EnsHANCING DATA CENTER RELIABILITY THROUGH DEEP
LeEARNING-BAseD Disk FAILURE PREDICTION

by

YassaMAN MARDAN

A thesis proposal submitted to the
Department of Computer Science
in conformity with the requirements for
the degree of Master of Science

Bishop’s University
Canada
July 2025

Copyright © Yassaman Mardan, 2025
released under a CC BY-SA 4.0 License

https://creativecommons.org/licenses/by-sa/4.0/

Abstract

With the growing reliance on technology, data storage and failure prediction have
become critical and challenging issues. Among various data storage methods, disks
are the most commonly used components in storage systems, with the majority of
information currently stored on them. As a result, disk failures can lead to irrepara-
ble damage. Although such failures are relatively rare, large-scale storage systems
containing thousands of disks are still prone to severe failures, often resulting in
permanent data loss. For this reason, maintaining the reliability of storage resources
has always been a serious challenge. Various methods have been developed to de-
tect and predict disk failures in data centers. However, identifying failures quickly
and accurately remains a significant challenge. Due to the poor performance of old
methods, researchers are motivated to use different techniques to detect failures
earlier and more accurately to cover the weaknesses of the old methods. Deep
learning is one of the most advanced techniques used for predicting disk failures.
Thus, we train a Bidirectional Long Short-Term Memory (Bi-LSTM) deep neural
network to diagnose and predict disk failures effectively. In deep learning-based
failure detection methods, selecting effective features plays a crucial role in en-
hancing the model’s accuracy and performance. However, using too many features
can increase computational load, add unnecessary complexity, and reduce overall
efficiency. To address this, we apply feature selection techniques as part of our
methodology. Specifically, we use Pearson correlation and Chi-square tests to iden-
tify the most relevant features. The datasets used in this study are from Backblaze
and Baidu. The results demonstrate that our model accurately detects failures
with 98.36% accuracy and 97.8% precision, and successfully predicts failures up
to 40 days in advance. Additionally, we develop a decision tree-based model to
evaluate disk health status. This model predicts the remaining useful life of hard
disks and classifies them into Healthy, Warning, or Critical states. By classifying the
disk health features and then applying the trained Bi-LSTM, we achieve significant
improvements, reaching an accuracy of 99.27% and a precision of 98.65%.

Acknowledgments

I would like to express my deepest gratitude to my professors, Prof. Madjid Allili
and Prof. Mohammad Ayoub Alaoui Mhamdi, for their invaluable guidance, sup-
port, and encouragement throughout the course of this research. Their time, in-
sightful feedback, and expertise have been instrumental in shaping the direction
and quality of this thesis. I am truly grateful for their mentorship and for the
opportunity to learn under their supervision.

ii

List of Abbreviations

Abbreviation Definition

HDDs Hard Disk Drives

SMART Self-Monitoring Analysis and Reporting Technology
RUL Remaining Useful Life

RAID Redundant Array of Independent Disks
Bi-LSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network

RNN Recurrent Neural Network

HMM Hidden Markov Model

BNN Binary Neural Network

CDEF Cloud Disk Error Forecasting

AUC Area Under the Curve

CRF Conditional Random Fields

LSTM Long Short-Term Memory

MSE Mean Squared Error

MAE Mean Absolute Error

RelLU Rectified Linear Unit

MCC Matthews Correlation Coefficient
CART Classification and Regression Tree

FPR False Positive Rate

TPR True Positive Rate

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

SGD Stochastic Gradient Descent

iii

Contents

1 Introduction
1.1 DProblem Statement

2 Literature Review
2.1 Failure Detection Approach
2.2 Disk Health Degree Prediction
2.3 Remaining Useful Life Prediction

3 Proposed Methodology
31 ModelTraining
3.2 Evaluationof DiskHealth

4 Experimental Results
4.1 EvaluationIndicators
42 Model Evaluation
43 Resultsand Comparison
43.1 Evaluating the Efficiency of the Trained Model
4.3.2 Performance Evaluation for Disk Health Status

5 Conclusion and Future Research Directions

Bibliography

iv

List of Tables

21

2.2

3.1
3.2

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8

49
4.10

The advantages and disadvantages of the conducted studies on disk
failure prediction L
Comprehensive overview of disk failure prediction methods and
their performance L oo oL

The number of data used in each disk model
Example of decision rules learned by the decision tree classifier . . .

Hard drives SMART features in the BackBlaze dataset
Selection of the top ten features with Chi-squaretest
The set of features of Pearson correlation coefficient and Chi-square
test . . . e
The number of training and test data of failure prediction model . . .
Comparison of hyperparameters for the base and proposed models .
Evaluation results of the basic method with Adam’s optimizer and
30 days before failure oo L oL
Evaluation results of the diagnosis model with Adam’s optimizer
and 40 days before failure
Evaluation results of diagnosis model with SGD optimizer and 40
days before failure L
MAE value of the selected features
Results evaluation of the other state-of-the-art methods and the pro-
posedsolution L o

List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The architecture of an LSTM block 15
An example of Bi-LSTM network structure 16
Overview of the work flow for our approach 21
Correlation and Chi-square test of SMART features 42
Features correlationmatrix. 43
Loss function diagram with 5 timesteps 46
Loss function diagram with 7 timesteps 47
Loss function diagram with 10 timesteps 47
Loss function diagram with 15 timesteps 438
Decision tree for SMART-5 trained to predict remaining days until failure 51

vi

Chapter 1

Introduction

In today’s digital world, the amount of data we generate is growing rapidly, making
reliable storage systems more important than ever. Hard drives, which are the most
common type of storage, are essential for keeping our data safe. However, when
these drives fail, it can lead to serious problems, such as data loss or system outages
[25]. This makes it crucial for the accurate prediction of when a disk might fail,
allowing these issues to be prevented before they occur. [42].

Predicting disk failures is crucial for effective stock maintenance and budget-
ing. By anticipating potential failures, data centers can manage their inventory
more efficiently, plan proactive replacements, and allocate resources strategically
[23]. Early prediction helps organizations avoid emergency purchases, reduce un-
expected downtime costs, and optimize the lifecycle of storage assets. Accurate
failure prediction also plays a key role in maintaining the operational stability and
cost-effectiveness of large-scale storage systems [5].

Hard disk drives (HDDs) have been the main storage solution for large data
centers for many years. Like any other electronic device, HDDs do not last forever
and eventually wear out. To keep track of their health, manufacturers and operators
use a system called SMART (Self-Monitoring Analysis and Reporting Technology).
This system records important data about the HDDs, such as how long they have
been running, their temperature, error rates, and more [26]. Each manufacturer sets
thresholds for these attributes, which are used to detect if a drive might fail. If a
drive is working properly, its SMART attributes should stay within these thresholds.

Backblaze and Baidu are two major providers of publicly available disk failure
datasets. Backblaze, a cloud storage company, offers detailed SMART data collected
from thousands of hard drives in its data centers. Backblaze runs a data center with
over 171,000 hard drives [3]. In 2020, they reported that about 0.93% of their
drives failed—more than a thousand in one year [18]. This highlights the need
for companies and manufacturers to know how much longer their hard drives will
last, known as their remaining useful life (RUL). Accurately predicting the RUL can
help minimize downtime, prevent disruptions, and protect valuable data. Similarly,

CHAPTER 1. INTRODUCTION 2

Baidu, a leading Chinese technology company, has released large-scale disk failure
data from its storage systems. These datasets are widely used in research to develop
and evaluate models for predicting disk failures.

While SMART attributes are useful for spotting problems before a drive fails,
predicting the RUL would be even more helpful, especially for data centers with-
out RAID (redundant array of independent disks) technology. This data storage
technology groups multiple physical disk drives into one or more logical units to
enhance data redundancy, performance, or both. However, they are expensive and
managing and configuring them is complex. Thus, accurately predicting the RUL
would give data centers time to back up their data and plan for a replacement
before the drive stops working. For companies like Backblaze, it would mean they
could prepare to swap out failing drives without impacting their systems. Pre-
dicting RUL not only improves reliability but also ensures smoother operations in
large-scale data centers.

1.1 Problem Statement

Hard disk drives are essential for data storage in large-scale systems, but their
limited lifespan can lead to failures that cause data loss and downtime. Existing
monitoring systems like SMART provide basic health tracking but often fail to
predict failures early enough for preventive action. Current prediction methods
struggle with adaptability, accuracy, and generalization across different drive mod-
els, leaving data centers unprepared to manage failures effectively. This research
aims to address these challenges by developing a robust machine learning-based
approach to accurately predict disk failure in a timely manner, ensuring better data
safety and system reliability.

