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Abstract

The proliferation of microblogging platforms such as Twitter and Facebook has revolutionized the
way information is disseminated; however, it has also resulted in an alarming rise of fake news and
misinformation. In a world where information is readily accessible and misinformation can cause
widespread harm, it is imperative to develop an effective method for detecting fake news. This is
particularly relevant in light of the recent COVID-19 pandemic, where misinformation on social me-
dia resulted in hospitalizations and deaths. In response to this challenge, this thesis proposes a novel
solution for detecting fake news by leveraging a combination of Graph Neural Networks (GNNs)
and ensemble learning. The GNN model analyzes the complex relationships between articles, users,
and topics to generate outputs that are used to train an ensemble of machine learning classifiers. This
approach is shown to be more effective than traditional text classification models, as it leverages the
graph dataset and yields improved accuracy. The research concludes that the combination of GNNs
and ensemble learning is the best approach for detecting fake news on social media platforms.
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Chapter 1

Introduction

In recent years, millions of individuals have become more connected to social media platforms and
now consume more information from there than from traditional sources (e.g., television, national
dailies, etc)[1]. The information gained from these sources is not always true, and it tends to be
misleading since most people do not fact-check them before believing them wholeheartedly. This
causes anxiety and panic to varying degrees[2].

Micro-blogging platforms like Twitter, Facebook, etc. have become popular platforms in modern
times for information sharing1. The increasing freedom with which users can share whatever they
wish and the lack of control over the content on these platforms have further increased the credibility
of this information. Although these platforms have facilitated the timely delivery of information
across the globe, the damage caused by misinformation on these platforms outweighs their use
if not detected early[3]. The needless deaths recorded during the COVID-19 pandemic are a more
recent impact of fake news on the public2. According to the study published in the American Journal
of Tropical Medicine and Hygiene, a large number of individuals were hospitalized as a result of
misleading information on social media [5], and the CDC reported deaths arising from the same. To
mitigate a recurrence and protect the public, it is extremely important to develop an effective method
for detecting fake news.

Recently, there has been a surge in the use of machine learning and deep learning techniques
to tackle the issue of fake news detection on social media. Despite numerous efforts made by re-
searchers over the years, the problem still persists. Various studies have been conducted to address
the issue of detecting fake news, including those referenced in [6, 7, 8, 9]. In addition, Mahmud et
al.[10] conducted a comparative analysis of Graph Neural Networks with commonly used machine
learning algorithms using the UPFD[11] datasets. While Graph Neural Networks (GNNs) are de-
signed to process graph data, they may have difficulty capturing long-range dependencies or global
information in the graph. The features learned by the model are typically based on the local neigh-
bourhood of each node in the graph, which means that the model only considers the connections
between the node and its immediate neighbours when computing the features for that node. This
limitation is particularly relevant when the underlying graph is large and complex, such as in a social
network. For example, the behaviour of a user may be influenced by the behaviour of other users
who are not directly connected to them in the network. To overcome this limitation, an ensemble of
machine learning classifiers can be used, which can learn from a richer set of features that include

1https://www.forbes.com/sites/nicolemartin1/2018/11/30/how-social-media-has-changed-how-we-consume-
news/?sh=38e98fba3c3c

2Hundreds dead because of COVID-19 misinformation: https://www.bbc.com/news/world-5375506
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CHAPTER 1. INTRODUCTION 2

both local and global information in the graph, thereby enhancing its overall performance.
To address the problem at hand with efficiency, the GNN-EN framework is proposed. In this

context, ”EN” denotes the ensemble of machine learning classifiers. This comprehensive framework
leverages the output of a Graph Neural Network (GNN) model to train multiple machine learning
classifiers. This approach results in a more diverse set of predictions, which allows the system
to leverage the strengths of multiple models and generate more accurate and reliable predictions
for detecting fake news. By using ensemble learning, it helps to mitigate the potential biases and
limitations of individual models. Additionally, it can improve the generalization performance of
the model and reduce the risk of overfitting, which is especially important when training complex
models on limited data.

1.1 Objective
This thesis aims to develop an ensemble framework that is based on GNN to extract feature sets
and a group of classifiers to boost the model’s predictability. The following strategy will be used to
achieve this goal:

1. Collect real-world graph datasets rich in features and information that will be used to train,
test, and validate fake news.

2. Use GNNs to convert high-dimensional graph data to low-dimensional numeric features that
can be used to train machine learning models using a voting-based ensemble approach.

3. Compare the accuracy of the model before and after using ensemble learning.

4. Analyze the results of different word embedding algorithms to see how well each one can
detect fake news.

1.2 Thesis Structure
The study begins by reviewing the related works in Chapter 2, where various approaches used by
previous researchers to tackle this problem are discussed. In Chapter 3, essential background knowl-
edge is presented to provide a better understanding of the proposed theory and experiments. This
includes classification algorithms, ensemble learning, graph neural networks, and word embedding
techniques. Chapter 4 outlines the justification of ensemble learning and the methodology used
in the study. Chapter 5 provides the data source, data processing, and experimental setup for the
research. The results and analysis of the experiment are presented in Chapter 6, demonstrating the
effectiveness of the proposed solution. Finally, Chapter 7 concludes the thesis by reviewing the find-
ings with respect to the initial goals and discussing potential future directions for further research in
this field.



Chapter 2

Related Works

In an effort to resolve the problem of fake news, different approaches have been proposed by various
researchers. These approaches can be categorized into three main groups based on their content,
social context, and propagation [12, 13].

2.1 Content-Based Approach
This approach relies on linguistic (lexical and syntactical) features that can capture deceptive cues
or writing styles such as special characters, emotions, symbols, sentiments, positive or negative
words, and hashtags [14, 15, 16]. The authors of [14] discusses satire and humor conceptually, by
explaining and illustrating the unique features of satirical news, which mimics journalistic style and
format. They used the SVM-based algorithm, testing their combinations on over 360 news articles.
The use of stylistic cues to determine the truthfulness of a text is discussed in a study [15], which
compares the language of real news to that of satire, hoaxes, and propaganda. The authors concluded
that stylistic cues could help determine the truthfulness of a text. Chen et al. [16] improved on this
approach by combining attention mechanisms with RNN to focus on text features with different
attention. Similarly, a retrospective analysis of a 2009 Twitter dataset [17] found that content-based
features, particularly word frequencies, play a key role in rumour detection as opposed to user-based
features.

Despite the advances recorded by various researchers using the content-based approach, draw-
backs persist. One of the major drawbacks recorded is that they can be defied by sufficiently sophis-
ticated fake news that does not immediately appear fake. Majority of existing detection algorithms
are generally ineffective since fake news is frequently designed to trick readers by replicating le-
gitimate news through linguistic cues [18]. Also, most linguistic features are language dependent,
limiting the generality of these approaches.

2.2 Social Context-Based Approach
This approach deals more with user demographics (age, gender, education) [19, 20, 21] and user
reactions (likes, retweeting behaviour) [22, 23]. The authors of [19] studied real-world datasets that
assess trust levels in fake news and selected representative groups, including ”experienced” users
who are capable of recognizing false information and ”naive” users who believe fake news items.
They performed a comparative analysis of explicit and implicit profile features between these user

3



CHAPTER 2. RELATED WORKS 4

groups, revelaing their potential to differentiate fake news. A novel method to incorporate speakers’
profiles into an attention-based LSTM model for fake news detection is proposed in [20]. Based on
the speaker profiles, a high level of accuracy was achieved, and it was concluded that the speaker
profiles are helpful in validating the credibility of news articles.

Though this approach tends to be more effective at fake news detection than the content-based
approach, it is also fraught with significant limitations on efficiency. Owing to the complex structure
of social media data where users are connected to each other and where social relations play an
important role in knowing the overall characteristic pattern of fake news dispersion, these tasks
require dealing with non-Euclidian graph data that contains rich relational information between
users. This cannot, therefore, be handled by traditional machine learning and deep learning models.
Thus, there is a need for the graph neural network to be employed.

2.3 Propagation-Based Approach
These are one of the most promising and intriguing lines of research based on studying the news
expansion over time. Researchers agree on the analogy between fake news dissemination and the
spread of infectious diseases [24]. Network epidemic models best describe this process.

Substantially, empirical evidence shows that fake news propagates differently from true news
[25], creating spreading patterns that could be exploited for fake news detection. In contrast to
content-based features, which must be built separately for each language, propagation-based features
are likely to work across languages, locales, and geographic areas because they are based on content
empiricism [26]. Furthermore, propogation based features would potentially be very difficult to
temper with by foe attacks since controlling the news spread patterns in a social network is generally
beyond the capability of individual users.

