 

patch, which is likely to be a horizontal line segment. The process of drawing both 

the theme and patch repeat many times, eventually forming an entire bag of patches 

that would construct an image of mountains. According to [31] the process that 

generates an image 𝑖 formally from the model is as follows:  

Choose a category label 𝑐 ~ 𝑝(𝑐|𝜂) for each image, where 𝑐 is a variable that 

takes on values from the set {1, … , 𝐶} where 𝐶 represents the total number of 

categories. Each image is assigned a category label, denoted by 𝑐 which 

corresponds to a specific category or class. 𝜂 is a C-dimensional vector of a 

multinomial distribution. Now for a particular image in category 𝑐, we want to draw 

a parameter that determines the distribution of the intermediate themes (e.g., how 

“water”, “sky” etc. are distributed for this scene). This is done by choosing 
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𝜋~ 𝑝(𝜋|𝑐, 𝜃) for each image. 𝜋 is the parameter of a multinomial distribution for 

choosing the themes. θ is a matrix of size 𝐶 × 𝐾, where 𝜃𝑐 is the 𝐾-dimensional 

Dirichlet parameter conditioned on the category c. 𝐾 is the total number of themes. 

For each 𝑁 patches 𝑥𝑛 in the image: 

• Choose a theme 𝑧𝑛 ∼ Mult(π). 𝑧𝑛 is a K-dim unit vector. 𝑧𝑛
𝑘 = 1 indicates that 

the 𝑘𝑡ℎ theme is selected (e.g., “rock” theme). 

• Choose a patch 𝑥𝑛 ~ 𝑝(𝑥𝑛|𝑧𝑛, 𝛽) where 𝛽 is a matrix of size 𝐾 × 𝑇. 𝐾 is again 

the number of themes and 𝑇 is the total number of patches. Therefore, we have 

𝛽𝑘𝑡 = 𝑝(𝑥𝑛
𝑡 = 1|𝑧𝑛

𝑘 = 1) 
Given the parameters θ, η and 𝛽, we can now write the full generative equation of 

the model. It is the joint probability of a theme mixture π, a set of 𝑁 themes 𝑧, 𝑎 set 

of 𝑁 patches 𝑥 and the category 𝑐, as shown in Equation 2.7: 

𝑝(𝑥, 𝑧, 𝜋, 𝑐 |𝜃, 𝜂, 𝛽) = 𝑝(𝑐|𝜂)𝑝(𝜋|𝑐, 𝜃) (2.7) 

The Dirichlet parameter 𝜃 for each category is a category-level parameter, sampled 

once in the process of generating a category of scenes. The multinomial variables 

𝜋 are scene-level variables, sampled once per image. Finally, the discrete theme 

variable 𝑧 and patch 𝑥 are patch-level variables, sampled every time a patch is 

generated. Fei-Fei et al. [31] train and test their model on a dataset containing 13 

categories of natural scenes, making it the largest dataset of its kind at that date. In 

their model when detecting or creating an image, the combined likelihood of 

patches, themes, and categories is computed. However, in extensive datasets like 

ImageNet, which contain over 20,000 categories and more than 14 million images, 

the manually designed features employed as image representations are inadequate 

for accurately capturing the content of an image. This is due to the fact that the 

identified image can potentially belong to hundreds or even thousands of 

categories. This approach also limits the performance of single-image retrieval 

because it imposes long-term computation and is applicable to datasets that are 

labeled. Indyk et al. [25] propose Locality Sensitive Hashing (LSH) as a data-

independent unsupervised method to image hashing which is also the most 

representative one. LSH uses randomly generated hash functions that hash data 

points or image features into buckets in such a way that data points within a bucket 

have a high probability of being the same, while data points farther apart are likely 

to be in different buckets. LSH maps images into binary codes while preserving 

cosine similarity using random projections derived from Gaussian distributions. 

The probability of collision of two points 𝑝 and 𝑞 is closely related to the distance 

between them. Specifically, the larger the distance, the smaller the collision 

probability. This intuition is formulized as follows [47]. Let 𝑑𝑖𝑠𝑡(. , . ) be a distance 

function of elements from a set 𝑆, and for any 𝑝 ∈ 𝑆 let 𝛽(𝑝, 𝑑) denote the set of 
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elements from 𝑆 within the distance 𝑑 from 𝑝. A family 𝐻 of functions from 𝑆 to 𝑈 

is called (𝑟1, 𝑟2, 𝑝1, 𝑝2) −sensitive for 𝑑𝑖𝑠𝑡(. , . ) if for any 𝑞, 𝑝 ∈ 𝑆: 

{
𝑖𝑓 𝑝 ∈ 𝛽(𝑞, 𝑟1)  𝑡ℎ𝑒𝑛  𝑃𝑟𝐻[ℎ(𝑞) = ℎ(𝑝)] ≥  𝑝1,

𝑖𝑓 𝑝 ∉ 𝛽(𝑞, 𝑟2)  𝑡ℎ𝑒𝑛  𝑃𝑟𝐻[ℎ(𝑞) = ℎ(𝑝)] ≤  𝑝2.
 

(2.8) 

In the above definition, probabilities are considered with respect to the random 

selection of a function ℎ from the family 𝐻. In order for a locality-sensitive family 

to be useful, it has to satisfy the inequalities 𝑝1 > 𝑝2 and 𝑟1 < 𝑟2. It is worth noting 

that if 𝑑𝑖𝑠𝑡(. , . ) corresponds to the Hamming distance 𝑑𝑖𝑠𝑡𝐻(. , . ), the family of 

projections on a single coordinate is an example of a locality-sensitive family. 

However, achieving satisfactory performance in LSH typically requires generating 

longer codes and employing multiple hashing tables. Observe that if 𝑑𝑖𝑠𝑡(. , . ) is 

the Hamming distance 𝑑𝑖𝑠𝑡𝐻(. , . ), then the family of projections on one coordinate 

is locality sensitive. Therefore, based on the supported statements, we can say that 

the family of projections on one coordinate is a specific instance of a locality-

sensitive family that satisfies the desired properties. Nevertheless, effective LSH 

implementations often involve generating longer codes and utilizing multiple 

hashing tables to ensure desired performance levels. 