The main problem this research tackles is finding a better way to detect and pre-
dict disk failures, especially in large data centers. Despite advances in technology,
traditional methods still have significant weaknesses. They can be complicated to
use, may not work well with different types of data, and often struggle to keep up
with changes in how disks fail over time [24, 25, 30].

We propose a method for disk failure detection and prediction using Bidirec-
tional Long Short-Term Memory (Bi-LSTM) networks, a type of deep learning model
well suited for time series data. To further improve model performance, key fea-
tures from SMART attributes are selected using statistical methods like Pearson’s
correlation coefficient and the Chi-square test. These techniques ensure that only
the most relevant features are used, reducing complexity and enhancing prediction
accuracy.

This research has three main goals. First, we aim to create a strong model that
can predict disk failures using advanced machine learning techniques. Second, we
want to make sure that this model works well across different types of data and
disk models, not just a single type. Third, we hope to improve how early we can

CHAPTER 1. INTRODUCTION 3

predict disk failures, giving us more time to take action and avoid any negative
consequences.

This thesis is organized as follows. Chapter 2 reviews the existing research
and methods for the prediction of disk failures. Chapter 3 explains our proposed
approachin detail, including how we prepare the data, train the model, and evaluate
its performance. Chapter 4 presents the results of our experiments and compares
our method with others. Finally, Chapter 5 concludes the research and suggests
possible future directions for further improvement.

Chapter 2

Literature Review

This section begins with a general overview of disk failure detection and prediction.
We then review the main categories of studies focused on evaluating disk health and
predicting the remaining useful life of hard disks. Finally, we compare state-of-the-
art methods from existing research in this field. A wide range of research has been
conducted in the area of disk failure detection and prediction, focusing on various
strategies for identifying potential failures and estimating the remaining useful life
of hard drives. These studies explore different modeling techniques, data-driven
approaches, and performance metrics to improve reliability and prevent data loss.

2.1 Failure Detection Approach

In failure detection approaches, the model typically evaluates the current state
of a disk and classifies it as either healthy or unhealthy based on the observed
features at a given point in time. This type of classification is limited to the present
condition of the disk without considering its future behavior. In contrast, some
extended methods go beyond detecting the current state and aim to estimate how
much time remains before a potential failure occurs. This leads to the concept
of remaining useful life (RUL) prediction, which is further discussed in the next
section. Up to now, most of the conducted studies have focused solely on their
individual research approach. However, Chang et al. [41] have presented a model
that combines three approaches based on failure detection, health degree of disks,
and remaining useful life prediction using a Recurrent Neural Network (RNN). In
this discussion, we will first examine the failure detection-based approach, and then
delve into the other two approaches in their respective sections. In their proposed
model, Chang et al. [41] utilized a real-world dataset used in the paper by Zhou et
al. [47] for model evaluation. They also employed three non-parametric methods,
including the reversed rank test, rank-biserial correlation test, and Z-score [25], to
select SMART features. Ultimately, 10 top features were selected. In the evaluation
section of failure prediction, Chang and his colleagues compared their proposed

4

CHAPTER 2. LITERATURE REVIEW 5

method in this model with the following methods: the Hidden Markov Model
(HMM), Binary Neural Network (BNN) as an artificial neural network, and CT,
a classification tree-based method. In both the CT and BNN approaches, failure
detection relied on a thresholding algorithm. Specifically, the model evaluated the
most recent sequence of past samples prior to the current time point, where the
size of the detection window determined how many previous observations were
considered. If more than half of these samples were classified as failure instances,
the disk was flagged as faulty.

In another study, Jiang and his colleagues proposed a new disk failure predic-
tion model using Random Forests [40]. In their conducted research, they applied
their proposed model to the Backblaze dataset. The model started with using
the Wilcoxon Rank-Sum Test to differentiate between positive and negative fea-
tures. Then recent samples for each disk were stored. Labels were assigned to
each sample, positive for failure and negative for healthy status. Due to the imbal-
ance between the number of healthy and faulty samples, they employed a method
called Poisson-distributed stratified sampling [27]. During the evaluation, they
compared the proposed model with Offline Random Forests, SVM, and decision
trees. The results indicated that the Offline Random Forest model had superior
predictive performance compared to SVM and decision trees. Furthermore, the
Random Forest model exhibited stable failure detection rates ranging from 93% to
99%, outperforming all offline models.

As mentioned earlier, unlike offline disk failure prediction approaches, which
have access to disk failure-related data before model construction, the offline mod-
els continually generate evolving data streams. These evolving models adapt to
changing statistical patterns over time. To address these challenges, Han et al.
[14] introduced an online Random Forest method named STREAMDEP. In this
approach, a holistic stream extraction for disk failure prediction is utilized, incor-
porating concept drift adaptation.

2.2 Disk Health Degree Prediction

This approach evaluates disk condition by classifying it into health levels such as
healthy, warning, or failed. Unlike methods that rely on a single snapshot, it ana-
lyzes sequences of disk states over time. By tracking how SMART attributes change
across multiple time steps, the model can more effectively detect gradual degra-
dation patterns that often lead to failure. This temporal perspective enables more
accurate health assessments, enhances the reliability of early warnings, and reduces
the risk of misclassification compared to approaches based solely on isolated data
points [40].

Continuing from the previous study by Chang et al. [41], where they discussed
the proposed recurrent neural network based fault detection model, in this section,
they evaluated the performance of the proposed model in terms of disk health. The

CHAPTER 2. LITERATURE REVIEW 6

proposed model consists of three layers: input, output, and hidden layers. At each
step, the hidden layer receives the current SMART attribute vector along with the
previous hidden state, which represents the sequential health status of the disk up
to that point. The result is then passed on to the next hidden layer. Furthermore,
the results based on SMART attributes in hidden layers at different time instances
are stored, and considering the trend of each attribute towards imminent failure,
disk failure is predicted. Therefore, apart from the current input attributes, the
prediction in this model depends on historical sequential information as well, and
hidden layers act as internal memory. Hence, in this model, to evaluate disk health
status, the remaining time is divided into different intervals, and the degree of disk
health is defined based on the time before failure.

Generally, identifying faulty disks leads to improved system performance and
enables services to be accessed through live migration of existing virtual machines
and allocating new virtual machines to healthy disks. For example, in a study titled
“Cloud Disk Error Forecasting (CDEF)”, Xu et al. [42] proposed an approach in
2018 to predict disk errors with the goal of improving the availability of cloud ser-
vice. Unlike many other approaches, their method combined traditional SMART
attributes with system-level signals—aggregated indicators or diagnostic data col-
lected from the entire system, rather than just individual hardware components.
These signals often combine or reflect the overall operational status of the disk,
capturing patterns of behavior that may indicate impending failure. The model
is constructed using a cost-sensitive ranking model, which prioritizes the identifi-
cation of faulty disks while minimizing the cost of misclassification. These costs
are determined empirically and are calculated based on the conditions and criteria
relevant to the system and services in question. Overall, the goal of determining
these costs is to achieve a balanced trade-off between accurately detecting faulty
disks and avoiding errors in identifying healthy disks.

Yang et al. [44] compared the performance of the CDEF approach with SVM
and Random Forest approaches that solely utilize SMART attributes. The results
showed that the proposed approach achieved a higher Area Under the Curve (AUC)
for the True Positive Rate, with a value of around 0.93, which is greater than the
other two methods. Furthermore, they also investigated the impact of feature selec-
tion on the proposed approach. They compared three feature selection methods:
SMART-based features, SMART-based features combined with system-level signals,
and their proposed method which combines both types of features. The research
indicated that the combined feature selection method achieved better performance
in terms of True Positive Rate (35.8%) compared to the traditional SMART-based
method (27.6%) and the method using both SMART-based features and system-level
signals (30.3%).

In another study, Santo et al. [9] introduced an approach for estimating re-
maining useful life based on LSTM on two datasets. The Baidu dataset, which

CHAPTER 2. LITERATURE REVIEW 7

reports data by the hour, and the Backblaze dataset, which reports daily from sam-
ples belonging to the Seagate STD4000000M disk. In this approach, initially in the
preprocessing section, common features present in both datasets were selected as
significant features. In total, twelve features were selected. Due to the imbalance
in the number of healthy and unhealthy disks, they also generated some unhealthy
disks using available methods. Based on the type of data, which is either hourly or
daily, a regression tree with the raw feature of the Current Pending Sector Count
was constructed and, based on the time-to-failure feature, the regression tree was
partitioned. In the partitioning section, disk health levels were defined at various
levels based on the time window used in the LSTM model, categorizing them into
good, fair, warning, danger, and failure. Evaluation results show that the presented
model on the Baidu samples with a 48-hour time window achieved 99.8% accuracy,
and on the Backblaze dataset with a 14-day window, it achieved 98.45% accuracy.
In this research, in addition to accuracy and precision metrics, failure detection
rate and false alarm rate metrics were also calculated. For the Baidu dataset, they
reached a failure detection rate of 98.2% and a false alarm rate of 0.2%, while for the
Backblaze dataset, they reached a failure detection rate of 91.48% and a false alarm
rate of 0.72%.