The GCNFN [26] framework was one of the earliest attempts to detect fake news using news
propagation graphs encoded with GCN. It used profile information and comment embedding as
the user features. It, however, focused on modelling news content and its user exogenous context
(all users engaged with the news propagation path), while ignoring the user endogenous preference
(historical tweets).

UPFD [11] addresses feature-rich information by considering both user exogeneous and endo-
geneous preferences for detecting fake news. Its result was compared with the baseline GCNFN.
The results demonstrate that the user’s endogenous preference imposes more information when user
comment information is limited. The UPFD was shown to outperform the best baseline GCNFN by
1%. The work showed that BERT as the text encoder and GraphSage as the graph encoder produced
the best performance on the tested datasets.

Researchers in [10] performed a comparative analysis of several machine learning and graph
neural networks using both news content and graph data from the UPFD [4]. Their results concluded
that GNN is the most effective approach to detect fake news.



Chapter 3

Background

This chapter provides a comprehensive background on the necessary information to fully understand
the research presented in this thesis. Section 3.1 introduces machine learning and its most widely
used classification algorithms. In Section 3.2, the specific machine learning classifiers used in this
study, in combination with Graph Neural Networks (GNNs), are discussed. Section 3.3 delves into
ensemble learning strategies, providing an overview of the techniques. Sections 3.4 and 3.5, provide
in-depth descriptions of Artificial Neural Networks (ANNs) and GNNs, respectively, including the
fundamental concepts and their applications. Finally, Section 3.6 covers the important topic of word
embedding, where the strategy for representing words as vectors is described in detail.

3.1 Machine Learning
Machine learning is the study of computer algorithms that make use of data and gradually improve
accuracy via experience without any human intervention [27]. In recent years, due to the huge vol-
umes and varieties of data, affordable processing power, and high-speed Internet, machine learning
has gained relevance in our daily lives, such as in Google search, recommendation systems, and
facial recognition.

Machine learning systems can be classified depending on the supervision they receive during
training [28].There are primarily three types of machine learning that are discussed below:

3.1.1 Supervised Learning
A supervised learning technique predicts unseen data based on labelled training data. One common
topic in supervised learning is classification. For example, when implementing a spam filter, they
are trained on many examples with labelled classes (spam or ham), and from the training set, they
must learn to classify the new unseen emails. Another common task is regression, which is used
to predict a numeric value, like the price of a car, based on a set of features, like the car’s mileage,
age, brand, etc [28]. The commonly used supervised learning algorithms are Logistic Regression,
Decision Trees, Support Vector Machines, K-Nearest Neighbors, and Artificial Neural Networks.

5



CHAPTER 3. BACKGROUND 6

3.1.2 Unsupervised Learning
Unsupervised learning analyzes and clusters unlabeled datasets using machine learning methods.
These algorithms uncover hidden patterns or data clusters without requiring human intervention 1.
This makes it an ideal choice for tasks like exploratory data analysis and customer segmentation. K-
means clustering, Principal Component Analysis (PCA), and autoencoders are common examples
of unsupervised learning.

3.1.3 Reinforcement Learning
Reinforcement is a learning process that works based on rewards. In this case, the learning system,
called an agent, can observe the environment, choose and carry out actions, and get rewards in
return [28]. Unlike supervised learning, it does not need labelled input-output pairs to perform the
action. Some examples of reinforcement learning are the Markov Decision Process, Q-learning, and
Temporal Difference Learning.

3.2 Machine Learning Classifiers
In machine learning, a classifier is an algorithm that automatically categorizes data into one or more
classes. This section gives a brief summary of the machine learning classifiers used in this study.

3.2.1 Logistic Regression
Logistic regression,also commonly referred to as a binomial logistic regression model, is a super-
vised learning technique that can predict the probability that an observation falls into one of two
categories based on a given set of independent variables. The result of this statistical model is a
probability, and the value of the dependent variable is between 0 and 1. In logistic regression, the
linear function is used as an input to another function, such as σ [29]:

fβ(x) = σ(βTx) where 0 ≤ fβ ≤ 1 (3.1)

Here, σ is a sigmoid or logistic function and is represented by given formula:

σ =
1

e−z where z = βTx (3.2)

For binary classification, cross-entropy is commonly used as a cost function. Cross entropy
increases when the predicted probability diverges from the true label. In order to get the optimal
result, we use gradient descent to update the coefficients and minimize the cost function. It is given
by the formula:

g(hβ(x), y) = −y. log(hβ(x))− (1 − y) log(1 − hβ(x)) (3.3)

where, g(hβ(x), y) represents the cost function that measures the dissimilarity between the
predicted value hβ(x) and the true label y.

Logistic regression is easier to implement and has better fitting flexibility since different regular-
ization techniques like lasso and ridge can be used to reduce the error in the model. However, they
tend to overfit if the number of observations is less than the number of features. This work selects
feature-rich information with a sufficient number of samples to overcome this issue.

1https://www.ibm.com/topics/unsupervised-learning
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3.2.2 Decision Trees
A decision tree is a supervised learning algorithm that can be used to solve both classification and
regression problems. It is organized in a hierarchical tree fashion, which consists of a root node,
branches, internal nodes, and leaf nodes.

Figure 3.1: A representation of a decision tree [30].

The root node of a decision tree is the topmost node that has no incoming branches. The internal
nodes, also called decision nodes, receive outgoing branches from the root node. Both of these
nodes conduct evaluations on available feature sets to form leaf nodes (terminal nodes) that do not
further split into more nodes. There are a number of approaches for selecting the best attribute at
each node. The most common splitting criteria for decision tree models are information gain and
Gini impurity. Both entropy and Gini impurity are metrics to measure the impurity of a node.

Entropy
The entropy E(S) for a dataset consisting of an N-class number of classes is calculated by the below
formula:

E =
N
∑
i=1

−pi log2(pi) (3.4)

where pi represents the probability of class i occurring within the set or node. These probabilities
are calculated by dividing the number of occurrences of class i by the total number of instances in
the set or node.

Entropy values can fall, ranging from 0 to 1. A dataset, S, with all samples belonging to one
class has zero entropy, whereas a dataset with half of the samples classified as one class and half as
another, will have the value at its peak at 1.

Gini Impurity
Gini impurity, also called the Gini index, measures the frequency of mislabeled elements in a given
dataset. The value of gini impurity ranges from 0 to 0.5. Here, the value zero refers to the pure
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node, where all elements in the node belong to one single class, and 0.5 refers to the impure node,
with elements in the node belonging to multiple classes. The optimal split is the one having with the
lowest of the Gini index. The Gini index is calculated using the formula given below.

GiniIndex = 1 −
N
∑
j=1

p2
j (3.5)

where p denotes the probability that a training instance belongs to a specific class and N is the upper
limit of the summation, representing the total number of classes.

Information Gain
In order to find the optimal decision tree with the best feature split, the attribute with the least amount
of entropy should be used. This can be obtained via the method of information gain. Information
gain is the difference in entropy before and after a split of an attribute. The attribute with the highest
information gain yields the best split to perform the classification task. Information Gain (I.G.) is
calculated using the formula given below:

I.G = Entropy(S)− ∑
v∈values(A)

|Sv|
|S| · Entropy(Sv) (3.6)

where Entropy(S) represents the impurity of the original dataset. The specific impurity measure
used can be entropy or Gini impurity. v represents the possible values that the feature A can take,
and |Sv| represents the number of instances in the subset Sv.

Compared to other algorithms, decision trees are easy to understand and do not require normal-
ization or scaling of data. However, one of the difficulties with using decision trees is that they are
sensitive to small variations. So ensembles should be used with them. This study uses decision trees
in order to eliminate the sensitivity to variation associated with ensemble learning.

3.2.3 Support Vector Machine
The Support Vector Classification is a supervised-learned algorithm. The primary goal of this clas-
sifier is to locate a hyperplane in an N-dimensional space that can classify the data points even when
they are not linearly separable. It accomplishes this by locating the boundary that divides the cat-
egories and transforming the data in such a way that the separator can be drawn as a hyperplane.
The transformation is carried out by the kernel function. In many cases, linear kernel functions are
useful for solving problems with linear separations. In other cases, polynomial, sigmoid, and radial
basis functions can be used instead.
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Figure 3.2: A representation of the SVM kernels’ [31].

SVM is effective in high-dimensional space and also works well when the number of features
is greater than the number of samples. One major drawback of using SVMs is that they employ 5-
fold cross validation by default, and thus have a tendency to overfit if there are a significant number
of unwanted features in the dataset. In this work, adequate feature selection and extraction are
performed to mitigate this problem.