2.3.2 Deep Neural Network Image Hashing 

Deep neural networks (DNNs) have been successful on many computer-vision 

tasks, like image classification and object detection, and now image retrieval using 

deep hashing methods has shown promising results by leveraging powerful feature 

representation capabilities. Cao et al. [27] propose HashNet, a supervised method 

for image hashing. It utilizes data-dependent hash encoding schemes to enhance 

image retrieval, outperforming data-independent methods like LSH. HashNet 

leverages DNNs to encode nonlinear hash functions, enabling more efficient 

learning of end-to-end feature representation and hash coding. In similarity search 

problems, we are given a training set of 𝑁 points {𝑥𝑖}𝑖=1
𝑁 , each represented by a 𝑑-

dimensional feature vector 𝑥𝑖 ∈  ℝ
𝑑. Some pairs of points 𝑥𝑖  and 𝑥𝑗  are provided 

with similarity labels 𝑠𝑖𝑗 : 

{
𝑠𝑖𝑗 = 1          𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗  𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟

        𝑠𝑖𝑗 = 0          𝑖𝑓 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  𝑎𝑟𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟 
 

(2.9) 

The goal of deep learning to hash is to learn nonlinear hash function 𝑓 ∶ 𝑥 ⟶ ℎ ∈
 {−1, 1}𝑘 from input space 𝑅𝑑 to Hamming space {−1, 1}𝑘 using DNNs, which 

encodes each point 𝑥 into compact 𝑘-bit binary hash code ℎ = 𝑓(𝑥) such that the 

similarity information between the given pairs 𝑆 can be preserved in the compact 
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hash codes. In supervised hashing, the similarity set 𝑆 = {𝑠𝑖𝑗 } can be constructed 

from semantic labels of data points or relevance feedback from click-through data 

in real retrieval systems. Figure 2.2 taken from [27] shows the HashNet architecture 

for solving the data imbalance and ill-posed gradient problems. The architecture 

accepts pairwise input images {𝑥𝑖 , 𝑥𝑗 , 𝑠𝑖𝑗 } and processes them through an end-to-

end pipeline of deep representation learning and binary hash coding:  

1. A CNN for learning deep representation of each image xI  
2. A fully connected hash layer, fch, for transforming the deep representation into 

k-dimensional representation zI ∈  ℝ
k 

3. A sign activation function h = sgn(z) for binarizing the k-dimensional 

representation zI  into k-bit binary hash code hI ∈ {−1, 1}k 

4. A weighed cross-entropy loss for similarity-preserving learning from 

imbalanced data  

According to Cao et al. in [27] the ill-posed gradient problem of the non-smooth 

activation function ℎ = 𝑠𝑔𝑛(𝑧) is addressed using a continuation approach. This 

approach begins with a smoothed activation function 𝑦 = 𝑡𝑎𝑛ℎ(𝛽𝑥) and gradually 

increases the non-smoothness by raising the value of 𝛽 as the training progresses. 

Eventually, the function transitions back to the original sign activation function. 

This technique is employed to mitigate optimization challenges associated with the 

original sign activation function. 

 
5 Figure 2.2: The proposed HashNet for deep learning to hash by continuation, which is comprised of four key 

components: (1) Standard convolutional neural network (CNN), e.g. AlexNet and ResNet, for learning deep 

image representations, (2) a fully-connected hash layer (fch) for transforming the deep representation into K-

dimensional representation, (3) a sign activation function (sgn) for binarizing the K-dimensional representation 

into K-bit binary hash code, and (4) a novel weighted cross-entropy loss for similarity- reserving learning from 

sparse data. 
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Chapter 3 

Proposed Approach 

3.1 Deep Reinforcement Learning to Hash 

Binary embedding a.k.a hashing enables efficient linear scan for two reasons. First, 

computing Hamming distances is much faster than computing distances between 

high-dimensional floating-point vectors. Second, the entire dataset consumes much 

smaller memory so, it may reside in fast memory rather than hard disk. Traditional 

image hashing methods take a feature vector as input and produce a compact binary 

vector. According to Wang et al. [34], in order to overcome the challenge of directly 

learning the optimal binary code, many traditional methods employ a two-step 

approach. In the training phase, they initially relax the discrete constraint, allowing 

for continuous solutions. Later, during the testing phase, these continuous solutions 

are rounded to obtain the binary code. However, such an inconsistency between 

training and testing could result in an undesired performance. Moreover, since the 

binary embedding procedure is independent of the feature extraction stage, the 

performance of traditional image hashing methods is constrained by the quality of 

original features.  

To address this problem, deep hashing is recently proposed to jointly optimize 

the feature extraction and binary embedding steps [34]. Typically, most deep 

hashing methods first adopt a CNN or multi-layer perceptron to extract the real-

value representation of the input image, then quantize the real-value representation 

to binary code. Thanks to the simultaneous optimization of feature extraction and 

binary embedding steps, deep hashing, especially deep supervised hashing, has 

demonstrated superior retrieval performance than those traditional hashing 

methods. Nevertheless, the train/test inconsistency in deep hashing is even more 

severe than in traditional hashing, due to the inherent conflict between hashing and 

back propagation [30][34].  

One inherent conflict between the two techniques is that backpropagation 

requires the ability to perform gradient-based optimization on the inputs, which is 

not possible when the inputs have been hashed. Hashing is a non-differentiable 

function, meaning it does not have a gradient and therefore cannot be used in 

backpropagation. Another conflict is that hashing is a deterministic process, 

meaning the same input will always produce the same output. This makes it difficult 

to update the weights of the network during training, as the same input will always 

produce the same output, making it hard to learn from the data. For example, a rigid 

sign function, whose gradient is either zero or does not exist, is often necessary for 
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binarizing the real-value representation to binary code in deep hashing approaches. 

Meanwhile, DNNs require all components to be differentiable, so that the 

parameters of the network could be gradually updated by back-propagation. Deep 

hashing methods generally approximate rigid sign functions by smooth functions 

such as sigmoid and Hyperbolic Tangent (tanh) in the training phase to facilitate 

the backward pass of the network [34]. After the training is completed, the rigid 

sign function is harnessed to output the binary code. Such inconsistency could lead 

to sub-optimal performance. Also, sigmoid or tanh unit is known as inappropriate 

for deep learning, as their gradients are nearly zero for most inputs. A tiny gradient 

could cause vanishing gradient problem, which is exactly why ReLU activation 

function is required to overcome this problem, allowing models to learn faster and 

perform better. Deep Learning (DL) and Reinforcement Learning (RL) are both 

methods that learn autonomously. The difference between them is that DL involves 

learning from a training set, then applying that learning to a new data set, while RL 

involves dynamically learning through receiving continuous feedback by taking 

actions in each environment to maximize rewards. Due to its ability to make 

accurate decisions even on unknown data, RL has recently been used to generate 

image hashes. On the other hand, according to the possibility of using DNNs as the 

function approximator in an RL system, the term deep reinforcement learning arises 

which is a significant technical part to fulfill this thesis. 

3.2 Markov Decision Process 

MDP is a decision-making model in continuous, discrete, stochastic, and sequential 

environments [35]. As shown in Figure 3.1 the MDP represents a straightforward 

approach to achieving a goal through learning from interaction. The learner or 

decision maker is called the Agent. An agent interacts with the Environment 

through its choices, which are called Actions. As the agent selects an action, the 

environment responds to the action by presenting a new situation, called State, to 

it. The environment also provides rewards, special numerical values that agent 

seeks to maximize through its actions. The agent’s objective is to select actions to 

maximize a long-term measure of total reward. The Equation 3.1 represents the 

Transition Function (T) and Reward Function (R) in an MDP, describing the 

process of transitioning from state 𝑠 to state 𝑠′ by taking a specific action 𝑎.  