2.3 Remaining Useful Life Prediction

In the disk health-based approach, the system can raise alerts based on the current
condition of the disk, but predictions are limited to recent data leading up to the
present. In contrast, the remaining useful life-based approach allows for a broader
perspective by analyzing a time window of past disk activity. This enables the model
to predict potential failures several days in advance based on observed trends and
changes in the data. This allows the technician to transfer the data to a healthy disk
before disk failure, depending on the necessity of the data and the amount of time
available before the failure occurs [20].

Continuing the review of various approaches, the remaining useful life-based
method using Recurrent Neural Networks (RNNs) is explored in this section. In
this approach, Chang et al. [41] attempted to compare their proposed model with
two methods: Hidden Markov Model (HMM) and Conditional Random Fields
(CRF). Evaluation results indicate that HMM and CREF are effective for short-term
prediction tasks, while the capability and effectiveness of the RNN in predicting
long-term dependent tasks were greater. Moreover, the average remaining useful
time before failure in the RNN was at least 208.6 hours and at most 494.4 hours.

As most studies in the offline domain employed decision trees for their proposed
models, in another study by Li et al. [19], a decision tree was used to investigate
the remaining time before actual failure. In this model, statistical measures such
as inverse cumulative distribution function and quantile function were utilized to
differentiate between healthy and failed drivers, helping select suitable SMART

CHAPTER 2. LITERATURE REVIEW 8

features. For instance, 90% of healthy drivers lacked any predictive features, while
only 60% of unsuccessful drives possessed some of these features. As a result,
this approach introduces a clear distinction between healthy and failed drivers.
Additionally, because there were fewer positive samples than negative ones, the
decision tree model assigned greater weight to negative samples and used a fixed-
size time window to help distinguish between them. For instance, if at least half
of the samples within the window are positive, the disk is classified as faulty;
otherwise, it is labeled as healthy. Li et al. [19] also used metrics like fault detection
rate, false alarm rate, and the time period before failure for assessment purposes.

The evaluation results demonstrate that the proposed model exhibits better
prediction accuracy and interpretability compared to other models. Moreover,
the proposed model has predicted 93% of failures with a false alarm rate below
0.01% and a time period before failure. The reliability of the decision tree model
is highlighted due to its utilization of multiple Hidden Markov Models, which
is considered an advantage of the proposed approach. In general, the results of
this study indicated that using a decision tree model can significantly enhance the
reliability of storage systems.

In the research study of Austin et al. [8], the performance of LSTM and Bi-LSTM
neural networks under the same conditions was compared, demonstrating that the
Bi-LSTM model outperforms the LSTM model. Using the Backblaze dataset, data
for the ST4000DMO000 model was extracted for two scenarios: 60 and 120 days
before drive failure. Decision tree and correlation coefficient matrix methods were
employed to extract the most important features. The evaluation results showed
thatin the case of a 60-day window before failure, the Bi-LSTM model outperformed
the LSTM model, achieving 96.4% accuracy for predicting failure up to 30 days in
advance. However, in the second scenario, where the model was trained with data
60 days before failure and evaluated with data 120 days before failure, the Bi-LSTM
model’s accuracy dropped to 49.7%, indicating its inability to detect failures over
a longer time span, which is one of the drawbacks of this study. Additionally, the
study focused on a single hard drive model, lacking diversity in encountered data
and not covering various types of hard drive models.

Following the examination of conducted research, in Table 2.1 and Table 2.2,
the features of each studies from the perspective of advantages, disadvantages, the
algorithms used, and evaluation criteria are compared. Items marked with ” — " in
the tables indicate that the corresponding metric was not mentioned or calculated
in the referenced study and is therefore not applicable.

CHAPTER 2. LITERATURE REVIEW

Table 2.1: The advantages and disadvantages of the conducted
studies on disk failure prediction

Year

Approach

Advantages

Disadvantages

Ref

2013

Fault detection

Using all SMART param-
eters with the help of
mRMR* and FMMEA**
methods. Requires less
computational time com-
pared to the SVM method.

Removing missing values

[38]

2016

Fault detection

Using the similarity vec-
tor to represent the disk’s
similarities over time

Suffering from model ag-
ing and incompatibility
with dynamic patterns.

[28]

2017

Fault detection

Prediction of various disk
models.

Lack of standardization of
different SMART features
and consequently not con-
sidering appropriate fail-
ure indicators.

[29]

2017

Fault detection

Failure prediction based
on operational data

Reduction in model per-
formance due to the use
of the balancing method

2017

Failure de-
tection and
remaining

useful life

Use of decision tree and
GBRT for prediction and
easier interpretability.
Presenting the GBRT
model to indicate the
health status disks

Risk of overfitting due to
deep trees and extensive
feature engineering.

[19]

2019

Health status of
the disk

Presenting a health rank-
ing for disks and calcu-
lating the predicted fail-
ure duration based on the
health status grade of the
disk

Limitation of the dataset
and lack of coverage for
diverse data.

[47]

2019

Fault detection

Proper labeling of sam-
ples with latent faults
such as hidden sector er-
rors. Completing the
missing data sets, Cover-
ing certain types of fail-
ures.

Imputing missing data
cannot fully recover all
samples, and the train-
ing phase uses only lim-
ited disk failures, exclud-
ing unpredictable cases.

[15]

2020

Fault detection

Reviewing algorithms in
terms of efficiency, stabil-
ity, and productivity

Not considering the sam-
ple selection method and
its impact on efficiency.

[44]

Continued on next page

CHAPTER 2. LITERATURE REVIEW 10
Year | Approach Advantages Disadvantages Ref
2020 | Health status of | Presenting a new method | To create balance, it has | [27]

the disk for selecting majority disk | removed the healthy sam-
models. Introducing a | ples. Thus, it does
failure prediction model. | not have the capability to
cover model diversity. Se-
lecting 10% of target data
in the test section.

2014 | Fault detection | Presenting a fault detec- | Training data is selected | [36]
tion approach using the | based on experience,
Mahalanobis method. without a systematic or

data-driven justification.

2016 | Fault detection, | Considering the depen- | The method uses a 7- | [40]

remaining use- | dencies between different | day prediction window,
ful life, and disk | states of disks to measure | which may not generalize
health status various health statuses of | well.

disks.

2018 | Fault detection | Real-time prediction ca- | Only using two disk mod- | [40]
pability. Lesser memory | els due to limited data
requirements due to not
storing data statically and
preventing model aging

2018 | Health status of | Creating a cost-sensitive | Using limited data from | [42]

the disk ranking model to rank | one company, potentially
disk failures and mini- | not generalizable to other
mize total cost. A new | systems. Only using two
method for selecting sta- | metrics: true positive and
ble features in system- | false negative rate
level signals that change
over time and environ-
ment.
2018 | Predicting fail- | Using the BNFH*** | Using a very limited | [6]
ure time method for predicting | dataset. Not reporting
failure time. Comparison | other evaluation metrics
with RNN algorithms
2019 | Remaining use- | Considering the dynamic | No comparison of the | [37]

ful life

features of disk degrada-
tion

proposed approach with
other approaches and
with limited generated
data

Continued on next page

CHAPTER 2. LITERATURE REVIEW 11
Year | Approach Advantages Disadvantages Ref
2020 | Fault detection | Compatibility with the | Using all available | [14]

concept of drift. Predict- | SMART attributes with-
ing using classification | out filtering or ranking
(labeling as healthy or fu- | features. This may intro-
ture failure) and regres- | duce noise and increase
sion (between the proba- | computational cost, as not
bility of future failure) all attributes are relevant
or useful across all disk
models.
2020 | Predicting re- | Using the LSTM method. | Not updating the model | [17]
maining useful | Shorter prediction time
life compared to SVM and
random forest
2021 | Predicting re- | Using deep neural net- | Inability toadequately de- | [8]
maining useful | works (Bi-LSTM) that | tect failures for the re-
life have memory maining time over long
durations
2021 | Predicting re- | Short training time with | Misalignment with eval- | [7]
maining useful | limited data uation metrics of other
life studies
2022 | Disk health sta- | Use of a deep neural net- | Using only one disk | [9]
tus work (LSTM) with mem- | model
ory. Modeling performed
on two datasets, Back-
blaze and Baidu

"'mRMR stands for Minimum Redundancy Maximum Relevance, a feature selection
method that selects features with maximum relevance to the target and minimum redun-

dancy among themselves.