3.2.4 K-nearest neighbors
KNN is a non-parametric algorithm that can be used to solve classification and regression problems.
It is called non-parametric because it does not make any assumptions about data distribution.

In KNN, k refers to the number of close or nearest neighbors. For classification problems, the
number of neighbours (k) is a core deciding factor when predicting a class label. In the case of
binary classification problems, the value of k is generally an odd number. For instance, if P1 is a
point of interest for predicting the class label, a prediction is made by combining the votes of the
k nearest points to P1. This is done by finding the k closest points to P1 and then classifying them
by the majority vote of their k neighbors. In order to determine the closest similar points for P1,
distance metrics like Euclidean distance, Hamming distance, Manhattan distance, and Minkowski
distance are used.
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Figure 3.3: An illustration of the working mechanism of KNN [32].

KNN is simple to construct since it requires only two parameters (distance metric and the value
of k). It is significantly quicker than other algorithms such as logistic regression and SVM since it
only requires learning during the prediction phase, without a traditional training period. Therefore,
it is also known as a lazy learner. However, they are sensitive to noisy data, missing values, and
outliers. It also performs poorly on unbalanced datasets since it gives preference to the class with
the majority of training labels. To minimize these limitations, proper feature selection and a data set
with a balanced class label are used.

3.3 Ensemble Learning
In the field of machine learning, the term ”ensemble machine learning” refers to a method that
makes a prediction by combining the results of several machine learning models, also known as
base learners. The main objective of ensemble learning is to combine several base learners to obtain
a single predictive model, which is likely to increase predictability by decreasing variance. Different
types of ensemble learning techniques are discussed below.

3.3.1 Voting Ensemble
Max-voting is a technique that is typically used for classification problems. In this method, a number
of base learners each make a prediction for every data point. The prediction of each of these data
points is counted as a vote for that model. The final prediction is the one that is chosen from the
majority of the models.
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Furthermore, voting classifer implements two types of voting mechanisms - hard and soft voting.
Hard voting takes the mode of the predicted class label as the final prediction [29]. Soft voting, on
the other hand, uses the average probabilities from each base classifier instead of a binary input.

3.3.2 Bagging
”Bagging classifiers train each classifier model on a random subset of the original training set and
aggregate the predictions, then perform a plurality vote for a categorical outcome” [29]. Bagging
works especially well when the learners are unstable and tend to overfit, i.e., small changes in the
training data lead to major changes in the predicted output. Mathematically, bagging is represented
by the following formula:

fbag = f1(x) + f2(x) + . . . + fn(x) (3.7)

where:

• fbag represents the combined prediction obtained through bagging.

• f1(x), f2(x), . . . , fn(x) indicate the individual predictions of the models trained in the ensem-
ble. Each model, denoted by the subscript i (ranging from 1 to n), makes its own prediction
for a given input or instance x.

• x represents the input or instance for which the prediction is being made.

Random Forest
A random forest is an ensemble learning-based supervised machine learning algorithm used for both
regression and classification. The basic idea of a random forest involves building many decision trees
and aggregating them to produce an accurate result. A decision tree is a deterministic algorithm,
meaning that if the same data is supplied to it, it will always return the same tree [29]. This makes
it likely that the model will overfit the data, meaning it will perform well with the observed data but
fail to generalize to unseen data. To solve this overfitting issue, each of the decision trees forming
a random forest is made unique by using a distinct random subset of data. This results in a more
accurate model than a single decision tree. For classification problems, the majority vote of the base
learners in a random forest is used to predict class labels.
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Figure 3.4: An illustration of bootstrap sampling in random forest [29].

3.3.3 Boosting
Boosting is an ensemble-based learning algorithm that enhances the performance of a model by
combining a group of weak learners into a single strong learner. The main idea underlying boosting
is that predictors should learn from the errors of their predecessors. This can be summarized in two
key steps:

1. First, they undergo multiple iterations and,

2. Second, each iteration emphasizes on occurence that were incorrectly classified in earlier
iterations.

AdaBoost
AdaBoost is one of the first binary classification boosting methods [29]. It focuses on aggregating
multiple weak learners into a single powerful learner. It is represented by the following formula:

F(x) = w1 f1(x) + w2 f2(x) + ... + wn fn(x) (3.8)

F(x) = w1 f1(x) + w2 f2(x) + . . . + wn fn(x) (3.9)

where:

• F(x) represents the final prediction obtained through AdaBoost.

• f1(x), f2(x), . . . , fn(x) are individual weak classifiers.

• w1, w2, . . . , wn are the corresponding weights assigned to each weak classifier.
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The following steps make up the procedure for an AdaBoost classifier:

1. First, a base classifier such as a decision tree is fitted to the data, and overall errors are calcu-
lated. This is the very first iteration of the process.

2. The second iteration involves assigning lesser weights to correctly classified data and higher
weights to misclassified classes.

3. The third iteration involves fitting a new classifier (decision tree) to the data and updating the
weights again in the next iteration.

4. Finally, a strong classifier is formed by automatically calculating the weights for each classi-
fier based on the error rates at each iteration.

These steps are depicted in the diagram below:

Figure 3.5: An illustration of AdaBoost sequential training [33].

Gradient Boost
Gradient boosting is a machine learning technique based on the principle of boosting in which weak
learners (usually decision trees) are trained to improve their performance by focusing on incorrect
observations that were difficult to predict in prior iterations to form an ensemble of weak learners
[29]. Unlike AdaBoost, which uses weight to identify errors, gradient boosting calculates gradients
in the loss function to identify the errors. It trains models sequentially by executing the following
steps [29]:

1. Fit a model to the data

2. Fit a model to the residuals

3. Create a new model.



CHAPTER 3. BACKGROUND 14

3.4 Artificial Neural Network
Artificial Neural Networks (ANN) are machine learning techniques that are very similar to biological
neurons. It consists of various computational nodes and is divided into multiple layers. They are
composed of three types of layers:

1. Input Layer: This is the first layer into which data is fed. This layer sends data to the next
layer without performing any computation.

2. Hidden Layer: This layer is found between the input and output layers. It takes the output
from the input layer,weights these inputs, and passes them through the activation function.
These layers are necessary to perform the non-linear transformation of the inputs received in
the network. There can be multiple hidden layers inside the network.

3. Output Layer: The final layer is the output layer, where the desired predictions are made.

A computational node, also called a neuron, performs a linear transformation by adding a bias
to the weighted sum of its inputs. This sum is then passed through an activation function to make a
nonlinear transformation. An artificial neuron calculates the weighted sum of its inputs, adds a bias,
and makes this nonlinear with the help of an activation function. The output of a neuron is computed
using the following formula:

Oi = f

(
N
∑
i=1

αi jxi + b j

)
(3.10)

where:

• Oi represents the output or activation of a neuron in the ANN.

• f (·) denotes the activation function applied to the sum of weighted inputs and bias.

• ∑
N
i=1 indicates the summation operation over i ranging from 1 to N.

• αi j represents the weight connecting the input xi to the neuron. Each neuron has its own set
of weights, denoted by the subscript j.

• xi represents the input value from a previous layer or the input layer of the network.

• b j represents the bias term associated with the neuron. Each neuron has its own bias, denoted
by the subscript j.
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Figure 3.6: An illustration of a neural network with multiple layers [34].

In a neural network, the process of receiving an input and producing an output is repeated until
the final layer (the output layer) is reached. Since this occurs sequentially, it is also called a feed-
forward network. The actual learning takes place through the backpropagation method, which is
discussed below.

Backpropagation
The learnable parameters, like weight and bias, are updated through the backpropagation technique.
Generally, random values are assigned to the weight and bias and are iteratively updated during the
training phase. The goal is to find the values of the trainable parameters with the lowest loss. This
loss is calculated via a loss function, which measures the deviation of the predicted output from the
expected output. The loss function, cross entropy, is commonly used for classification tasks.

Given a loss function, the weights are updated using the chain rule by taking the partial derivative
of the loss function with respect to the parameter that needs to be updated. This can be represented
with the following formula:

∂L
∂w

=
∂L
∂x

· ∂x
∂z

· ∂z
∂w

(3.11)

where:

• ∂L
∂w represents the partial derivative of the loss function L with respect to the weight w. It
quantifies how a small change in weight affects the loss.

• ∂L
∂x denotes the partial derivative of the loss function L with respect to the output x. It measures
the sensitivity of the loss to changes in the output.
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• ∂x
∂z indicates the partial derivative of the output x with respect to the weighted sum z. It
captures how small changes in the weighted sum influence the output.