T(s, a, s′) = P[St+1 = s
′ | St = s,  At = a] 

Rt = E[Rt+1 | St = s,  At = a] 
(3.1) 

A method of learning known as RL, which is based on MDP, arises when an 

agent has to learn how to behave through trial-and-error interactions with a dynamic 

environment. Deep reinforcement learning has achieved breakthroughs in human-

level performance in games like AlphaZero [36].  
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6 Figure 3.1: Markov Decision Process 

In this thesis, we formulate image hashing as an MDP and solve it with deep 

reinforcement learning. Image hashing approaches are often addressed through 

unsupervised or supervised learning, but rarely through RL, while in recent studies, 

RL techniques have been used to obtain binary codes. Yuan et al. [37] propose a 

deep hashing CNN that generates binary codes and optimizes their deep hashing 

network using policy gradients from RL theory. Zhang et al. [33] as a further step, 

treat a batch of images as environment, triplet-loss as reward, and adjust the 

combination of hashing function to maximize the reward in RL. 

3.3 Proposed Approach Components 

Using deep reinforcement learning to hash, we introduce a new decision-making 

approach. Our image hashing problem can be represented within the framework of 

an MDP, which is a formal formulation of sequential decisions made by an agent. 

We consider binary space as the environment where the agent moves an image 

towards the binary codes using a set of actions. The purpose of our agent is to 

construct a binary code for each image that minimizes the Hamming distance 

between images of the same class and maximizes the Hamming distance between 

images of different classes. Our Deep Reinforcement Learning-based Image 

Hashing architecture consists of two parts:  

• CNN-based binary hash code extraction, 

• Regeneration of binary hash codes by retaining valuable bits. 

Our first step determines which hash code preserves the similarity between each 

pair of images and their semantic labels using CNN. As our CNN, we use AlexNet 

[38]. The output dimension of the last layer in AlexNet is set to the length of the 

extracted hash codes, while all other layers remain unchanged. Due to the weakness 

of the hash functions, which can result in long binary hash codes that may also be 

the same for two different inputs, we must remove redundant bits while keeping 

valuable ones that preserve the uniqueness and most accurately represent the 

original data. Redundant bits, if present, tend to contribute unnecessary similarities 
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between distinct inputs, potentially leading to collisions in the hash codes. By 

removing these redundant bits, we emphasize the unique characteristics of each 

input, making it less likely for different inputs to share the same hash code. This 

process enhances the discriminative power of the hash codes, reducing the chances 

of false positive similarities and improving the overall accuracy and effectiveness 

of the image hashing method in preserving similarity relationships between images 

and their semantic labels. Therefore, in the second step, we take advantage of PPO 

[39]. PPO is an actor-critic style algorithm, where the critic tries to fit the value 

function and the actor aims to update the policy distribution in the direction 

suggested by the critic. 

3.3.1 CNN-based binary hash code extraction 

Learning to hash involves representing a set of training images in the form of 

feature vectors 𝑿 = {𝑥𝑖}𝑖=1
𝑛 ∈ ℝ𝑛×𝐷 , where 𝑥𝑖 can be image feature or raw pixels of 

an image. As part of supervised hashing, images are annotated with semantic labels 

𝒀 = {𝑦𝑖}𝑖=1
𝑛 ∈  {0, 1}𝑛×𝑚 where 𝑚 is the total number of semantic categories. For 

example, 𝑦𝑖𝑗 = 1, means the 𝑖𝑡ℎ image belongs to the 𝑗𝑡ℎ category, and there can 

be multiple categories for an image.  

A similarity matrix 𝑺 ∈ {−1,+1}𝑛×𝑛 is constructed to illustrate similarities 

between two images, where 𝑺𝒊𝒋  = +1 means the 𝑖𝑡ℎ image and the 𝑗𝑡ℎ image are 

similar, otherwise 𝑺𝒊𝒋  =  −1 means the 𝑖𝑡ℎ image and the 𝑗𝑡ℎ image are dissimilar. 

When at least one semantic category is shared between two images, they are 

considered similar. There is a relationship between semantic labels and similarity 

matrix in the sense that semantic labels can be used to classify data into different 

categories, and similarity matrix can be used to measure the similarity between 

different pieces of data and classify it into different semantic labels. The 

relationship between semantic label 𝒀 and the similarity matrix 𝑺 in shown in 

Equation 3.2: 

𝑺 = min(𝒀𝒀𝑇 , 𝟏) × 2 − 𝟏 (3.2) 

Where 𝒀𝑇 represents the transpose of 𝒀, min(. ) is an element-wise minimum 

function, and 𝟏 is a matrix whose elements are all ones. Deep learning to hashing 

is learning a non-linear hash function 𝐻𝑎𝑠ℎ(·) that maps the images from the 

original feature space to a compact binary space, while preserving the similarity 

relationships as shown in Equation 3.3: 

𝐻𝑎𝑠ℎ(𝑿) = 𝒁  
𝑿 = {𝑥𝑖}𝑖=1

𝑛 ∈ ℝ𝑛×𝑑 , 𝒁 =  {𝒛𝑖}𝑖=1
𝑛 ∈  {−1,+1}𝑛×𝑘 

(3.3) 
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where 𝑘 is the length of hash code (𝑘 bits). After that, we can use the Hamming 

distance to measure the number of bits that differ between every two hash codes. 

The complete scheme of the stage CNN-based binary hash code extraction is shown 

in Figure 3.2. Our first step in this stage is to extract a set of hash codes that 

preserves the original similarity relationships globally. As shown in Equation 3.4, 

Hamming distance, and inner product of two hash codes are naturally related. 

𝐻𝑑𝑖𝑠𝑡(𝒛𝑖, 𝒛𝑗) =
1

2
 (𝑘 − 𝒛𝑖𝒛𝑗

𝑇) 
(3.4) 

where 𝑘 is the length of a hash code. As can be seen, Hamming distances decrease 

with an increasing inner product. The inner product of two hash codes can therefore 

be viewed as a factor of affinity, which we can use to reconstruct the original 

similarity relationship as follows: 

min
𝑍
ℒ1 = ||𝒁𝒁

𝑇 − 𝑘𝑺||
2

2
 (3.5) 

as the variable 𝒁 exists in a binary space, optimizing Equation 3.5 would require 

exponential time. Therefore, it is necessary to eliminate the binary constraint from 

𝒁. This can be achieved by employing the sigmoid function, a continuous function, 

to approximate 𝒁. The resulting approximation, denoted as 𝒁̃, serves as a 

demonstration of 𝒁 in real space, as depicted in Equation 3.6: 

min
𝒁̃
ℒ1 = ||𝒁̃𝒁̃

𝑇
− 𝑘𝑺||

2

2

 
(3.6) 

after the optimization, we can get 𝒁 by simply applying the sign function 𝑠𝑖𝑔𝑛(. ) 
to 𝒁̃: 

𝒁 = 𝑠𝑖𝑔𝑛(𝒁̃)     𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑔𝑛(𝑥) =   {
−1, 𝑥 < 0

+1, 𝑥 ≥ 0
 

(3.7) 

however, there may exist a large gap between 𝒁 and 𝒁̃. This gap is called 

quantization error and is damaging to the retrieval accuracy.  