“FMMEA stands for Functional Modeling-Based Failure Modes and Effects Analysis,
which analyzes component-level failures and their impacts systematically.

ok

BNFH stand for Bayesian network based Method for Failure prediction in HDDs

CHAPTER 2. LITERATURE REVIEW 12

Table 2.2: Comprehensive overview of disk failure prediction
methods and their performance

Evaluated Criteria (%)

Method Algorithms Dataset PFT FDR FAR TPR Ref.

CDEF RG Baidu - - 0.1 29.6, [42]
41.6

CDEF SVM Baidu - - 0.1 18.8, [42]
34.1

CDEF RF Baidu - - 0.1 7.2, [42]
21.7

ORF RF SMART - 93,99 0.69 - [40]

ORF SVM SMART - 93,99 0.69 - [40]

ORF DT SMART - 93,99 0.69 - [40]

- - Baidu 6 days 97.44 0.83 - [37]

StreamDFP - SMART 9-13 - - - [40]

days
Bi-LSTM LSTM BackBlaze 30 days - - - [8]
LSTM - BackBlaze - 91.48, - - [8]
0.72

Mahalanobis SVM SMART 24h 68 0 - [36]

Mahalanobis HMM SMART 24h 68 0 - [36]

LSTM SVM, RF BackBlaze 15h - 1.3 - [17]

Raoblack- SVM, RNN Operational 14%h 97.44, - - [35]

wellized 0.83

Raoblack- MD Operational 14%h 97.44, - - [35]

wellized 0.83

PFT*: Predicted Failure Time
-*: Not Applicable

Existing research in this area has explored various methods, such as using LSTM,
Convolutional Neural Network (CNN), and decision trees, to predict disk failures
[22]. However, these methods often have problems keeping up with the current
state, require a lot of computing power, and may not work well with different types
of data. This research aims to overcome these challenges by using a combination
of careful feature selection and a Bi-LSTM network, providing a more flexible and
accurate solution for predicting disk failures.

This research identifies specific challenges and limitations of existing methods
in fault detection and disk health classification that the proposed approach aims
to overcome. These include reliance on datasets that may not fully capture the
spectrum of disk failure scenarios, such as those reporting only daily, which could

CHAPTER 2. LITERATURE REVIEW 13

miss finer temporal resolution insights. It also addresses the issue of generalizing
across different datasets and disk models, which existing studies often struggle
with, potentially reducing a model’s effectiveness across various storage solutions.
Furthermore, the thesis critiques the lack of transparency and replicability in the
feature selection processes of current methods and their adaptability to different
reporting intervals, aiming to improve prediction accuracy and timeliness through
comprehensive dataset analysis, a rigorous feature selection process, model gener-
alization, and adaptation to reporting frequencies.

Chapter 3

Proposed Methodology

In this section, we elaborate on our proposed approach to address some of the
challenges discussed in the previous chapter. The goal of this research is to improve
the process of fault detection and disk health classification, aiming to increase
accuracy, reduce false positive rates in fault detection, and enhance the lead time
for predicting faults before they occur. These improvements help data centers
manage hard disks more efficiently and support more effective stock maintenance
and budgeting.

To address this problem, we developed a Bi-LSTM model. To explain the Bi-
LSTM approach, it is first necessary to describe the LSTM method. LSTM is a
powerful type of recurrent neural network designed to overcome sudden or gradual
issues that occur when learning long-term dependencies. The LSTM network is
composed of units of sub-networks that are recurrently connected, forming what
are known as memory cells. The idea behind the memory cell is to maintain its
current state over time and regulate the flow of information through nonlinear
units. Figure 3.1 illustrates the architecture of an LSTM cell [33].

While previous methods often rely on static models that struggle to adapt to
changing disk health patterns, our approach improves flexibility by combining
Pearson’s correlation coefficient and the Chi-square test for feature selection. This
strategy helps identify the most relevant SMART attributes, enhancing the model’s
performance. The developed Bi-LSTM network is designed to adapt to evolving
data patterns and predict failures earlier, with the potential to detect issues up to 40
daysinadvance. Additionally, our method is built to generalize across different disk
models, offering a broader applicability to diverse datasets. Through these efforts,
we aim to build on previous research and contribute to ongoing advancements in
disk failure prediction.

As shown in Figure 3.1, the input to each LSTM cell at each time step includes
the current input x; , the previous hidden state vector /;_1, and the previous state
vector c;_1. Furthermore, each LSTM cell consists of three gates named the input
gate, the output gate, and the forget gate [13, 43].

14

CHAPTER 3. PROPOSED METHODOLOGY 15

Cell state Next cell
state
—_+ |
%
l]t—l \\ + /]]t
Next hidden
Hidden state state

X Input

Figure 3.1: The architecture of an LSTM block

The LSTM (Long Short-Term Memory) cell is designed to process and store
information over time in sequential data. The cell state (C;—1) acts as long-term
memory, carrying information from previous time steps, while the hidden state
(h¢-1) stores short-term memory. Both states are passed along from one time step
to the next. The input x; is the data at the current time step, combined with the
previous hidden state to influence updates.

The forget gate (0) decides how much of the previous cell state should be
retained or forgotten. It uses a sigmoid function to output a value between 0 and
1, where 0 means discard and 1 means retain. The forget gate’s output multiplies
with the previous cell state to “forget” unnecessary information. The input gate
has two parts: a sigmoid function, which controls which values to update in the
cell state, and a tanh function, which generates new candidate values to be added
to the cell state. The updated cell state is a combination of the retained information
and the new values.

The output gate decides what information should be passed as the hidden state
for the next time step. It uses a sigmoid function to determine how much of the cell
state contributes to the hidden state and applies tanh to the cell state to normalize
it between -1 and 1. The final output, h, is the result of multiplying the output
gate’s value with the updated cell state. Throughout this process, bias terms (b)

CHAPTER 3. PROPOSED METHODOLOGY 16

Outputs

Activation
Layers

Backward
Layer

Forward
Layer

Inputs

Figure 3.2: An example of Bi-LSTM network structure

are added to the gates, allowing for better learning. The LSTM structure, with its
ability to selectively remember and forget information, makes it effective in tasks
like predicting disk failure, where long-term dependencies are important.

Bidirectional Long-Short Term Memory (Bi-LSTM) [16], is a bidirectional re-
current deep neural network that consists of two separate recurrent networks in
opposite directions, where each sequence of information is provided separately to
each network. Bi-LSTM is typically used in situations where a sequential order of
tasks is required. This type of network can be used in text classification models,
speech recognition, and prediction [32, 46].

One of the differences that distinguishes Bi-LSTM from the regular LSTM is that
in Bi-LSTM, information flows in two directions, forward or backward, whereas in
LSTM, we can only have input flow in one direction, either backward or forward.
In the forward layer of the Bi-LSTM, the sequence order is processed from the
beginning to the end, in a way that each sequence receives and processes its next
state. However, in the backward layer of the Bi-LSTM, the sequence order is from
the end to the beginning, so that each sequence receives and processes its previous
state. Ultimately, both layers are connected to an output layer. Figure 3.2 shows an
example of the structure of the Bi-LSTM neural network.

The proposed Bi-LSTM tackles variations in disk failure patterns across dif-
ferent years and datasets by integrating advanced machine learning algorithms
and thorough data analysis. By employing Bi-LSTM networks, the method ef-
fectively captures temporal dependencies, making it adaptable to evolving failure
patterns. Rigorous data preprocessing, including feature normalization and selec-
tion, ensures that the model focuses on the most predictive indicators, enhancing
its generalizability.

The flexible architecture of Bi-LSTM allows for easy adaptation and scaling,
ensuring it can be applied to different data center environments. Additionally,

CHAPTER 3. PROPOSED METHODOLOGY 17

continuous learning mechanisms enable the model to stay relevant and accurate
over time, adapting to new failure patterns and technological changes. Overall, this
approach provides a reliable, generalizable solution for predicting disk failures in
diverse storage systems.

Deep neural networks have numerous hyperparameters, which have made ma-
chine learning systems very powerful. However, configuring these networks is
challenging because there is no well-established theory on how to use these hyper-
parameters, and finding an appropriate model often requires experimenting with
various configurations. In the following, we investigate the hyperparameters used
in our proposed approach. The hyperparameter that we used are: Learning Rate,
Batch Size, Number of Epochs, Dropout Rate, Early Stopping.