• ∂z
∂w represents the partial derivative of the weighted sum z with respect to the weight w. It
measures the sensitivity of the weighted sum to changes in weight.

Similarly, weights are updated by:

w = w −α
∂L
∂w

(3.12)

whereα is a learning rate.

Neural networks are capable of self-learning and producing output that is not limited by the in-
put they receive. They can store the information of an entire network. However, the model requires
fine-tuning of a number of hyperparameters in order to function efficiently, and inappropriate scal-
ing of features might negatively impact its performance. Overfitting is another common problem in
neural networks, where the model learns the details of training data so well that it fails to generalize
to unseen data.

To overcome this problem, effective parameter adjustment and careful feature selection are per-
formed. Similarly, the majority of the data (80%) is used in the training set, where the learnable
parameters are updated. 10% of the data is used for a validation set to train base classifiers and see
if the model is overfitting. Finally, 10% of the data is used as a test set to evaluate our model for the
unseen data.

3.5 Graph Neural Network
Graphs are a kind of data structure that models a set of objects (nodes) and their relationships (edges)
[35]. Depending on the directional dependencies between vertices (nodes), edges may be directed
or undirected. For example, nodes can represent people and their attributes (e.g., name, gender, age)
in a social network, whereas edges indicate the relationships between users. A graph is represented
as:

G = (V, E) (3.13)

where G is a graph, V and E are the vertices (nodes) and edges of the graph respectively.

“Graph neural networks (GNNs) are neural models that capture the dependence of graphs via
message passing between the nodes of the graph” [35]. It is a form of neural network that works
based on the structure of a graph and facilitates node-level, edge-level, and graph-level prediction
tasks. These graph analytics levels and prediction tasks are discussed below:

1. Node-level tasks involve predicting the identity or role of each node in a graph by extract-
ing the high-level node representation via information propagation. For example, detecting
malicious actors online.

2. Edge-level deals with edge classification and link prediction tasks. A similarity function can
be used to predict the label or strength of a connection between two edges by using the hidden
representations of the two nodes in GNN. For example, recommendation systems.

3. Graph-level involves graph classification tasks. GNN, when combined with pooling and read-
out operations, provides a compact representation at the graph level. e.g., predicting chemical
properties of molecular graphs, detecting fake news, etc.
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The main goal of GNN is to create a new representation for each node, known as node embeddings,
by utilizing all the information about the graph, i.e., the nodes’ features and their connections. These
node embeddings are low-dimensional vectors that describe nodes’ positions in the graph as well as
the structure of their local graph neighbourhood. This final embedding is then used to classify the
nodes. To accomplish this, GNNs rely on a message-passing framework that acts as their underlying
working principle.

3.5.1 Message Passing Framework

During each iteration of message-passing, the embedding h(n)u associated with each node u ∈ v is
updated based on infromation accumulated from u’s graph neighbourhood information N(v) (Fig
3.8) [36]. This can be expressed as follows:

hn+1
u = UPDATE(n)(h(n)u , AGGREGATE(n)(h(n)v , ∀v ∈ N(u))

= UPDATE(n)(h(n)u , m(k)
N (u))

(3.14)

where, mN(u) is a message aggregated from u’s neighbourhood N(u). The functions UPDATE
and AGGREGATE are arbitrary, differentiable functions. Supscripts are used in the above equation
to identify the embeddings and functions at different iterations of message-passing. [36]

Figure 3.7: An overview of the two-layer message passing model that shows how nodes aggregate
neighbourhood messages. The model collects messages from A’s immediate neighbours (B, C, and
D), and their messages are based on information gathered from their neighbourhoods. [36].

In summary, during message passing, each node aggregates information from its adjacent nodes
at each iteration. The steps below explain the GNN’s working principles:

1. Following the initial iteration (n = 1) , each node embedding holds the information from its
1-hop neighbors (immediate graph neighbors).

2. In the second iteration (n = 2), each node embedding holds the information from its 2-hop
neighbours (i.e., nodes that are rechable on path 2).

3. With each of these iterations, every node becomes more detailed, containing information about
its n-hop neighbourhood.

4. Finally, a graph embedding can be obtained by aggregating all the node information present
in the graph.
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Figure 3.8: A representation of the SVM kernels’ [31].

Graph Pooling
The goal of neural message passing is to construct a set of node embeddings, but what if we wish
to learn graph representations? To learn an embedding for an entire graph, we pool these node
embeddings together, a process referred to as graph pooling. The main objective of graph pooling
is to minimize the number of nodes in a network while keeping the graph’s semantic information. It
can be represented as:

G
′
= POOL(G) (3.15)

where, POOL is a pooling function that transforms graph G into a new pooled graph G
′

such that
G

′
= (V

′
, E

′
) and |V ′ | < |V|.

Graph pooling could be roughly divided into global graph pooling and hierarchical pooling ac-
cording to their roles in graph-level representation learning. Once the input has been passed through
the GNN layers, global graph pooling transforms the node representations into a single vector as a
graph representation. This graph representation is then used by a classifier to accomplish graph clas-
sification. The most common examples of global graph pooling are averaging and summation [37].
Similarly, in the case of hierarchical pooling, it gradually reduces the size of the graph to produce
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the final graph embedding. The final output of a hierarchical process produces fewer nodes than
the input graph. Some common examples of hierarchical graph pooling methods are DIFFPOOL,
SORTPOOL, etc [37].

Although the GNN’s nodes contain rich information with each iteration of message passing, it comes
with a major disadvantage, i.e., oversmoothing. Multiple iterations of message passing can result
in identical representations for all the nodes in the graph. To overcome this issue, we can either
maintain a low number of layers or use skip connections. With skip connections, layers can jump
over layers and connect to layers higher up in the network. This makes it easier for information to
move up the network.

3.6 Word Embedding
From the DMO’s Data Never Sleeps 5.0 report 2, over 90 percent of the world’s data was generated
within the last two years. Every minute, Twitter is agog with over 460,000 messages, with Facebook
having more than 510,000 comments and 293,000 status updates. Different articles are searched on
Google every day by millions of users, providing a few keywords and getting hundreds of results
in less than a second. Nate Silver, in his work, analyzed millions of tweets to correctly predict
election results. Sentences are typed into Google and translated into various languages. These
tasksâclustering, classification, and translationârequire text processing. However, machines do not
understand text and therefore require some kind of numerical representation that computers can
understand and process.

Mapping a word to an integer could be imagined as a solution. Each word gets an arbitrary
integer, and the vocabulary expands as a new word in the assemblage. This is as good as comparing
two words as identical [17]. But two words having close meanings might be assigned distant inte-
gers, and two adjacent words might be assigned nothing in common. Thus, there is no relationship
between the words, and information cannot be easily shared across words with similar properties.
This representation of words as unique and distinct leads to sparse data. Overcoming this drawback
requires word representation that captures their meanings, semantic representation, and the different
types of contexts they are used in. This section discusses two widely used word embeddings in the
field of Natural Language Processing (NLP): word2vec and BERT.

3.6.1 Word2Vec
Word2vec is a neural network-based framework that is trained on an excessively large corpus of
data to produce word embeddings. The main objective of the word2vec model is to produce a low-
dimensional numerical word representation based on their occurrences in the text. For example, the
phrases ”King” and ”Queen” are fairly similar and commonly appear together within the same text.
Thus, when performing algebraic operations on word embeddings, it is possible to get an estimate of
word similarity. This embedding is generated either using the Continuous Bag of Words (CBOW) or
the skip-gram model. The CBOW model and Skip-gram model are predictive word representations
based on the idea that neighbouring words encode the meaning of a word vector. Both of these
approaches are discussed below.

2Data Never Sleeps 5.0: https://www.domo.com/learn/infographic/data-never-sleeps-5
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Continuous Bag-Of-Words (CBOW) Model

The Continuous Bag of Words (CBOW) is one of Mikolvâs two model architectures presented in
[38]. It uses a probabilistic approach to learn word representations using feedforward neural net-
works and predicts the target word given the word context by minimizing the given loss function.

L = − log(p(wt|St) (3.16)

where, wt and St represent the target word and sequence of words in the context, respectively.

Figure 3.9: A CBOW architecture that predicts target word given context of words [38].