To reduce the quantization error a regularization term is added to the Equation 3.6: 

min
𝒁̃
ℒ1 = ||𝒁̃𝒁̃

𝑇
− 𝑘𝑺||

2

2

 + |  |𝒁̃| - 1| 
(3.8) 

where 𝟏 is a matrix, whose elements are all ones. The similarity matrix 𝑺 is a 𝑛 × 𝑛 

matrix, where 𝑛 is the number of training images. While 𝑺 can make a full 

description of the original similarity relationships, it is too big to be stored in 

memory.  
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7 Figure 3.2: CNN-based binary hash code extraction 

Since we already know how to construct 𝑺 through the semantic label 𝒀 according 

to Equation 3.2, we then substitute 𝑺 with 𝒀 as follows: 

min
𝑍̃
ℒ1 = ||𝒁̃𝒁̃

𝑇
− 𝑘(min(𝒀𝒀𝑇 , 𝟏) × 2 − 𝟏)||

2

2

  + |  |𝒁̃| - 1| 
(3.9) 

now we can calculate the similarity relationship in a block-wise style. Suppose the 

block size is ℎ ×  𝑤, and 𝑛 is divisible by ℎ and 𝑤, so Equation 3.9 can be 

reformulated as: 

min
𝑍̃
ℒ1 = ∑ ∑ ||𝒁̃𝑟,𝑟+ℎ−1𝒁̃

𝑇
𝑐,𝑐+𝑤−1

𝑛
𝑤
 −1

𝑐=0

𝑛
ℎ
 −1

𝑟=0

− 𝑘 (min(𝒀𝑟,𝑟+ℎ−1𝒀
𝑇
𝑐,𝑐+𝑤−1, 𝟏)  × 2 − 𝟏 )||

2

2
 + | |𝒁̃| −  𝟏| 

 (3.10) 

where 𝒀𝑟,𝑟+ℎ−1 is the 𝑟𝑡ℎ row to the (𝑟 + ℎ − 1)𝑡ℎ row of 𝒀, the same goes for 𝒁̃. 

Now we can perform the optimization in a block-wise way, which is shown as the 

red block on the similarity matrix in Figure 3.2. This red block will slide over the 

whole similarity matrix 𝑺. Here, the gradient descent method is utilized to optimize 

in Equation 3.10, in which the gradient will be calculated for each block and then 

added together. This accumulated gradient will back-propagate only once, and thus 

the similarity relationships in each block are preserved. To facilitate the subsequent 

hash code mapping, we transform the generated hash codes 𝒁 from {−1,+1}𝑛 × 𝑘 to 

{0, 1}𝑛 × 𝑘, which is denoted as 𝑩 = {𝒃𝑖}𝑖=1
𝑛 = 

1

2
(𝒁 + 𝟏). According to what we 
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discussed before, there exist two major disadvantages of current deep hashing 

methods. First, most of them are trained in a mini-batch-based style which makes 

them only able to preserve local similarity relationships. Additionally, this mini-

batch-based training strategy must sample from the entire collection of image pairs, 

which has a magnitude of 𝑂(𝑛2). Consequently, training time is greatly increased 

by this inefficiency in data sampling. Therefore, there are two differences between 

the block-wise similarity calculation and the mini-batch-based method. Firstly, the 

block-wise calculation accumulates gradient information and, therefore, preserves 

global similarity information, whereas the mini-batch method usually updates 

parameters every time a batch is run. Secondly, the block-wise calculation only 

involves semantic labels, and no image features are involved, and thus is incredibly 

faster than the mini-batch-based hashing method which needs to involve image 

features. In this part to establish the similarity between each pair of images, we only 

need to know the labels (i.e., semantic annotations).  

The process of block-wise hash code extraction is shown in Algorithm 1. Using 

the hash codes extracted from semantic label and similarity matrix we are able to 

map training images to them. This mapping is accomplished using DNNs and is 

formulated as a multi-label classification problem. In this process, we use AlexNet 

as the CNN architecture to generate output by taking training images as input. The 

output of the AlexNet is denoted as 𝐹(𝑥𝑖;  Ө) ∈ ℝ
𝑘 where Ө is the parameter of the 

network, and 𝑘 is the length of the hash code. After that, the multi-binary cross-

entropy loss is calculated for the output of CNN and the hash code of semantic 

labels extracted at the previous stage. The multi-binary cross-entropy loss is a 

measure of how well the binary hash codes that are generated by CNN model match 

the binary hash codes of semantic labels. The calculation of Multi-binary cross-

entropy loss is shown in Equation 3.11: 

min
Ө
ℒ2 = − ∑𝒃𝑖

𝑛

𝑖=1

log (𝜎 (𝐹(𝒙𝑖;  Ө))) + (𝟏 − 𝒃𝑖) log (𝟏 −  𝜎 (𝐹(𝒙𝑖;  Ө))) (3.11) 

where σ(. ) is the Sigmoid function. We use the sigmoid function here because it is 

a mathematical logistic function with a characteristic that can take any real value 

and map it between 0 and 1. 

Algorithm 1: Hash Code Extraction using Block-wise Similarity Calculation 

Input: Training image labels: 𝒀 = {𝒚𝒊}𝒊=𝟏
𝒏 , Hash code length: 𝒌, Number of epochs: 

𝒕𝟏, Window height: 𝒉, Window width: 𝒘. 

for 𝒕 =  𝟏: 𝒕𝟏 do 

       for 𝒓 =  𝟎: 
𝒏

𝒉
 − 𝟏 do 

              for 𝒄 =  𝟎: 
𝒏

𝒘
 − 𝟏 do 

                   Calculate the block loss and block gradient according to Equation 3.10.  
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                   Add the gradient to the overall gradient. 

   end 

        end 

        Update 𝒁̃ according to the overall gradient. 

 end 

 Output: Get binary hash codes. 𝒁 = 𝒔𝒊𝒈𝒏(𝒁̃). Transform 𝒁 from {−𝟏,+𝟏}𝒏 ×𝒌 to 

{𝟎, 𝟏}𝒏 ×𝒌 : 𝑩 = {𝒃𝒊}𝒊=𝟏
𝒏 = 

𝟏

𝟐
(𝒁 + 𝟏). 

Since we map features extracted from images to 0 or 1, this mapping is a binary 

classification. In order to optimize AlexNet model we use Stochastic Gradient 

Descent (SGD) as an optimization algorithm. In order to update the parameters of 

the model using SGD we take the derivative of the multi-binary cross-entropy loss 

function. The gradient, as represented by the derivative in Equation 3.12, provides 

essential guidance for minimizing the loss function. It reveals the direction in which 

the loss function decreases the most, allowing us to adjust the model’s parameters 

accordingly. By updating the parameters in the opposite direction of the gradient, 

we actively work towards minimizing the loss function and improving the model’s 

performance. In gradient-based optimization, the primary objective is to minimize 

the loss function. Although the gradient points in the direction of steepest ascent, 

which corresponds to the maximum increase in the loss function, we adjust the 

model’s parameters in the opposite direction of the gradient, enabling us to move 

in the direction of steepest descent. This iterative process gradually steers the model 

towards optimal parameter values that minimize the loss function. In summary, the 

correct approach involves adjusting the parameters in the opposite direction of the 

gradient, ultimately minimizing the loss function. 