The learning rate controls how much the model adjusts its weights during train-
ing. A small learning rate helps prevent large, unstable updates, ensuring smooth
convergence and reducing the risk of overfitting by preventing the model from be-
coming too sensitive to fluctuations or noise in the data. The batch size determines
how many samples are processed before the weights are updated. A batch size that
strikes a balance between efficiency and generalization allows the model to make
more frequent updates, thus preventing it from memorizing specific data points
and helping it generalize better. The model is trained for a set number of epochs,
with early stopping to halt training when the validation loss stops improving, which
prevents overfitting by ensuring that the model does not continue learning noise or
irrelevant patterns after it has already learned the key features. A dropout rate is
used, randomly disabling a percentage of neurons during training. This regulariza-
tion technique forces the model to learn redundant representations and prevents
it from relying too heavily on any single feature, reducing overfitting and helping
the model generalize better to unseen data. Early stopping also helps prevent over-
fitting by monitoring the validation loss and halting training if the loss does not
improve, ensuring that the model does not fit too closely to the training data. Finally,
the LSTM and Bi-LSTM architecture processes data in both forward and backward
directions. By capturing both short-term and long-term dependencies, the model
avoids overfitting by learning complex patterns without becoming overly complex
itself. Additionally, maintaining a balanced number of neurons helps prevent the
model from becoming too large and prone to overfitting while still being capable
of learning the necessary features. These hyperparameters collectively ensure that
the model generalizes well, improving performance while avoiding overfitting.

One of the most important hyperparameters of Bi-LSTM is the dropout method
[31]. Random dropout is a model regularization technique. During training, the
neurons in a neural network can begin to memorize repeated or similar patterns
from the training data, which can cause the model to overfit. To reduce this risk,
the dropout technique is used—this involves randomly setting a portion of neuron
weights to zero in each training round, helping the model to generalize better by
preventing it from relying too heavily on specific features. This prevents neurons

CHAPTER 3. PROPOSED METHODOLOGY 18

from focusing on a limited set of repetitive features and encourages them to learn
from other features. Stochastic gradient descent is used to update neuron weights
in the random dropout method, and each time, a subset of data is used to update the
loss function. In the random dropout method, some of the neurons are randomly
dropped from the model’s learning process each time [21, 34].

The loss function measures the error made by the model during each training
iteration. In other words, it reflects an inverse relationship with the model’s ac-
curacy: the better the prediction, the smaller the loss value, ideally approaching
zero. Conversely, if the model’s predictions are poor, the accuracy is low, and
the loss value becomes larger. Loss functions are generally divided into two main
categories: those used for classification tasks and those used for regression tasks.
In regression, the model predicts continuous quantitative values, while in classi-
fication, it predicts labels or classes. Common examples of loss functions include
mean squared error, mean absolute error, and cross-entropy. Cross-entropy is a
commonly used loss function in classification tasks that measures how different
the predicted probability distribution is from the true distribution. It evaluates
the performance of a model by quantifying how close its predicted probabilities
(ranging from 0 to 1) are to the actual labels.

Mean Squared Error (MSE) is one of the most commonly used loss functions,
which calculates the average of the squared differences between the predicted values
and the actual values [12]. Equation 3.1 illustrates how the Mean Squared Error is
calculated where n represents the total number of predictions (or the batch size in
each training iteration). The variable y; is the actual RUL value for the i-th sample,
while §j; is the predicted RUL value for the i-th sample. These values are used
to calculate the Mean Squared Error (MSE) by measuring the squared difference
between the predicted and actual RUL values for each sample.:

52
MsE = 2V 90 (3.1)
n

Another loss function is Mean Absolute Error (MAE), which, like MSE, calcu-
lates the difference between the predicted and actual model values but uses the
absolute value of the difference. Then, it takes the average across the entire dataset
[11]. Equation 3.2 shows how Mean Absolute Error is calculated:

MAE = Zlyzn vil (32)

Since MSE uses the squared errors, if there are outliers in the data and the error
is larger than 1, MSE will significantly magnify the error. Therefore, it appears that
outliers have a greater impact on MSE compared to MAE. Thus, using MAE can
improve the model’s performance.

Cross-entropy is a loss function commonly used in classification tasks to mea-
sure the dissimilarity between the predicted probability distribution and the true

CHAPTER 3. PROPOSED METHODOLOGY 19

distribution. It quantifies the performance of a model whose output is a proba-
bility value between 0 and 1. Mathematically, for a binary classification problem,
cross-entropy is defined as:

Cross-Entropy Loss = — [y log(#) + (1 — y)log(1 —]?)]

where y is the true label and 7 is the predicted probability.

Activation functions are essential components in artificial neural networks
(ANNSs), that determine the output of individual neurons and introduce non-
linearity into the model. This non-linearity enables the network to learn complex
patterns and relationships in the data beyond simple linear transformations. In the
Bi-LSTM neural network, each neuron in each layer receives input values, multiplies
them by corresponding neuron weights, adds biases, and passes the result through
an activation function, which acts like a gate. This process repeats until reaching
the final layer. Activation functions can take various forms, including the sigmoid
function, hyperbolic tangent function, and rectified linear unit (ReLU) function.

Sigmoid Function is a mathematical function that takes any real number as
input and produces an output between 0 and 1. A larger output means the output
is closer to the input, and a smaller output means it is closer to zero [10, 45]. The
sigmoid function compresses input values into a range between 0 and 1 and is used
in binary classification tasks. It is defined as:

1
1+e*

o(x) =

where x is the input to the neuron. This input x is typically computed as a weighted
sum of input features plus a bias term:

X =W1X1 +WaXa+ -+ WuXy +b

In this equation, w; represents the weight associated with input feature x;, and
b is the bias. The sigmoid function maps this input x to a probability-like output
in the range [0,1], making it suitable for binary decision boundaries. Despite
its advantages, the sigmoid function can lead to the vanishing gradient problem,
particularly when input values are very large or very small, which can slow down
model training.

Hyperbolic Tangent Function is similar to the sigmoid function but produces
outputs in the range of -1 to 1. A larger input makes the output closer to 1, while a
smaller input makes it closer to -1 [39]. The tanh function maps input values to the
range [—1, 1], offering zero-centered output:

X _ X

e
tanh(x) = ————
er+e™*

Compared to the sigmoid, tanh often provides faster convergence in training but
still suffers from vanishing gradients at extreme values.

CHAPTER 3. PROPOSED METHODOLOGY 20

Rectified linear unit (ReLU) function is an activation function that is highly
popular in the field of deep learning. It is computationally efficient and allows
networks to converge quickly due to its linear relationship. The ReLU function
outputs the input directly if it is positive; otherwise, it outputs zero:

ReLU(x) = max(0, x)

This function is widely used in deep neural networks due to its computational
simplicity and effectiveness in mitigating the vanishing gradient problem. However,
some neurons may "die" if they always receive negative inputs during training.
It is less computationally intensive compared to sigmoid and hyperbolic tangent
functions [1]. This function operates in such a way that it sets negative values to
zero and keeps positive values (including zero) unchanged.

Among the existing studies, we considered the research conducted by Coursey
et al. [8] for fault detection and lead time improvement and the study of Santo et al.
[9] for disk health classification as fundamental papers. The reasons for selecting
these two studies as foundational work include the similarity of the approach used
in the foundational work with our proposed solution, the ability to use similar data
for training and evaluating the proposed method, enabling better comparison, and
achieving better results compared to other existing research.

In general, to develop a disk failure detection and prediction method, we need to
extract and process a suitable dataset containing both healthy and unhealthy disks.
This dataset should be sufficiently large to ensure higher accuracy and reliability
in detection and prediction. we can generalize it for identifying various types of
models and new unknown failures.

Figure 3.3 illustrates the overview of the work flow for our approach. Our
proposed method consists of three phases. Feature extraction in the first phase
involves selecting an effective set of features from healthy and unhealthy disks for
training the fault detection model. Then, in the second phase, which is the model
creation and evaluation phase, we aim to train the model for remaining useful life
prediction up to disk failure. Using the final set of features, the processed dataset
(obtained in phase one), and determining the model and optimization parameters,
the model is trained, and the detection accuracy is evaluated using the time steps. If
the model does not reach a sufficient accuracy level, it is retrained with new feature
selections and adjustments to the time step,the detail explanation is in Section 3.1.
In the next step, known as the health degree classification phase, we begin by
reviewing the features selected in phase one and setting threshold levels them. The
disks are then categorized into different health levels, and the trained model is
evaluated more details will be discussed in Section 3.2.

For feature selection, we apply the Pearson correlation coefficient and the Chi-
square test to identify the most predictive Self-Monitoring, Analysis, and Reporting
Technology (SMART) attributes. Data preprocessing is handled through Z-score

CHAPTER 3. PROPOSED METHODOLOGY 21

Data Preparation ’ Training the Model

Input model and
optimizing parameters

Train the LSTM and Bi LSTM
models using look-back periods
of 5,10, 15, and 30 days.