Skip-Gram Model

Skip-Gram is similar to CBOW, but it is different in that instead of predicting the target words, it
predicts the context words around the target word within a certain radius. In each step, one target
word is selected, and we try to predict its context within a radius of c. To optimize the probability
of predicting w(c,j) in the cth context, we try to minimize the negative log probability by iteratively
updating the θ, which is given by

L(θ) = − log P(wc,1, wc,2, ..., wc,n|wo)

= −log
n

∏
i=1

P(wc,i|wo)
(3.17)

We define the probability function using softmax as:

p(wc,i|wI) =
exp uc,i

∑
n
i′=1

exp ui′
(3.18)

where, w(c, i) is the ith word predicted on the cth context position, w(I) is the only input word;
and u(c, i) represents the ith value of the vector U when predicting the word for the cth context.
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Figure 3.10: A Skip-gram Architecture that predicts context words given the current word [38].

3.6.2 BERT
BERT [39] stands for Bidirectional Encoder Representations from Transformers. It generates a
language model by using the encoder part of Transformer [40] which is an attention mechanism to
learn the contextual relationship between words in a text. The model was pre-trained using a large
corpus from Wikipedia. The traditional language models were only capable of reading left-to-right
or right-to-left text sequentially, but not simultaneously. As a solution, BERT was designed to read
both directions, i.e., the transformer encodes the entire sequence of words at once.

Word2Vec is context-independent, meaning it generates a word embedding that is just one nu-
meric vector for every word. In the case of words with multiple meanings, they are combined into
one single vector representation. However, BERT produces word embeddings with multiple nu-
meric vector representations of the same word based on the context in which the word is used. The
main advantage of BERT is the ability to generate context-aware word embeddings over traditional
embeddings.

In this work, both word2vec and BERT are used to generate the word embeddings from the text
and are compared for their effectiveness.
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Methodology

This chapter discusses the methodologies employed to conduct the experiments, presenting a thor-
ough exploration of the research methodologies and techniques utilized. The results obtained from
these experiments are subsequently presented and analyzed in the following chapters, offering valu-
able insights into the performance of the models and the effectiveness of the ensemble approach
adopted.

4.1 Method-Objective Alignment
The related work [Chapter 2] on fake news detection techniques has revealed that different ap-
proaches have been employed, including content-based, social context-based, and propagation-
based methods. Each of these methods has its own strengths and limitations in addressing the
problem of fake news detection. Content-based approaches, for instance, can be deceived by so-
phisticated fake news that imitates legitimate news through linguistic cues. Social context-based
approaches, on the other hand, struggle with the complex structure of social media data and non-
Euclidian graph data. Although Graph Neural Networks (GNNs) have shown promising results in
detecting fake news, there are some limitations associated with training on GNN alone:

1. Incompleteness: GNNs primarily focus on the relational information between users, poten-
tially overlooking other important features from content-based and social context-based ap-
proaches.

2. Overfitting: Training a GNN on limited data may lead to overfitting, which can reduce the
model’s generalization performance on unseen data.

Given these limitations, there is a strong motivation to adopt an ensemble approach to improve the
effectiveness of fake news detection. An ensemble approach can combine the strengths of various
models while mitigating their individual weaknesses, ultimately resulting in a more robust and ac-
curate solution for fake news detection. The proposed methodology involves training a GNN model
and retraining the output on an ensemble of machine learning classifiers. This approach offers sev-
eral advantages over using a GNN alone:

1. Complementarity: Combining GNN with an ensemble of machine learning classifiers lever-
ages the complementary strengths of different models, capturing the diverse aspects of fake
news detection from content-based, social context-based, and propagation-based perspectives.

22
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2. Reduced overfitting: The ensemble of classifiers can help reduce the risk of overfitting by
providing a more generalized solution.

3. Increased accuracy: By incorporating the output of the GNN into the ensemble of classifiers,
the overall accuracy of fake news detection can be improved.

4.2 Proposed Method
The key idea behind this approach is to conduct a series of experiments with the primary objective of
achieving higher accuracy than using a single GNN model. To initiate the analysis, a Single Model
Analysis is conducted using three different Graph Neural Network (GNN) models: Graph Convo-
lutional Network (GCN), GraphSAGE, and Graph Attention Network (GAT) to establish baseline
accuracy. Moreover, each dataset used in the analysis comprises three primary node features, which
are represented using text representation learning techniques. Specifically, the three primary node
features in each dataset include a 768-dimensional BERT representation, a 300-dimensional Spacy
(word2vec) representation, and a 10-dimensional vector that exclusively consists of profile features.
These text representation learning techniques enable us to capture and incorporate the semantic and
contextual information present within the graph data. By systematically training the graph data us-
ing the GNN model and considering the various text representation learning techniques, we aim to
establish a solid foundation for accurate analysis and further enhancements in our methodology.

Next, we expand our approach with an Ensemble Model Analysis, incorporating multiple ma-
chine learning classifiers to further enhance accuracy. Importantly, the ensemble model analysis is
also performed on the three different feature techniques mentioned earlier and involves training the
outputs of the GNN model on eight different Machine Learning (ML) classifiers. The results from
both analyses are compared to identify the most effective methodology for accurate graph data anal-
ysis in terms of accuracy. These steps can be summarized as follows:

Step 1: Single Model Analysis : The accuracy of graph data is evaluated by training it exclu-
sively using a Graph Neural Network (GNN) model, and the resultant accuracy is calculated.

Step 2: Ensemble Model Analysis : The approach is expanded by incorporating an ensemble
of machine learning classifiers to further improve the accuracy of the graph data analysis.

Step 3: Comparison of Results : The results from both single and ensemble model approaches
are compared to determine the most effective methodology for graph data analysis.

4.2.1 Single Model Analysis (using only a Graph Neural Network)
This experiment employs GNNs with different convolutional layers to predict the result of graph
data. For instance, the ”message passing layer” [3, section 3.5] mechanism is used to classify the
fake news graph dataset. This message passing happens in every graph neural network layer, where
each node in the graph:

1. Gathers information from all neighbouring nodes

2. Perform the node aggregation.

3. Update the node aggreagation



CHAPTER 4. METHODOLOGY 24

hn+1
u = UPDATE(n)(h(n)u , AGGREGATE(n)(h(n)v , ∀v ∈ N(u))

= UPDATE(n)(h(n)u , m(k)
N (u))

(4.1)

where, mN(u) is a message aggregated from u’s neighborhood N(u). The functions UPDATE
and AGGREGATE are arbitrary, differentiable functions. Supscripts are used in the above equation
to identify the embeddings and functions at different iterations of message-passing. [36]

To classify the graph data, three different types of GNN [3, section 3.5] models are used, namely,
Graph Convolutional Networks, GraphSAGE, and Graph Attention Network. The message passing
mechanism is common to all GNN models; however, their aggregate and update mechanisms are
different. The aggregate and update mechanisms of each of these models are described below:

4.2.2 Graph Convolutional Network (GCN)
Graph Convolutional Network is an advanced form of Convolutional Neural Network (CNN) de-
signed to work directly with graphs. It uses the following function to aggregate and update the
nodes’ information:

Hl
i = ReLU(W l−1 1

di
∑

j∈N(i)
Hl−1

j ) (4.2)

where,

• Hl
i represents the feature vector of node i at the l-th layer of the GCN.

• ReLU(·) is the Rectified Linear Unit activation function.

• W l−1 represents the weight matrix associated with the (l − 1)-th layer of the GCN.

• 1
di

∑ j∈N(i) Hl−1
j represents the aggregation step in the graph convolution operation.

4.2.3 Graph Attention Networks (GATs)
GATs are based on the concept of transformers [40] that aggregate the neighbouring node’s features
using a multi-head attention mechanism. Here, the node aggregation is performed by giving them
varying weights based on their importance. It uses the following function to update the nodes’
information:

Hl
i = α(

1
n

n

∑
n=1

∑
j∈N(i)

an
i, jWnH j) (4.3)

where,

• Hl
i represents the feature vector of node i at the l-th layer of the GAT. It denotes the trans-

formed representation of node i obtained after applying the graph attention operation.

• n is the number of heads in the multi-headed attention mechanism.

• W represents the weight matrix.

• ai, j is the attention co-efficient between nodes i and j.
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4.2.4 GraphSAGE
In contrast to other graph models, GraphSage uses a subset of neighbouring node features rather
than the whole graph to learn the relevant node embeddings. It uses different aggregation functions
to update the nodes’ information, which can be represented using the following equation:

Hl
i = ReLU(W.Concat(Hl−1

i , Mean(Hl−1
j : j ∈ N(i)))) (4.4)

where,

• Hl
i represents the feature vector of node i at the l-th layer of the GraphSAGE model. It

denotes the transformed representation of node i obtained after applying the graph sampling
and aggregation operations.