∂ℒ2
∂F

=  − ∑(1 − 𝒃𝑖

𝑛

𝑖=1

) 𝜎 (𝐹) − 𝒃𝑖(𝟏 −  𝜎 (𝐹)) (3.12) 

The hash function that is created is denoted as ℎ(𝒙𝑖;  Ө), and the hash codes are 

denoted as 𝑪 = {𝒄𝑖}𝑖=1
𝑛 ∈ {0, 1}𝑛×𝑘. Using a threshold, we can obtain them as 

shown in Equation 3.13: 

ℎ(𝒙𝑖;  Ө) = 𝒄𝑖 = 𝐼(𝜎 (𝐹(𝒙𝑖; Ө)) ≥ 0.5) 

𝐼(𝑏𝑜𝑜𝑙) =  {
1,      𝑖𝑓 𝑏𝑜𝑜𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒 

0,     𝑖𝑓 𝑏𝑜𝑜𝑙 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 
 

(3.13) 

where 𝐼(𝑏𝑜𝑜𝑙) is an element-wise indicator function. We have shown that by having 

semantic labels, we can generate a hash code for each label to preserve the original 

similarity relationship. But what if we have a new unseen image without knowing 

its semantic label? We show that we can also map it to a hash code so that this hash 
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code matches well with those hash codes of labeled images. Algorithm 2 shows the 

process of mapping training images to hash codes. 

Algorithm 2: Hash Code Mapping via Multi-Binary Classification 

Input: Extracted hash codes: 𝐁 = {𝐛𝐢}𝐢=𝟏
𝐧 , Number of epochs: 𝐭𝟐. 

for 𝐭 =  𝟏: 𝐭𝟐 do 

       for 𝑖 = 𝟏: 𝐧 do 

               Feed the image 𝐱𝐢 and its extracted hash code 𝐛𝐢, into CNN, and compute   

multi-binary cross-entropy loss according to Equation 3.11, and back-propagate.  

       end 

 end 

 Output: hash function 𝑭(𝐱𝐢;  Ө) and hash code 𝑪 

 

3.3.2 Regeneration of binary hash codes by retaining 

valuable bits 

As a hash function goes from a big continuous or discrete space 𝑿 to a smaller 

binary space 𝑩, it is a many-to-one function, so different files may yield the same 

hash value which is said that a collision has happened. In most hash codes 

generated, especially the long ones, bit redundancy usually exists. To address the 

problem of bit redundancy, we model the sequential bit selection problem as a MDP 

and solve it using an RL algorithm with retrieval performance as a reward to 

improve its bit selection policy uniformly. Hence, given the binary code 𝑪 

generated in the previous stage, we select one optimal bit at each time step 𝑡. This 

bit is chosen to offer the most informative binary codes when combined with the 

bits that have already been chosen. In other words, the previously selected bits are 

the last state and are necessary to select the current bit, thereby meeting the Markov 

property. With such analysis, this formulation gives rise to a finite MDP, defined 

by the tuple 𝑴 = (𝑺,𝑨, 𝑷, 𝒓, 𝜸), where the state space 𝑆 and the action space 𝐴 are 

discrete and finite, 𝑃 is the Markov transition probability function 𝑷: 𝑺 × 𝑨 × 𝑺 →
[0, 1], 𝒓 represents the reward function 𝒓: 𝑺 × 𝑨 → [𝑹𝑚𝑖𝑛, 𝑹𝑚𝑎𝑥] and 𝜸 is the  

discount factor. The main components of the MDP in our algorithm are detailed in 

the following: 

• State Space: The state in our RL method is an array of binary hash codes. For 

each state 𝑠 ∈ 𝐒, s = {0, 1}𝑘 where 𝒌 is the original binary hash code length. 

Each state 𝑠 can be represented as a binary string of length 𝑘, where 𝑘 represents 

the original binary hash code length. The value 1 indicates a bit at the specified 

position has been selected, and the value 0 indicates the bit is not selected. In 

the initial state 𝑠0, a vector of zero is always used.  

• Action Space: We define an action as choosing a particular bit from a binary 

code; for example, the expression 𝒂𝒕 = 𝑖 means that the 𝑖𝑡ℎ bit was chosen at 
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time step 𝑡. 𝑨 =  {1, 2, … , 𝑘}, where 𝑘 is the original hash code length, defines 

the action space. As long as the matching bit has not already been selected, the 

action is valid. The agent’s goal is to discover a strategy for choosing the desired 

number of bits. The agent interacts with the environment during the training phase 

to learn the bit selection policy.  

• State Transition Function: Taking an action 𝑎𝑡 ∈ 𝐀, the state 𝑠𝑡 transitions to 

a new state 𝑠𝑡+1 with the bit selected by 𝑎𝑡 turned to 1 deterministically. 

Therefore, the state transition distribution is a deterministic, 𝑷(𝑠 =
 𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡)  =  1. 

• Reward Function: The reward function is a crucial component in MDPs since 

it quantifies the immediate benefit of a state transition. In other words, it maps 

each state-action pair to a numerical reward that the agent receives upon taking 

the action in that state. The goal of the agent is to maximize the expected sum 

of these rewards over time. We select mean Average Precision (mAP) as the 

reward function. Precision is defined as the fraction of true positive predictions 

among all positive predictions made by the classifier. Recall, on the other hand, 

is defined as the fraction of true positive predictions among all actual positive 

instances in the dataset. In other words, recall measures the completeness of 

the algorithm in choosing relevant bits. We select a bit at each step and directly 

optimize mAP as a reward in order to select more valuable bits in binary hash 

codes which have redundancy. Because of the correlation between bits in the 

hash bit selection problem, we cannot determine the quality of bit selections 

until the bit selection is completed. As a result, there is no reward in the bit 

selection process. Once completed and the goal code length is reached, the 

entire sequential bit selection process is equivalent to applying selection 

function 𝑭 on original database codes 𝑪. Thus, we obtain the target binary hash 

codes 𝑪′ = 𝑭(𝑪). Then, a subset of 𝑪′ is randomly sampled as query binary 

codes to compute mAP as a reward, which represents the quality of the selected 

bits. Specifically, the reward function 𝑟𝑡 is defined as shown in Equation 3.14: 

𝑟𝑡 = {
0,                                      𝑖𝑓  1 ≤ 𝑡 ≤ 𝑝 − 1

𝑚𝐴𝑃 with the selected bits,     𝑖𝑓 𝑡 = 𝑝 
 (3.14) 

according to this formulation of the rewards, hash bit selection contributes 

directly to optimal retrieval performance. It is worth noting that, while we use 

mAP as a reward during training, we simply use the labels of training images 

as supervision. 

Figure 3.3 displays the full design of our suggested RL-based method to regenerate 

binary hash codes without unnecessary bits. As we mentioned before, by learning 

a hash bit selection function 𝑭(ℎ(𝐱𝐢)) 𝑤ℎ𝑒𝑟𝑒 ℎ(𝐱𝐢) = 𝑪, we can generate a new 

database of binary hash codes, named 𝑪′ with code length 𝒑, from the original 
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database of generated binary hash codes with code length 𝒌, where 𝒑 <  𝒌. It is 

worth mentioning that 𝑪′ = {𝑐𝑖
′}𝑖=1
𝑛 ∈  {0, 1}𝑛×𝑝. Our chosen RL algorithm is PPO 

[39], which performs impressively in a variety of applications. According to 

[48][49], PPO is a widely used RL algorithm that has shown impressive results in 

many applications with discrete action spaces. It is considered a type of actor-critic 

algorithm [35], which is a class of RL algorithms that combine both value-based 

and policy-based methods.  