Data preprocessing

v

Feature selection
Prediction

v

Y Performing Bi- LSTM
model prediction

!

Evaluate performance
metrics

Data splitting

) / \
7) iy

‘: Test data |I :. I Tramlllg" '_

Figure 3.3: Overview of the work flow for our approach

and Min-Max normalization to standardize feature values, along with mean impu-
tation to deal with missing data, improving the quality of the input. The core of the
model is a Bidirectional Long Short-Term Memory (Bi-LSTM) deep learning net-
work, which captures temporal patterns in time-series data and adapts to changing
disk failure behaviors.

To optimize performance, we carefully adjust the hyperparameters, such as
the number of epochs, batch size, time step for prediction, learning rate, dropout
probability, and the number of hidden layers. The effectiveness of the model is
evaluated using a variety of metrics, including precision, recall, F-score and mean
absolute error (MAE), providing a complete assessment of its predictive capabilities.

As seen in Figure 3.3, the first phase consists of three steps: data collection,
data processing, and feature extraction. The detailed pseudo code of the proposed
methodology is presented in Algorithm 1.

In data collection step, we collect data from healthy and unhealthy disks. Cur-
rently, based on the previous work in the field of disk failure detection and pre-
diction, we have used data from two sources: Backblaze and Baidu. Backblaze is
a data storage provider for businesses and end-users worldwide, operating a data

CHAPTER 3. PROPOSED METHODOLOGY

Algorithm 1 Proposed Disk Failure Prediction Method

1: Input: Raw SMART attributes from Backblaze and Baidu datasets
2: Output: Predicted Remaining Useful Life (RUL) and Disk Health State

3:
4
5:
6:
7
8
9

10:
11:
12:

procedure PHASE 1: FEATURE ExTRACTION

Collect disk data from 120 days before failure

Assign RUL values based on days before failure

Normalize data using Z-score and Min-Max methods

Handle missing values using mean imputation

Apply Pearson correlation to assess correlation with RUL
Apply Chi-square test for feature relevance

Remove redundant features with high inter-feature correlation
Select final feature set with high predictive power

end procedure

13: procedure PHAsE 2: MopgL TRAINING AND EvALUATION

14:
15:
16:
17:
18:
19:
20:
21:
22:

Split data into training and testing sets
Initialize Bi-LSTM model with tuned hyperparameters:

Epochs, Batch Size, Learning Rate, Dropout, Time Step, Hidden Layers
Train Bi-LSTM model on selected features
Evaluate using Accuracy, Precision, Recall, F1-Score, MAE, and MCC
if performance is unsatisfactory then

Adjust time step or feature set and retrain

end if

end procedure

23: procedure PHASE 3: HEALTH STATE CLASSIFICATION

24:
25:
26:
27:

Reuse selected features from Phase 1

Define thresholds for health categories

Train decision tree classifier (Healthy, Warning, and Critical)
Evaluate classification performance

28: end procedure

22

CHAPTER 3. PROPOSED METHODOLOGY 23

Table 3.1: The number of data used in each disk model
Disk Model Number of data

Toshiba 1,172
Hitachi 8,859
Seagate 24,771
Western 289
Total 35,091

center that includes disks of different ages, capacities, manufacturers, and models.
They have been collecting data from their data center disks regularly since 2013 [30].
Due to the generality of this dataset and its widespread use in various research, we
utilized Backblaze dataset for our research in the years 2019 and 2020 [3].

In the proposed method, data from disks of four manufacturers, Toshiba, Hi-
tachi, Seagate, and Western, has been used for 120 days before failure. Table 3.1
provides a list of disk models used along with the number of data samples utilized
in the proposed method.

To create the RUL (Remaining Useful Life) column in the dataset, the process
begins by identifying hard drives of each model for example model ST4000DMO000
that have failed. Once a failed drive is found, the previous 60 to 120 days of SMART
data for that same serial number are collected. This time-series data is stored in a
long format, where each row represents a single day’s measurements leading up to
the failure.

Each row is then assigned a corresponding RUL value. The labeling starts from
the day before the failure, which gets an RUL of 1, the day before that gets an RUL
of 2, and so on—counting backward until the earliest day of available data. Instead
of asking the model to simply classify whether a disk will fail on a specific day (yes
or no), this approach trains it to predict a continuous value that reflects the number
of days remaining until failure. As a result, the model provides more informative
outputs—such as whether a drive is nearing failure or still has several weeks of safe
operation left.

the next step is data preprocessing, in the dataset obtained from the previous
step, the numerical ranges of disk features vary significantly due to differences in
measurement scales. To enable more effective feature comparison, we apply two
normalization methods: Z-score normalization and Min-Max normalization [44],
which scales the values to the [0, 1] range. In addition, disks may occasionally fail to
report data due to sensor malfunctions or periods of inactivity, leading to missing
values in the dataset. To address this issue, we use mean imputation, replacing
missing values with the average value of each respective feature.

the third step is called feature extraction. The feature selection process in this
thesis was designed to refine the dataset and identify the most relevant SMART

CHAPTER 3. PROPOSED METHODOLOGY 24

attributes for accurate disk failure prediction. Given that not all SMART attributes
contribute equally to predicting failures, redundant, irrelevant, or noisy features
were eliminated to enhance model efficiency and accuracy.

Before applying feature selection techniques, the raw data were preprocessed.
Z-score and Min-Max normalization methods were applied to standardize the nu-
merical ranges of the features, ensuring consistency across attributes and making
the dataset suitable for further analysis. Additionally, missing values were ad-
dressed using mean imputation, which replaced missing entries with the average
value of the respective feature.

For the feature selection itself, two statistical methods were employed: Pearson’s
Correlation and Chi-squared test, which are discussed as follows.

Pearson’s Correlation Coefficient method is used to assess the linear relationship
between each SMART attribute and the remaining useful life (RUL) of the hard
drives. Features with a high absolute correlation to RUL are prioritized, as they are
deemed most predictive for failure. The Pearson correlation coefficient is calculated
as:

(X = X)(Y; - Y)

. VE (X = X2\ T, (% - Y2

where X represents a SMART attribute and X; represents the value of variable X
at the i-th observation in the dataset and symbol X denotes the mean (average) of
all values of X in the dataset. Y represents the RUL and Y; is the value of variable
Y at the i-th observation and term Y stands for the mean of all values of Y. Also, r
measures the degree of correlation between them. Attributes with a high absolute
correlation (positive or negative) with RUL were considered strong candidates for
inclusion in the prediction model, as they likely carry significant information about
the degradation patterns leading to disk failure.

In addition to assessing correlation with RUL, we examine inter-feature correla-
tions among SMART attributes to avoid redundancy and multicollinearity. Highly
correlated features (e.g., r > 0.85) are carefully analyzed, and in cases where two
attributes demonstrated strong interrelationship but similar predictive power, one
of the features is removed to simplify the model and improve generalization.

To account for potential non-linear relationships, we apply the Chi-square test.
The Chi-square test is one of the fundamental techniques in machine learning and
deep learning for determining the relationship between multiple features. This test
evaluates the independence of each feature with respect to the target variable (RUL),
helping to identify statistically significant attributes for inclusion in the model. The
Chi-square statistic is calculated as:

k T2
i=1 !

(3.3)

CHAPTER 3. PROPOSED METHODOLOGY 25

In the context of the Chi-square test applied to disk failure prediction, the terms
O; (observed frequency) and E; (expected frequency) are used to assess whether a
SMART feature is statistically associated with the remaining useful life (RUL) of a
disk and k is simply the total number of groups or categories we are analyzing in
the Chi-square test. The observed frequency O; refers to the actual number of disk
instances in the dataset that fall into specific combinations of feature values and
RUL categories. For example, suppose we categorize the “reallocated sectors (RS)”
feature into two groups: high (> 100) and low (< 100). If we find that 50 disks with
high reallocated sector counts are actually close to failure (e.g., RUL < 30 days),
this count (50) is used as an observed value O;. Other observed values are similarly
collected for combinations like low RS with healthy disks (RUL > 30 days), high RS
with healthy disks, and so on.