• ReLU(·) is the Rectified Linear Unit activation function.

• W represents the weight matrix used for the linear transformation of the concatenated features.

• Concat(·) denotes the concatenation operation, which combines the features of node i in the
previous layer Hl−1

i with the mean-pooled features of its neighboring nodes.

• j ∈ N(i) denotes the set of neighboring nodes of node i in the graph, representing the nodes
that are directly connected to node i.

• Mean indicates element wise mean pooling. Aggregation functions based on LSTM and
Max-Pooling techniques can also be used in GraphSage.

4.2.5 Ensemble Model Analysis
In this study, a novel extension of the GNN architecture is proposed to further improve its predictive
performance. Upon obtaining the predicted probabilities for each graph instance, these probabilities
are utilized as a new set of features and mapped with their corresponding actual labels (i.e., ”true” or
”fake”). Thus, the new dataset represents a mapping between the estimated probabilities generated
by the GNN and the actual labels.

To take full advantage of this new data representation, various machine learning classifiers [3,
section 3.2] are employed to train the dataset. Furthermore, to achieve optimal results, an ensemble
approach using Max Voting [3, section 3.3.1] is utilized, combining the predictions of multiple
classifiers to produce a single, more accurate prediction.
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Figure 4.1: Architecture using ensemble of classifiers

The classifiers for ensemble learning are selected based on two criteria.

• The model should be high-performing.

• The model should be diverse.

The high-performing models are determined based on the metric AUC, i.e., accuracy. Similarly, the
Pearson correlation coefficient is used to calculate diversity. The steps for finding accuracy using
the ensemble approach can be summarized as follows:

1. Train multiple machine learning classifiers on a new dataset.

2. Calculate the accuracy of each classifier.

3. Set a correlation limit.

4. Index and iteratively select models that are not highly correlated.

5. Create combinations of these models, and then use the average ensemble voting method to
pick the best-performing model.



Chapter 5

Data Collection and Experimental
Setup

This chapter provides a comprehensive overview of the datasets utilized in this experiment, pro-
viding detailed descriptions of their specific characteristics, structure, and distribution of fake and
real news instances. Additionally, it outlines the experimental setup employed to conduct the study,
ensuring transparency and reproducibility.

5.1 Data Source
The dataset from the paper [11] that contains graph data is used to train GNN models in this ex-
periment. The actual news content of this paper [11] is extracted from the FakeNewsNet dataset
[41], which contains textual news as well as Twitter social engagement information. This dataset
includes both fake and real news, based on two fact-checking datasets, Politifact and GossipCop.
The specifics of these details are provided below.

5.1.1 News Content
To gather reliable sources of news that contain both fake and true news, information from the fact-
checking websites PolitiFact and GossipCop is employed. Ploitifact contains the political claims
that have been verified by journalist and domain experts, whether they are true or false. The actual
news about these claims is extracted from the source URL provided on the Politifact website. For
the expired news URL in Politifact, the authors of [11] have made use of the Wayback Machine and
Google Web Search to identify the news article as the actual news. These news articles serve as the
basis for both fake and genuine news articles in this research work.
Similarly, gossipcop is another fact-checking website that contains entertainment news stories accu-
mulated from multiple online media sources. It provides rating levels for new articles ranging from
0 to 10 to classify them according to their authenticity. Since this website mostly showcases fake
stories, only news with a score of less than 5 is collected as a source of fake news. However, factual
entertainment news is pulled from another reputable, trusted website called EOnline18 in order to
maintain a balance between fake and real news.

27
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5.1.2 Social Context
The social context and user engagement for the news article from a fact-checking website are col-
lected using Twitter’s Advance Search API. A search query is made from a news article headline
with special characters removed to filter out the noise. In addition to obtaining news posts from
social media, further information such as replies, likes, user meta data (followers, total posts, etc.),
and user engagement in the news dissemination process is also fetched.

5.1.3 Spatiotemporal Information
There are two components to spatiotemporal information: spatial information and temporal informa-
tion. Spatial information is fetched using the location provided by the user in their profile. Similarly,
temporal information tracks the timestamps of user activity in the news propagation process, which
is used to study the spread of news articles in this work. This temporal information serves as the
foundation for establishing a network for the circulation of news.

Figure 5.1: Statistics of FakeNewsNet [41].

5.2 Data Processing
The graph dataset from [11] is used in this experiment, which generates graphs based on the news
content from [41]. The graph data is constructed using both endogenous and exogenous information
from the user. Here, endogenous refers to the user’s personal preferences that may be useful in
determining the user’s interest in a particular post, such as historical posts, while exogenous refers
to all users involved in sharing a particular news article. The following steps are taken to process
and obtain the graph data.

1. First, news posts and user-historical posts are encoded using text learning strategies like
word2vec and BERT.

2. Second, a tree-structured propagation graph is constructed for each piece of news. In this
case, the news is the root node, and the child nodes are the people who shared the news.
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5.2.1 Endogenous Preference Encoding
Modelling users endogenous preferences using only their social network information is not a straight-
forward task. To implicitly consider a user’s preferences, their historical posts are encoded. The Fak-
eNewsNet dataset [41], which contains news content and Twitter social engagement information, is
used. Similarly, historical posts are extracted using the Twitter Developer API for each account that
has retweeted a particular news post. As part of the user preference modelling process, the most
recent 200 tweets from each account are crawled, resulting in close to 20 million tweets. Similarly,
the historical posts of suspended or deleted accounts are replaced with randomly selected tweets
from accessible users engaged in the same news story.
To encode the news textual information and user preference, two commonly used word embeddings
(word2vec and BERT) are utilized rather than training local corpora. These word embeddings have
been pretrained on a large corpus and are therefore capable of encoding more semantic similari-
ties between words and sentences. For word2vec, a 300-dimensional vector that has been pretrained
using SpaCy is used. SpaCy is a free, open-source Python library used in Natural Language Process-
ing. It comprises pretrained vectors for 680k words, and user preference representation is obtained
by averaging the vectors of existing words in the user’s 200 most recent historical tweets. The news
embedding is obtained in a similar manner. For the BERT model, the news and user information are
encoded using the BERT-Large model with a maximum input sequence length of 512 tokens.

5.2.2 Exogenous Context Extraction
The user’s exogenous context refers to all users that are engaged in a particular piece of news content.
The propagation graph is formed using the retweet information from new pieces. It is constructed
using the two rules listed below:

1. Given an account ai , if ai shares the same news piece later than at least one following account
in a1,a2,a3, ..., an , the latest timestamp to account vi is used to estimate the news spread
from the account.

2. The news is conservatively estimated to spread from the account with the highest number of
followers if account vi does not follow any accounts in the retweet sequence, including the
source account, because according to Twitter’s guidelines for content distribution, tweets from
accounts with more followers have a higher chance of being viewed and retweeted by other
users.

5.2.3 Information Fusion
Previous research [7, 26] has proven that integrating user attributes (features) with a news propaga-
tion graph can improve the efficiency of detecting fake news. GNN can leverage this task since it
can encode both node features and graph structure. The fusion of information is performed using a
hierarchical approach.
First, endogenous and exogenous information are fused together. Here, as node features, news tex-
tual embedding and user preference embedding are used along with user attributes. After a message
passing layer where the features of neighbourhood nodes are aggregated, a readout function is ap-
plied over all node embeddings to generate the embedding of a news propagation graph. To get the
graph embedding, the readout function performs the pooling operation on all node embeddings.
Second, because news content tends to show more signs of trustworthiness [11], textual embedding
and user engagement embedding are combined to improve news embedding.
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The last step is to feed the fused news embedding, which is made up of user engagement embedding
and news textual embedding, into a two-layer multi-layer perceptron (MLP), which has two output
neurons that show the probabilities for fake news and real news.
The model is trained with a binary cross-entropy loss function, and then it is updated with mini-batch
gradient descent.

Figure 5.2: A news propagation graph (exogeneous context) is extracted from news content, and en-
dogenous information is encoded based on users’ historical posts and news pieces. The endogenous
and exogenous data are merged together using a GNN encoder and fed into the neural classifier to
predict the credibility of news.