 
8 Figure 3.3: RL-based method to regenerate binary hash codes without unnecessary bits. 

An actor-critic algorithm consists of two main components: an Actor network 

and a critic network. The actor network is responsible for learning the policy, which 

is mapping from states to actions. It is trained to select actions that maximize the 

expected cumulative reward. The critic network, also known as the value function, 

estimates the expected future cumulative reward for each state or state-action pair. 

It is trained to predict the value of the current policy. PPO is an on-policy RL 

algorithm that uses a neural network to approximate the policy and value functions. 

The main idea behind PPO is to keep the updates to the policy within a predefined 

range, which helps to ensure stability and improve the learning process. PPO 

combines ideas from both value-based and policy-based methods and has been 

shown to perform well on a wide range of RL tasks. We train with all the data in an 

episode, so the batch size is equal to 𝒑, where 𝒑 is the target binary hash code length 

and at the conclusion of the episode, PPO optimizes mAP as the reward and hopes 

to select more useful bits among redundant bits in hash binary codes by doing this. 

The agent chooses bits to create a target database of binary hash codes 𝑪′ during 

the test step. In order to evaluate the states in our RL, we use a value network that 
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maps states to state values and a policy network that maps states to the probability 

of actions.  

The value network receives the state 𝒔𝒕 as input at time step 𝑡 and produces a 

real number 𝒗 =  𝑽𝑤(𝑠𝑡) ∈ ℝ as output, i.e., state value. The policy network takes 

𝑠𝑡 as input, and outputs the probability distribution of actions π = 𝝅Ө(𝑠𝑡) ∈ ℝ
𝑘, 

where 𝑤 is the parameters of the value network, and Ө is the parameters of the 

policy network. The value network and the policy network both have two 

completely connected 256-neuron hidden layers. The SoftMax activation layer is 

the final layer of the policy network, and it outputs a probability distribution of 

actions. However, the policy’s calculated action can be incorrect, meaning that the 

bit corresponding to this action may have already been chosen previously. The 

repeated bits are not logical for producing informative and compact binary 

representation, and the policy with incorrect actions may not converge during 

training. Therefore, we use −∞ to mask the SoftMax’s input for the invalid action, 

or the bits that have already been chosen. The following formulation represents the 

policy’s overall probability distribution:  

𝜋Ө(𝑎𝑡 = 𝑖 | 𝑠𝑡) =  {
𝜋𝑖 ,     𝑖𝑓  𝑠𝑡

𝑖  = 0,

0,      𝑖𝑓  𝑠𝑡
𝑖  = 1,

 (3.15) 

where 𝑖 ∈  {1,・・・, 𝑘} indicates the 𝑖𝑡ℎ bit of the state, and 𝝅𝒊 denotes the output 

of the policy network for the 𝑖𝑡ℎ bit, with ∑ 𝜋Ө(𝑎𝑡 = 𝑖 | 𝑠𝑡) = 1
𝑘
𝑖=1 . Algorithm 3 

provides a summary of the learning method used to choose valued bits via RL. 

Algorithm 3: Hash Code Re-generation using Actor-Critic 

Input: Original database hash codes: 𝑪 = {𝒄𝐢}𝐢=𝟏
𝐧×𝒌, Generated hash code length: 𝒑 

Prerequisite: Initialize policy parameters Ө and value function parameters 𝒘; 

repeat 

       for 𝒂𝒄𝒕𝒊𝒐𝒏 = 𝟏, 𝟐,… , 𝒌 do 

               Run policy 𝝅Ө𝒐𝒍𝒅 to select a bit.  

       end 

       Compute the mAP as a reward using the selected bits. 

       Optimize network parameters Ө and 𝒘. 

      Ө𝒐𝒍𝒅 ← Ө 

Until convergence 

Use policy 𝝅Ө to select bits to obtain 𝑪′. 
Output: Database of Binary Hash codes 𝑪′  

 

  



 

 

 

CHAPTER 4. EXPERIMENTS 

 

37 

Chapter 4 

Experiments 

We evaluate our approach against several state-of-the-art hashing methods. The 

evaluation is conducted on three widely used datasets: CIFAR-10, NUS-WIDE and 

MS-COCO. In many tasks related to computer vision and image processing, these 

datasets are used as standard benchmarks. 

4.1 Setup and Datasets 

The CIFAR-10 [32] dataset (Canadian Institute for Advanced Research, 10 

categories) is a subset of the Tiny Images dataset and consists of 60000 32x32 color 

images. We randomly select 1000 images, 100 images per category, as the query 

set. We select 5000 images, 500 images per category, as the training set, and keep 

the remaining images in the database.  

The NUS-WIDE [40] is a public image dataset containing 269,648 images with 

a total of 5,018 tags collected from Flickr.com. These images are manually 

annotated with 81 semantic concepts, including objects and scenes. By keeping the 

top 21 concepts, we randomly select 2,100 images as the query set, 100 images per 

concept. The rest of the images are all as the database. We further randomly select 

10,500 images from the database as the training set.  

The MS-COCO (Microsoft Common Objects in Context) [41] dataset is a 

large-scale object detection, image segmentation, and captioning dataset published 

by Microsoft. We use the first release, which contains 82,783 training images and 

40,504 validation images, where each image is labeled by some of 80 semantic 

concepts. There are 122,218 images in this dataset with semantic labels in total. We 

randomly sample 5,000 images as query images and treat the remaining as the 

database. Additionally, we randomly select 10,000 images from the database as 

training images. 

Following standard evaluation protocol as previous work [27], two images i and 

j are considered similar if they share at least one semantic label (𝑠𝑖𝑗 = 1) otherwise, 

they are dissimilar and (𝑠𝑖𝑗 = 0). We compare retrieval performance of our 

approach with six classical or state-of-the-art hashing methods including: 

• Deep Reinforcement Learning for Image Hashing (DRLIH) [33]: It is a 

deep reinforcement learning hashing network which uses RNN as agents to take 

previous hash function’s error into account. 

• HashGAN [42]: It is a technique for learning compact binary hash codes from 

a variety of images produced by generative models as well as actual photos. 
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• CNNH (Convolutional Neural Network Hashing) [43]: It uses CNN to learn 

a compact binary code for a data point. It typically consists of three main 

components: a feature extractor, a hash function, and a quantization function. 

• DNNH (Deep Neural Network Hashing) [44]: A DNN is trained to produce a 

high-dimensional continuous feature representation of the data point, and then 

a quantization function is applied to the feature representation to produce a 

binary code. DNNH was introduced as a generalization of CNNH. 

• SDH [45] is a supervised method, which leverages label information to obtain 

hash codes by integrating hash code generation and classifier training.  

• HashNet [46] directly learns the binary hash codes and addresses the ill-posed 

gradient and data imbalance problems in an end-to-end framework of deep 

feature learning and binary hash encoding. 