On the other hand, expected frequencies E; represent the counts we would
expect to observe in each category if there were no relationship between the feature
and the failure state—that is, if the distribution were completely random. These
values are calculated based on proportions. Specifically, for each combination of
feature level and target class (e.g., high RS and near failure), we multiply the total
number of instances in the feature group by the total number in the RUL group,
and then divide by the overall dataset size. For instance, if there are 70 disks with
high RS and 60 disks in the near-failure class, and the total number of disks is 160,
then the expected number of high-RS, near-failure disks is (70 x 60)/160 = 26.25.
Comparing the observed and expected frequencies across all such combinations
allows the Chi-square statistic to quantify how strongly a feature is associated
with disk failure. A larger Chi-square value indicates a greater deviation from the
expected (random) distribution, suggesting that the feature may be a meaningful
predictor of RUL.

In addition to analyzing individual attribute relationships with RUL, we exam-
ine the correlation between pairs of attributes. The values range from -1 to 1, where
a positive value indicates a direct correlation, a negative value indicates an inverse
correlation, and values closer to zero suggest little to no correlation. Attributes with
an absolute correlation higher than a threshold T of 0.6 were grouped together,
as this threshold generally marks the boundary between moderate and strong cor-
relation. Based on statistical classification, correlations between 0.6 and 0.8 are
considered strong, making a suitable boundary for grouping related attributes. If
two attributes have an absolute correlation value greater than this threshold, they
are placed in the same group, ensuring that all attributes within a group are closely
related. If two highly correlated attributes provide similar information, only one
is retained to reduce redundancy. This process helps improve the efficiency of
the model while preserving its predictive power. The pseudo-code for the feature
selection phase is presented in Algorithm 2.

The combined results of the feature selection methods are used to identify
a final set of features with consistently strong predictive power. These selected

CHAPTER 3. PROPOSED METHODOLOGY 26

Algorithm 2 Phase 1: Feature Extraction

1: procedure FEaTUREEXTRACTION
2: Load disk dataset from Backblaze

3: Identify failed disks and extract data from 120 days before failure
4: for each disk record in the filtered data do
5: Assign Remaining Useful Life (RUL) = days before failure
6: end for
7: Impute missing values using mean imputation
8: Normalize features using Z-score and Min-Max normalization
9: for each feature in the dataset do
10: Compute Pearson correlation with RUL
11: Compute Chi-square statistic with discretized RUL categories
12 end for
13: Remove redundant features with high inter-feature correlation (e.g., corre-
lation > 0.9)
14: Select top predictive features based on Pearson and Chi-square scores
15: return Final feature set and normalized dataset

16: end procedure

features are then used to train the Bidirectional Long Short-Term Memory (Bi-
LSTM) model, ensuring that the model focused on the most relevant data while
minimizing complexity. This feature selection process enhance both the efficiency
and performance of the proposed failure prediction method.

3.1 Model Training

In the first phase, the dataset is preprocessed by removing ineffective features and
identifying the most relevant ones. In the second phase, we develop a deep learning
model and evaluate its performance in predicting the remaining useful life of disks,
aiming for the highest possible accuracy up to the point of actual failure. Algorithm

As seen in Figure 3.3, the goal of this part is to build a model for detecting
failures and predicting the remaining time until failure. Therefore, initially, we
use the preprocessed dataset and the extracted features from the previous phase
to construct the model in this phase. The model used in this research is of the
type Bi-LSTM deep network. As mentioned before, the Bi-LSTM network consists
of three layers: input, hidden, and output layers. The structure of this type of
network is well-suited for handling sequential data due to its memory capabilities.
After training the model, using the test dataset and an appropriate time step for
predicting the remaining time until failure, we evaluate the results obtained from
running the model. If acceptable accuracy is not achieved, we return to the model
training section, adjusting hyperparameters of the network such as the number of

CHAPTER 3. PROPOSED METHODOLOGY 27

layers, the number of neurons in each layer, the choice of input features, and the
value of the dropout parameter. This process is repeated until we reach a trained
model with suitable accuracy and a proper timeframe for failure prediction.

This network architecture consists of two parts: Bi-LSTM and LSTM. First, the
model starts with an input layer, which takes in SMART data. Each data sample
contains 15 time steps and 5 selected features. This data is fed into the network in a
structured format with the shape (batch-size, time-steps, features), where the batch
size is set to 32 to ensure efficient training.

The first LSTM layer has 128 neurons and is set to return-sequences=True, which
means it passes the learned patterns to the next layers. This layer helps the model
recognize short-term patterns in the data. Next, the Repeat Vector layer is used
in the Bi-LSTM model to ensure that the output from the first LSTM layer, which
captures information across multiple time steps, is appropriately processed by the
subsequent layers. The Repeat Vector layer takes the output of the first LSTM layer
and repeats it multiple times to match the number of time steps required by the
next LSTM layer. This allows the model to maintain important learned information
across time steps and ensures that the sequence is consistently processed through-
out the entire network. By repeating the output, the model can better capture the
relationships between past and present data, a crucial aspect of predicting disk fail-
ures based on time-series data from SMART attributes. This layer is used because it
facilitates the flow of information between the layers and ensures that the model can
learn complex patterns from both short-term and long-term dependencies, which
improves the accuracy of predictions.

The Bi-LSTM layer, which is the core of this model, comes next. It consists of
128 neurons and processes the sequence in two directions—forward and backward.
This allows the model to understand both past and future trends, leading to more
accurate predictions. The ReLU activation function is applied here to help the
model learn better without running into gradient issues. Another LSTM layer with
64 neurons follows the Bi-LSTM layer. This extra LSTM layer further enhances the
model’s ability to capture long-term dependencies in the dataset.

To prevent the model from overfitting to training data, dropout layers are in-
cluded after the Bi-LSTM and LSTM layers. These dropout layers have a dropout
rate of 0.35, meaning some neurons are randomly deactivated during training to
help the model generalize better to new data. The dropout layers have an output
shape of (0.0035), meaning they reduce the effect of certain neuron activations by
scaling the outputs.

The output layer consists of a dense layer with a single neuron, which generates
the final prediction for the remaining useful life of the hard drive. A linear acti-
vation function is used here, allowing the model to output continuous numerical
values rather than categories. The linear activation function is the simplest type
of activation function, defined by the formula f(x) = x where x is the input to the
neuron (i.e., the weighted sum of the inputs), and the output is directly proportional

CHAPTER 3. PROPOSED METHODOLOGY 28

to this input, with no transformation applied. This contrasts with other types of
activation functions (such as sigmoid or ReLU), which apply some form of non-
linearity to the input. The output from this layer is then passed through a linear
activation function, producing a continuous disk health score that quantitatively
reflects the remaining useful life (RUL) of each disk. This score is typically ranges
from 0 to 1, where 1 indicates a fully healthy disk and 0 suggests imminent failure.
For example, a score of 0.85 might represent a disk in good condition, 0.45 could
indicate a warning state, and a value below 0.2 would likely correspond to a critical
or near-failure condition.

Although LSTM and Bi-LSTM algorithms are commonly used for classification
tasks, they are also highly flexible and capable of handling regression problems. In
our case, the ANN is designed to predict a continuous output rather than discrete
labels because we aim to estimate the Remaining Useful Life (RUL) of a hard disk,
which is inherently a regression problem. The goal is not just to classify a disk as
"healthy” or "failed” but to provide a more informative, real-valued measure of how
close the disk is to fail. By using a linear activation function in the output layer,
the model produces continuous values that allow for more precise predictions,
enabling early maintenance actions before a critical failure occurs.

To fine-tune the model, several hyperparameters were adjusted. The model was
trained for 50 epochs, with an early stopping mechanism that monitored validation
loss to stop training when no further improvement was observed. The Adam
optimizer was used to adjust the model’s weights efficiently, with an initial learning
rate of 0.0001, which was adjusted dynamically during training. The loss function
used was Mean Squared Error (MSE), which helps the model measure the difference
between predicted and actual RUL values accurately.

The model was trained using two different optimizers: Stochastic Gradient
Descent (SGD) and Adam optimizer. Both optimizers played an essential role
in adjusting the model’s parameters to minimize the loss function and improve
predictive performance.

SGD is a widely used optimization method in deep learning. It updates the
model’s weights iteratively based on the gradient of the loss function. Unlike
traditional gradient descent, which calculates the gradient over the entire dataset,
SGD updates weights using a randomly selected small batch of data, making it
more efficient for large datasets. For example, if the learning rate is set to 0.0001,
each step updates the weights slightly in the direction that reduces error. However,
SGD can be slow and may get stuck in local minima, so momentum was introduced
to improve stability. The momentum term accumulates past gradients to provide a
smoother and faster convergence. In this model, SGD with momentum (set to 0.9) is
used, leading to more stable learning and reducing oscillations in weight updates.