5.3 Expiremental Setup

DataSets
The proposed model is evaluated based on two real-world text datasets: Gossipcop and Politifact
from UPFD [11]. In both datasets, nodes refer to users, edges represent retweets or reshares of
news, and features are extracted in terms of a user’s attributes and their historical tweets. Each
dataset contains two binary labels: true (1) or false (0). The statistics of two datasets are shown in
the table below:

Experimental Setups
In this experiment, the cutting-edge capabilities of the PyTorch Geometric and Sklearn packages
are utilized to achieve better accuracy in graph data analysis. The GNN models are implemented
using the PyTorch Geometric library, while individual machine learning classifiers and the ensemble
approach are implemented using the default settings from the Sklearn package.
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Table 5.1: Graph data for the GNN model

Datasets Gossipcop Politifact
Graphs 5464 314
Fake News 2732 157
Total Nodes 314,262 41,054
Total Edges 308,798 40,740
Avg.Nodes per Graph 58 131

A graph dataset composed of a balanced proportion of authentic and fake news is employed, which
is then split into three sets: training, validation, and testing, with a 60%, 20%, and 20% distribution,
respectively. The validation set is utilized to monitor overfitting and ensure the robustness of the
model. The experiment is conducted using a set of hyperparameters that include a unified graph
embedding size of 128, 100 epochs, a binary-cross entropy loss function, a learning rate of 0.01, an
Adam optimizer with a weight decay of 0.01, and a batch size of 128. Additionally, early stopping
with a patience of 5 iterations is employed to prevent overfitting in the GNN model training process.
Figures 5.3 and 5.4 display the distribution of the training, validation, and testing sets used in the
experiment, providing a clear visualization of the data employed in this analysis.

Figure 5.3: Data distribution of Gossipcop Figure 5.4: Data distribution of Politifact

The experiment is performed on three significant variations of Graph Neural Networks (GNNs):
Graph Convolutional Network (GCN), Graph Attention Network (GAT), and Graph SAGE (GSAGE).
For each of these GNN models, three different embedding techniques are applied, resulting in a total
of 9 experiments for the Gossipcop dataset and 9 experiments for the Politifact dataset.
The aim of this experiment is to enhance the accuracy of each of these GNN variants by employ-
ing an ensemble approach. These models are first trained using a carefully curated training set and
undergo a rigorous evaluation process. In order to prevent oversmoothing and maintain the struc-
tural information of the graph, only a single message passing layer is utilized for all three variants,
followed by three linear transformation layers. Global Max Pooling is employed to extract crucial
features and reduce the dimensionality of the graph’s feature map. The accuracy of the trained mod-
els is thoroughly assessed on training, validation, and testing sets.
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To further enhance the performance of the Graph Neural Network (GNN) models, an ensemble
approach is applied. The ensemble method involves training the outputs of the GNN models to
eight different Machine Learning (ML) classifiers, including Logistic Regression, Decision Trees,
Random Forest Classifier, Extra Tree Classifier, KNeighborsClassifier, SVC, AdaBoost Classifier,
and Gradient Boosting. To ensure that the models are uncorrelated, the Pearson coefficients between
them are calculated, and only the models with the highest accuracy are selected for the final ensem-
ble approach. The final ensemble approach employs an average voting system, in which the outputs
of the selected ML classifiers are combined and averaged to produce a final prediction. The optimal
combination of ML classifiers is determined based on the combination that produces the highest
performance.



Chapter 6

Results and Analysis

This experiment employs both the Gossipcop and Politifact datasets. Each of these datasets com-
prises three primary node features that are represented using the text representation learning tech-
nique. They consist of a 768-dimensional Bert, a 300-dimensional Spacy, and a 10-dimensional
vector consisting of only profile features. Three types of GNN are selected to detect fake news:
GAT, GraphSAGE, and GCN. For each GNN model and text representation learning technique,
around 100 epochs are utilized to train and evaluate the accuracy and loss functions.

To begin with, each GNN variant is trained and evaluated using three text representational learning
algorithms. First, the dataset is trained solely on GNN variants, and then the ensemble is applied.
The GNN trained with ensemble classifiers is represented as GNN-EN, where ”GNN” is the variant
of Graph Neural Network and ”EN” represents the ensemble of ML classifiers. Tables 6.1, 6.2, 6.3
analyze the performance of the model on Gossipcop and Politifact datsets. The performance of the
models is determined by their accuracy and F1 score.

Table 6.1: Performance Score on the Gossipcop Dataset

The accuracy and the F1 score of three graph neural network models (GCN, GAT, and GSAGE)
and the proposed ensemble method are presented in Table 6.1, showcasing the performance on the
gossipcop dataset. The feature column displays the different embedding techniques applied to the
GNN and GNN-EN models.
The performance of these models is evaluated using two standard metrics: accuracy (ACC) and F1
score. As illustrated in the performance metrics, the proposed ensemble method achieved better re-
sults, outperforming the individual models in terms of accuracy and F1 Score across all embedding
techniques. In particular, the ensemble learning approach using the Word2Vec and Bert encoding

33
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techniques demonstrated a 1% increase in accuracy and F1 score compared to the individual models.
The performance of the Profile encoding approach was comparable to single GNN model analysis,
yet with a slight improvement in ACC and F1 Score. Overall, the results of this study demonstrate
that the use of an ensemble model improved the performance of all 9 experiments performed on
Graph Neural Networks (GNNs) using three distinct embedding features on the gossipcop dataset.

Table 6.2: Performance Score on the Politifact Dataset

Table 6.2 showcases the comparison of the accuracy and F1 score between three Graph Neural Net-
work models (GCN, GAT, and GSAGE) trained on the Politifact dataset with the proposed ensemble
technique. The feature column indicates the embedding techniques applied to each of the models.
The results highlight a significant improvement in performance by the ensemble models (GCN-EN,
GAT-EN, and GSAGE-EN) as compared to the individual models. For instance, the GCN-EN model
outperformed GCN in terms of accuracy and F1 score by more than 1% for Word2Vec and profile
features, while BERT features showed comparable performance. The GAT-EN model achieved a
remarkable improvement of 10% in ACC and 8% in F1 score when compared to the GAT model for
profile features. Furthermore, GSAGE-EN also showed an improvement of 5% in accuracy and F1
score for Word2Vec and a slight improvement of 1% for BERT and profile features. These results
highlight the efficacy of the proposed ensemble technique in enhancing the performance of Graph
Neural Network models.

Table 6.3: Performance of GNN Variants and GNN Ensemble

Table 6.3 shows a comprehensive comparison of the accuracy and F1 scores of three Graph Neu-
ral Network models (GCN, GAT, and GSAGE) that were trained on two datasets (Gossipcop and
Politifact), as well as their corresponding ensemble methods. The results shown in Table 6.3 are
a summary of the findings presented in Table 6.1 and Table 6.2, and provide a clear and concise
overview of the best performance results achieved by each model and its ensemble counterpart
across the three different embedding techniques.
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The experiment results indicate a marked improvement in the accuracy and F1 scores when us-
ing the ensemble model compared to the individual models for both the Gossipcop and Politifact
datasets. The GCN-EN and GAT-EN models showed an improvement of 1% in both accuracy and
F1 scores for the Gossipcop dataset, while the GCN-EN and GSAGE-EN models demonstrated an
improvement of 1% and 5% respectively, for the Politifact dataset. This highlights the efficacy of
the proposed ensemble method in enhancing the performance of graph neural networks in fake news
detection. The results of the 18 experiments conducted on both datasets using the ensemble method
demonstrate its superiority in improving the performance of the models.

Best performing GNN ensemble model (GNN-EN)
The results of the experiment, including the combination of the best performing ensemble model for
each Graph Neural Network (GNN), accuracy (ACC), F1 score, and graphs of train and validation
performance over 100 epochs, are presented below. The accompanying figure provides a visual
representation of the results, with the left side showing the validation accuracy versus epoch of the
individual GNN models and the right side showing the validation accuracy versus training size of
the ensemble models.
To ensure a comprehensive evaluation of the ensemble models, the validation accuracy was assessed
using a 10-fold cross-validation approach. This method allows for a thorough evaluation of the
model’s performance and provides a more robust and reliable representation of the model’s accuracy
and ability to generalize to new data.