In each of the aforesaid hashing methods, the results are obtained from their 

authors’ implementations. To be able to directly compare results to published 

reports, all methods used the same training and testing data. We evaluate the 

retrieval quality based on four standard evaluation metrics: 

• Mean Average Precision (mAP) is the mean value of Average Precision over 

many queries which is a measure of the effectiveness of a retrieval system or 

algorithm. Average Precision (AP) is calculated for a single query or a single 

class in the case of object detection. It measures the average precision value at 

different recall levels. Precision is computed at each point where a relevant item 

is retrieved, and then the average is taken over these precision values. For a 

given query, the AP is defined as follows: 

𝐴𝑃 = 
1

𝑅
 ∑

𝑘

𝑅𝑘

𝑛

𝑘=1

 × 𝑟𝑒𝑙𝑘 
(4.1) 

where 𝑛 is the size of database, 𝑅 is the number of relevant images in database, 

𝑅𝑘 is the number of relevant images in the top 𝑘 returns, and 𝑟𝑒𝑙𝑘 is an indicator 

function that is 1 if the 𝑘-th image is relevant and 0 otherwise. 

Precision measures the fraction of positive detections that are actually correct, 

while recall measures the fraction of all positive instances that are detected. The 

formula of mAP is defined as follows: 

1

𝑛
∑𝐴𝑃𝑖

𝑛

𝑖=0

 
(4.2) 

where 𝐴𝑃𝑖 is the Average Precision for the 𝑖-th query or class. Since the 

calculation of 𝐴𝑃 involves sorting a large index array, it is believed to be slow. 

However, with the help of GPU, all mAP calculations can be accelerated 

through parallelism. 
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• Precision-Recall curves (PR) are commonly used to evaluate the performance 

of binary classification algorithms in computer vision and machine learning. A 

PR curve plots the precision values on the y-axis and the corresponding recall 

values on the x-axis. The curve is generated by varying the classification or 

retrieval threshold of the system and calculating the precision and recall values 

at each threshold. Typically, the curve starts at a high recall value (e.g., 1) with 

a lower precision value and gradually moves towards a lower recall value (e.g., 

0) with a higher precision value.   

• Precision curves within Hamming distance 2 (P@H ≤ 2) is a variation of the 

standard Precision-Recall (PR) curves, used to evaluate the performance of a 

binary hash function used in image retrieval, but only for those retrieved items 

that have a Hamming distance of at most 2 from the query item. It allows us to 

evaluate the performance of the hash function in terms of how well it can 

retrieve similar items in the presence of slight variations (e.g., slight rotation, 

scaling, noise). 

• Precision curves with respect to the numbers of top returned samples 

(P@N) are a variation of the standard Precision-Recall (PR) curves, used to 

evaluate the performance of a retrieval system or algorithm. A P@N curve plots 

the precision of the retrieval system at different recall levels, but only for the 

top 𝑁 returned samples. The x-axis represents the number of returned samples, 

and the y-axis represents the precision. Following the HashNet algorithm, we 

adopt MAP@54000 for CIFAR-10, MAP@5000 for NUS-WIDE, and 

MAP@5000 for MS-COCO respectively.  

When performing the block-wise hash code extraction, we use the standard gradient 

descent method, adopt Adam as the optimizer, and set the learning rate to 1.0. For 

mapping images to their semantic binary hash codes, we try AlexNet as the hash 

encoder, fine-tune all layers but train the last layer from scratch. Since we train the 

last layer from scratch, we set its learning rate 10 times large as the one in previous 

layers. The learning rate for previous layers is set to 10−5. The learning rate for the 

last layer is set to 10−4. The mini-batch size is set to 32. To implement the RL in a 

way that is both consistent with the public implementation of PPO and allows for 

the regeneration of binary hash codes and the removal of unnecessary hash bits: 

1. A discount factor γ equal to 0.99 is chosen. 

2. To accelerate training, we train all of the data in one episode, thus the batch size 

should be 𝑃, which is the target binary hash code length. 

About the method called DRLIH [33] that leverages the power of RL as well we 

make a comparison with it in Table 4.2, following the same setting in it and using 

VGG-19 as the CNN. We adopt the VGG-19 network as the feature extractor 

network for mapping input features to the learned binary codes from semantic 

labels. As mentioned in the DRLIH method the first 18 layers of VGG-19 network 

follow the exact same settings as this network. 
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4.2 Experimental Results 

Table 4.1 presents the mAP results of all methods using AlexNet, where all classical 

and state-of-the-art results which are shown in HashGAN [42] are used in our 

evaluation. SDH is a shallow hashing method that is on top of Table 4.1, whereas 

deep hashing methods are on the bottom. As we mentioned before, mAP provides 

a single scalar value that summarizes the overall performance of a retrieval or 

detection system. In fact, a higher mAP value indicates better performance and 

accuracy in retrieving relevant results. Our approach demonstrates superior 

performance compared to HashGAN, a deep hashing method, in terms of average 

mAP on three datasets: CIFAR-10, NUS-WIDE, and MS-COCO. The margins of 

improvement are substantial, with 7.1%, 8.71%, and 6% respectively. This success 

can be attributed to our algorithm’s focus on preserving global similarity 

relationships and utilizing block-wise calculations, as opposed to constructing a 

small similarity matrix from a limited sample set. As a result, our approach 

consistently preserves the entire similarity matrix, providing a more comprehensive 

representation of image similarities compared to approaches relying on smaller 

sample-based matrices. We are also able to increase the average mAP on three 

datasets by 47.4%, 28%, and 36% compared to SDH, the best shallow hashing 

method with deep features as input. 

Table 4.1: mAP of Hamming ranking for different number of bits on three datasets using AlexNet. 
 

Method 
CIFAR-10 NUS-WIDE MS-COCO 

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 

SDH[45] 0.461 0.520 0.553 0.568 0.588 0.611 0.638 0.667 0.555 0.564 0.572 0.580 

CNNH[43] 0.476 0.472 0.489 0.501 0.570 0.583 0.593 0.600 0.564 0.574 0.571 0.567 
DNNH[44] 0.559 0.558 0.581 0.583 0.598 0.616 0.635 0.639 0.593 0.603 0.605 0.610 

HashNet[46] 0.643 0.667 0.675 0.687 0.662 0.699 0.711 0.716 0.687 0.718 0.730 0.736 
HashGAN[42] 0.668 0.731 0.735 0.749 0.715 0.737 0.744 0.748 0.697 0.725 0.741 0.744 

Ours 0.727 0.790 0.788 0.780 0.790 0.798 0.805 0.807 0.748 0.767 0.790 0.776 

Two insights are evident from the mAP results. Firstly, SDH as a shallow 

hashing method is unable to learn compact hash codes and discriminative deep 

representations across the end-to-end architecture, demonstrating why deep 

hashing methods are superior. Secondly, by jointly conserving similarity 

information and managing the quantization error, HashGAN, a deep hashing 

approach, learns fewer lossy hash codes and greatly outperforms the original 

CNNH and DNNH methods.  

Our method outperforms the state-of-the-art HashGAN significantly for two key 

reasons. First, by using block-wise calculation in our technique, we want to 

preserve global similarity. As a result, it can always maintain the entire similarity 

matrix rather than a limited similarity matrix created from a mini batch. Because of 

this, we can fully preserve the global similarity relationships through block-wise 
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hash code inference, whereas mini-batch-based approaches struggle to sample 

enough pairs from training data. Second, we can reduce 64-bit hash codes to 16-bit, 

32-bit, and 48-bit versions by removing any redundant bits. Redundant bits are 

those that do not contribute significantly to the representation of the image. 