Gossipcop
1. GCN-EN
Feature: word2vec
Combination: SVC(kernel=’linear’, probability=True)
Test Accuracy: 0.9835
F1 Score: 0.9837

Among the various word embedding techniques tested, word2vec was found to provide the optimal
results. The ensemble model used to classify the text data was a Support Vector Classification
(SVC) model with a linear kernel and probability set to True, which was determined to be the best
performing combination for this dataset. The results showed that this combination achieved a test
accuracy of 0.9835 and an F1 Score of 0.9837, indicating a high level of accuracy and a strong
balance between precision and recall.
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Figure 6.1: Comparison of Validation Accuracy in GCN and Ensemble Model Across Epochs and
Training Size

2. GAT-EN
Feature: BERT
Combination: DecisionTreeClassifier(max depth=1, random state=0), SVC(kernel=’linear’, proba-
bility=True), ExtraTreesClassifier(random state=0), KNeighborsClassifier(n neighbors=3)
Test Accuracy: 0.9817
F1 Score: 0.9818

Here, the feature representation - BERT embedding technique was found to be the optimal repre-
sentation among the other embedding techniques evaluated. The ensemble model used with optimal
performance to analyze the data was a combination of four different classifiers: DecisionTreeClas-
sifier with a maximum depth of 1 and random state set to 0, Support Vector Classification (SVC)
model with a linear kernel and probability set to True, ExtraTreesClassifier with random state set to
0, and KNeighborsClassifier with 3 neighbors. The results showed that this combination achieved a
test accuracy of 0.9817 and an F1 Score of 0.9818 on the gossipcop dataset, demonstrating superior
performance compared to others.

Figure 6.2: Comparison of Validation Accuracy in GAT and Ensemble Model Across Epochs and
Training Size

3. GSAGE-EN
Feature: BERT
Combination: RandomForestClassifier(max depth=2, random state=0)
Test Accuracy: 0.9817
F1 Score: 0.9819
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Here, BERT as the feature representation was found to be the optimal choice among the other em-
bedding techniques evaluated. The ensemble model used to analyze the text data was a combination
of one classifier, a Random Forest Classifier with a maximum depth of 2 and a random state set to
0. The results showed that this combination achieved a test accuracy of 0.9817 and an F1 Score of
0.9819 on the gossipcop dataset.

Figure 6.3: Comparison of Validation Accuracy in GSAGE and Ensemble Model Across Epochs
and Training Size

Politifact
1. GCN-EN
Feature: word2vec
Combination: DecisionTreeClassifier(max depth=1, random state=0)
Test Accuracy: 0.9414
F1 Score: 0.9364

The feature used in this analysis was the word2vec technique for word embedding, which showed
optimal results compared to other embedding techniques. The combination used in this analysis
was the DecisionTreeClassifier with a maximum depth of 1 and a random state of 0. The results of
the ensemble model showed a test accuracy of 0.9414 and an F1 score of 0.9364 on the Politifact
dataset.

Figure 6.4: Comparison of Validation Accuracy in GCN and Ensemble Model Across Epochs and
Training Size
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2. GAT-EN
Feature: BERT
Combination: RandomForestClassifier(max depth=2, random state=0)
Test Accuracy: 0.8571
F1 Score: 0.88

The BERT feature was used as the word embedding technique and produced optimal results com-
pared to other embedding techniques. The ensemble model combination used was a RandomForest-
Classifier with a maximum depth of 2 and a random state set to 0. The combination produced a test
accuracy of 0.8571 and an F1 score of 0.88.

Figure 6.5: Comparison of Validation Accuracy in GAT and Ensemble Model Across Epochs and
Training Size

3. GSAGE-EN
Feature: word2vec
Combination: LogisticRegression
Test Accuracy: 0.9047
F1 Score: 0.9230

Here, the feature used was the word2vec word embedding technique, which was evaluated against
other embedding techniques and showed optimal results. The combination used was a single Logis-
tic Regression classifier, which achieved a Test Accuracy of 0.9047 and an F1 Score of 0.9230 on
the politifact dataset.

Figure 6.6: Comparison of Validation Accuracy in GSAGE and Ensemble Model Across Epochs
and Training Size
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6.1 Comparative Performance Evaluation: GNN-EN versus Prior
Studies

The section presents a comparative evaluation of the performance of prior studies, including UPFD
[11], Mahmud et al. [10], and GCNFN [26] models, alongside the GNN-EN model. The objective of
this analysis is to assess the effectiveness and superiority of GNN-EN by comparing its performance
with established baselines.

Table 6.4: Performance of GSAGE-EN and GSAGE from UPFD [11]

In the research conducted, a comparison was made between the GSAGE-EN model and the GSAGE
model from UPFD in terms of accuracy. The best performing model is represented in bold. Among
the tested models in UPFD, GSAGE emerged as the best performer. However, the GSAGE-EN
model outperformed UPFD across all features when evaluated on the Gossipcop dataset. Notably,
the GSAGE-EN model exhibited significant accuracy improvements, surpassing the UPFD model
by approximately 10% for word2vec and over 1% for BERT feature on the Politifact dataset. These
results demonstrate the effectiveness of the GNN-EN model in accurately capturing and utilizing
relevant features, showcasing its superiority in achieving improved performance in both datasets.

Table 6.5: Performance Comparision of GNN-EN with Mahmud et al.’s [10]

In comparison to the analysis conducted by researchers from [10] on GNN models, the evaluation
focused on performance in terms of accuracy. The best performing model is represented in bold.
Across both the Gossipcop and Politifact datasets, the GNN-EN model surpassed all other models
in terms of word2vec and BERT feature vectors. Specifically, on the Gossipcop dataset, the GNN-
EN model achieved a 1-2% higher accuracy compared to other models for both word2vec and BERT
features. Similarly, on the Politifact dataset, the GCN-EN, GAT-EN, and GSAGE-EN models sur-
passed other models. For word2vec, GCN-EN, GAT-EN, and GSAGE-EN achieved improvements
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of approximately 12%, 4%, and 15%, respectively. In the case of BERT, GCN-EN, GAT-EN, and
GSAGE-EN outperformed other models by approximately 3%, 1%, and 1%, respectively. These
results emphasize the superior performance of the GNN-EN model in both datasets, showcasing its
effectiveness in surpassing other models when considering various feature vectors.

Table 6.6: Performance Comparison with Best-Performing Models of Baselines

The table displays the best performing model from each research study on the Gossipcop and Politi-
fact datasets, with GNN-EN being one of the models. The GNN-EN model, among others, demon-
strated the highest performance. It achieved an accuracy of 98.35% on the Gossipcop dataset and
94.14% on the Politifact dataset. These results highlight the effectiveness of the GNN-EN model in
accurately predicting outcomes on both datasets, surpassing the performance of the other models.



Chapter 7

Conclusion and Future Work

The present study investigated the effectiveness of ensemble learning as a technique to improve
the performance of Graph Neural Networks (GNNs) in determining the authenticity of news arti-
cles. The UPFD graph dataset, which includes both endogenous and exogenous user preferences,
was used for the analysis. The study involved evaluating the performance of three different encod-
ing features and three diverse GNNs, and the results were combined using the ensemble learning
approach. Additionally, several baseline models were compared to assess the performance of the
proposed ensemble method. The findings of the study revealed that the ensemble method outper-
formed individual GNNs in enhancing the performance of news authenticity detection. Using this
method we were able to obtain upto 10% more accurate results in detecting fake news. Furthermore,
when compared to the baseline models, the ensemble approach demonstrated superior performance.
These results indicate the effectiveness of ensemble learning in improving the accuracy and reliabil-
ity of news article authenticity detection when compared to both individual GNNs and other baseline
models.
Although the study produced promising results, there is room for further research to expand the
scope of the investigation. One area for future exploration is the collection of datasets from a wider
range of social media platforms and multiple languages to improve the generalizability of the find-
ings. This would enable researchers to test the robustness of the ensemble approach in various
contexts and improve its practical application.
Another challenge for future research is the computational complexity and scalability of the ap-
proach, especially when dealing with large and complex graph datasets. To mitigate the computa-
tional expense, model compression techniques can be employed without significant loss in perfor-
mance. It is important to address the challenge of real-time applications, which may require faster
and more efficient algorithms to handle the massive amounts of data involved. One possible so-
lution is to explore the combination of multiple graphs into a single ensemble to improve overall
performance. This would involve designing new methods to integrate multiple graphs efficiently
and effectively while ensuring the quality of the results.
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[28] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ”
O’Reilly Media, Inc.”, 2022.

[29] Dipayan Sarkar and Vijayalakshmi Natarajan. Ensemble Machine Learning Cookbook: Over
35 practical recipes to explore ensemble machine learning techniques using Python. Packt
Publishing Ltd, 2019.

[30] What is a decision tree? https://www.ibm.com/topics/decision-trees, 2022.

[31] Vegi Shanmukh. Image classification using machine learning-support vector machine(svm),
Mar 2021.

[32] Avinash Navlani. Knn classification tutorial using scikit-learn, Aug 2018.

[33] Learning with. Hands-on machine learning with scikit-learn, keras, and tensorflow, 2nd edi-
tion, 2019.

[34] Sunil Ray. Essentials of machine learning algorithms (with python and r codes), 2017, Sep
2017.

[35] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57â81, 2020.

[36] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61â80, Jan 2009.
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