Redundant or potentially detrimental bits in hash codes can arise from two primary 

sources. The first source is the presence of noisy data within the dataset itself. The 

second source stems from the prevalent use of mini-batch training strategies, which 

limits the ability of the generated hash codes to preserve global similarity 

relationships and instead focuses on local similarities. There are two advantages to 

removing redundant bits. At first, it only needs to be trained once, and different de-

redundancy settings can be used to generate hash codes of various lengths, greatly 

accelerating the training process for hashing algorithms. Second, we can create 

more valuable and compact hash codes by removing irrelevant bits from longer 

hash codes. Table 4.1 shows that the benefits for shorter codes (16 to 48 bits) are 

bigger than those for longer codes (64 bits). 

Using Precision-Recall curves, we measure the retrieval performance of three 

datasets, and as can be seen in Figures 4.1 (a), (b), and (c), our proposed approach 

outperforms all comparison methods by a significant margin. 

 
9 Figure 4.1: Precision-recall curve @ 64 bits; The experimental result of our approach and comparison 

methods on CIFAR-10, NUS-WIDE, MS-COCO 

The performance in Precision within Hamming radius 2 (P@H≤2) is very 

important for efficient image retrieval since the Hamming ranking only requires 

O(1) time cost for each query, which enables really fast pruning. Based on Figures 

4.2 (a), (b), and (c), our approach achieves the highest P@H ≤ 2 on all three 

benchmark datasets. This proves that our hashing approach is able to learn more 

compact hash codes than all comparison methods to establish a more efficient and 

accurate Hamming ranking. Considering shorter hash codes will assign more 

images per hamming distance than longer codes, this improvement will be 

particularly noticeable. 
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10 Figure 4.2: Precision within Hamming radius 2; The experimental result of our approach and comparison 

methods on CIFAR-10, NUS-WIDE, MS-COCO 

In Figures 4.3 (a), (b), and (c), we show retrieval performance based on Precision 

curves with respect to different numbers of top returned samples (P@N), and we 

see that our proposed approach outperforms all the comparison methods. 

 
11 Figure 4.3: Precision curve for top-N @64bits; The experimental result of our approach and comparison 

methods on CIFAR-10, NUS-WIDE, MS-COCO 

We make a comparison with DRLIH in Table 4.2, following the same setting in 

DRLIH and using VGG 19 as the CNN. DRLIH treats a batch of images as the 

environment, triplet-loss as the reward, and adjusts a combination of hashing 

functions to maximize the reward in reinforcement learning. However, the hard 

binary constraint in DRLIH is compromised, and train/test inconsistency still exists. 

As a result, we can see that our method somewhat beats DRLIH. 

Table 4.2: mAP of Hamming ranking for different number of bits on NUS-WIDE & CIFAR-10 using VGG-19. 

 
Method 

CIFAR-10 NUS-WIDE 

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 

DRLIH[29] 0.816 0.843 0.855 0.853 0.823 0.846 0.845 0.853 

Ours 0.857 0.876 0.881 0.883 0.839 0.862 0.868 0.871 
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Results from Table 4.2 show that we are also able to increase the average mAP on 

CIFAR-10 and NUS-WIDE datasets by 3.9%, and 2.7% compared to DRLIH as a 

deep reinforcement learning approach to image hashing. 

As a further evaluation step for our hashing method based on deep reinforcement 

learning, the top-5 retrieval results on three benchmark datasets are displayed in 

Figure 4.4 along with some good and bad instances. These bad examples can be 

attributed to several reasons, some of which are applicable to all three datasets and 

others to particular datasets. Because the training set is too small in relation to the 

database for all three datasets, this poor retrieval example problem is primarily 

caused by that. The noisy label, or more precisely, the missing label, is a significant 

issue with NUS-WIDE. The greatest retrieval challenge with CIFAR-10 is the low 

resolution of the images. 

 
12 Figure 4.4: Some good and bad examples of the top-5 retrieval results on three benchmark datasets
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Chapter 5 

Conclusion and Future works 

5.1 Conclusion 

The concept of image hashing refers to the process of converting images from high-

dimensional space into low-dimensional binary codes while preserving their 

perceptual similarities. Most existing deep learning-based methods are inefficient 

at the binarization of image data because they are trained in a mini-batch style and 

can’t preserve global similarity relationships. To solve this problem, we propose a 

deep reinforcement learning-based technique for image hashing. We initially use 

each image’s labels to generate hash codes in a block-wise style. The features 

retrieved from a picture are next mapped into the binary hash codes of the first stage 

using AlexNet, a particular kind of CNN. The majority of hashing techniques result 

in redundant bits in hash codes, which increase the likelihood of collisions, and 

cannot ensure the uniqueness of the hash codes created. In particular, we learn a 

hash bit selection policy at this stage, which maximizes mean Average Precision 

(mAP) during training to identify the most informative bits. We formulate the hash 

bit selection as an MDP. Therefore, we apply a well-known RL method known as 

PPO, an actor-critic algorithm style, choosing the informative bits, to remove 

unneeded bits from the binary hash code we learned. As a result, our binary hash 

codes are guaranteed to be unique and collision risk is minimized. In our 

experiments, we demonstrate the effectiveness of our approach using three widely 

used datasets, CIFAR-10, NUS-WIDE, and MS-COCO.  

5.2 Future Work 

In this thesis, we encountered some limitations related to the PPO algorithm. One   

limitation is its sensitivity to hyperparameters, requiring careful tuning for optimal 

performance and stability. To address this, future work can explore advanced 

hyperparameter optimization techniques and adaptive learning rate schedules. 

Another drawback is PPO’s sample inefficiency, necessitating a large number of 

samples for effective learning. To overcome this, future research can focus on 

efficient exploration strategies, data augmentation techniques, and knowledge 

transfer methods to improve learning efficiency and reduce data requirements. 

Furthermore, advancements in optimization methods, such as alternative 

algorithms or integration of advanced techniques from other fields, can help 

overcome limitations and enhance PPO’s performance and applicability in various 

domains. By addressing these challenges, future work can improve the 
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effectiveness and efficiency of PPO, contributing to the advancement of 

reinforcement learning as a powerful decision-making paradigm.  

Another possible future work can stand on conducting an ablation study where 

the policy-based bit selection step is omitted. This study could help quantify the 

contribution and effectiveness of the policy-based approach in our image hashing 

method. By comparing the performance of our method with and without the policy-

based bit selection, we can gain insights into how much improvement is attributed 

to this specific component. This analysis would provide a clearer understanding of 

the role and impact of the policy-based approach in optimizing the binary hash 

codes and further validate its importance in our proposed approach. 

As another avenue for future work, we plan to extend our image hashing method 

to Video Fingerprinting, enabling the identification of specific frames in videos by 

considering their temporal differences. Additionally, we aim to explore the 

integration of our approach with Blockchain technology, providing unique and 

immutable binary hash codes for transactions and blocks. These advancements 

would expand the application and enhance the reliability and security of image 

hashing in video analysis and Blockchain-based systems.
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