The Stochastic Gradient Descent (SGD) algorithm follows these steps: first, it
initializes the model weights randomly; second, it computes the gradient of the loss
function with respect to each parameter; and third, it updates the weights using the

CHAPTER 3. PROPOSED METHODOLOGY 29

following formula:

Wiy = wi — 1 - VL(wy) (3.5)

In this equation, w; represents the current weights of the model and w;,1 is the
updated weights after applying the gradient step. The term VL(w;) is the gradient
of the loss function L(w), which indicates the direction and rate at which the loss
increases most rapidly. To reduce the loss, we move in the opposite direction of
this gradient. The parameter 1, known as the learning rate, is a small positive
constant that determines the step size taken in each iteration. In practical terms,
this means that after each training iteration, the model evaluates how its current
weights contribute to prediction errors and then updates those weights slightly in
the direction that is expected to reduce future errors. A properly chosen learning
rate ensures that the model converges efficiently toward an optimal solution. If
the learning rate is too large, the model may overshoot the minimum and become
unstable; if it is too small, convergence will be slow and may become stuck in a
local minimum. For the SGD optimizer, the learning rate was set to n = 0.0001,
and a momentum term y = 0.9 was applied to smooth gradient updates and
accelerate convergence. The model was trained for a maximum of 50 epochs with
early stopping, and a batch size of 32 was used in both cases. These settings were
chosen to balance training time and model performance while reducing the risk of
overfitting.

The Adam optimizer is a more advanced optimization algorithm that combines
the benefits of momentum-based SGD. It adapts the learning rate for each parameter
dynamically, ensuring efficient convergence. Unlike SGD, which applies the same
learning rate to all parameters, Adam adjusts it based on past gradients, making
it particularly useful for deep networks like Bi-LSTM. It maintains two moving
averages for each parameter: the first moment estimate (mean of past gradients) and
the second moment estimate (uncentered variance). These help stabilize updates
and prevent large fluctuations in learning. For example, if the learning rate starts
at 0.0001, Adam automatically fine-tunes it to improve convergence speed and
accuracy. In this model, Adam’s parameters were set to 1 = 0.9 and f, = 0.999,
allowing the optimizer to adapt well to different learning conditions and € = 1078
to prevent division by zero..

First moment estimate, 11, is essentially the moving average of the gradients,
similar to momentum in traditional gradient descent. Adam keeps track of this
moving average to smooth out the gradient estimates and avoid abrupt changes in
the direction of the gradient updates. The Adam algorithm works as follows: first,
initialize first moment estimate my and second moment estimate vy to zero then,
compute the gradient g; at time step f. the biased first moment estimate is given
by:

me = pim—1 + (1 - 1)ge (3.6)

In this equation, m; is the first moment estimate at time step ¢, 1 is the exponential

CHAPTER 3. PROPOSED METHODOLOGY 30

decay rate for the first moment, and g; is the gradient of the loss function with
respect to the model parameters at time step t. The term m;_1 represents the first
moment from the previous time step.

Then, update biased second moment estimate:

vf = Bavi—1 + (1 = B2)g? (3.7)

Here, v; is the second moment estimate at time step f, and 3, is the decay rate for the
second moment. The squared gradient g2 captures the magnitude of the current
gradient’s variance, while v;_1 is the second moment from the previous step.

Since both m; and v; are initially biased toward zero, Adam applies bias correc-
tion to account for their initialization:

N my

iy = (3.8)
1-g}

o (4

U = (39)
1- 65

These corrected estimates, 171; and 0y, adjust the moments based on the decay
rates raised to the power of the current time step ¢, ensuring stability and accuracy
in early training stages.

Finally, the parameters are updated using the corrected first and second moment
estimates. The update rule is as follows:

Ui
Vor +€

In this update rule, 0; denotes the model parameters at time step ¢, and 7 is the
learning rate. The denominator contains the square root of the second moment
plus a small constant € (typically 1078) to avoid division by zero. The result is
an adaptive step size that adjusts for both the direction and magnitude of recent
gradients, allowing Adam to efficiently converge even in noisy or sparse gradient
environments.

For training, a sliding window approach was applied, where each input sample
used data from the previous 15 time steps. This method allows the model to cap-
ture temporal dependencies by shifting the window forward step by step, creating
multiple training samples from a single time-series dataset.

The sliding window works as follows: first, a window of 15 time steps is selected
from the dataset, forming one input sample. Then, corresponding RUL value for
the last time step in this window is used as the output label. In the third step, the
window then shifts forward by one time step, creating a new sample with updated
historical data and this process repeats until the entire dataset has been processed
into overlapping input sequences. Using this approach, the model learns from
multiple overlapping windows, ensuring it captures trends in the data without

Qt = Qt—l - T/T\lt (310)

CHAPTER 3. PROPOSED METHODOLOGY 31

missing critical information. The overlapping sequences help the Bi-LSTM model
generalize better, improving its ability to detect disk failure patterns in real-world
applications. The model was trained using K-fold cross-validation, ensuring that it
learned patterns effectively and avoided overfitting. The pseudo-code for Bi-LSTM
model training and RUL prediction is presented in Algorithm 3.

3.2 Evaluation of Disk Health

In the second phase, the goal was to determine the remaining time until disk failure.
However, if there are multiple types of failures with similar remaining times, it is
not possible to determine the degree of disk failure based solely on the remaining
time. Therefore, in the third phase, different levels of disk health status are defined,
allowing us to specify the status of each disk based on its remaining time and the
type of disk health status. This information can help technicians prioritize actions
for different disks based on their health status.

According to the study [9, 41], disk health levels are divided into six categories:
Good, Very Fair, Fair, Soft Warning, Alert, and Red Alert. In this phase, due to the use
of data 60 days before failure and the limited time span, we only build our model
based on three phases: healthy, Warning, and Critical. In this phase, we start by
normalizing the dataset and using the features extracted in the previous phase.

First, we develop a decision tree-based method to evaluate the health condition
of hard disk drives based on SMART attributes. The objective of this module is to
classify HDDs into multiple discrete health levels—namely, Healthy, Warning, and
Critical—in order to enable proactive maintenance strategies.

To achieve this, we implement a classification algorithm using a decision tree
that learns optimal rules for distinguishing between different health categories.
We train the decision tree using selected SMART attributes that demonstrate high
correlation with the RUL, including selected SMART features. The decision tree
starts with the root node, which represents the entire dataset of disk data. The
tirst decision made is based on a feature, like Reallocated Sectors or Temperature.
For example, the decision may be whether the Reallocated Sectors count exceeds a
specific threshold. This initial split divides the data into two groups: disks with
high reallocated sectors and disks with low reallocated sectors. The decision nodes
are the internal nodes of the tree that represent decisions or tests made on the
features. For instance, the next node may test "Sign up time" to further split the
dataset into disks with fast sign up times and disks with slow sign up times. At
each decision node, the data is divided based on the chosen feature’s value, which
helps create more homogeneous subsets of data.After several splits and decisions,
the process reaches leaf nodes. Each leaf node represents a final classification or
prediction. For example, a leaf node might predict that a disk with high Reallocated
Sectors and slow Sign up Time is likely to fail within 30 days. Alternatively, it may
predict that a disk with low Reallocated Sectors and fast Sign up Time is healthy and

CHAPTER 3. PROPOSED METHODOLOGY 32

Algorithm 3 Phase 2: Bi-LSTM Model Training and RUL Prediction

1: procedure MODELTRAININGANDEvVALUATION

2:
3:

8:
9:
10:
11:
12:
13:

14:
15:
16:
17:
18:

Split the preprocessed dataset into training and testing sets
Initialize Bi-LSTM model with selected hyperparameters:
epochs, batch size, learning rate, dropout rate
time steps, number of hidden units
Define model architecture:
Input layer: shape [batch_size, time_steps, features]
Bi-directional LSTM layer (e.g., 128 units)
Additional LSTM layer (e.g., 64 units)
Dense output layer with linear activation
Compile the model:
Loss Function: Mean Absolute Error (MAE)
Optimizer options:
ADAM — adaptive learning rate, 51 = 0.9, f2 = 0.999
SGD — learning rate = 0.01, momentum = 0.9
Apply K-fold cross-validation:
Partition training data into K folds
for each fold k do
Train model on K — 1 folds, validate on fold k
Record performance metrics (e.g., MAE, accuracy)
end for
Compute average metrics across all folds
Finalize training on full training set (if performance is satisfactory)
Evaluate on test set using:
Accuracy, Precision, Recall, F1-score, MAE, MCC
if model performance is unsatisfactory then
Adjust time step, feature set, or optimizer configuration
Retrain the model
end if
return Trained Bi-LSTM model

19: end procedure

CHAPTER 3. PROPOSED METHODOLOGY 33

will not fail soon. The decision tree follows the principles of the Classification and
Regression Tree (CART) algorithm. At each node of the tree, the best feature and
threshold are selected to split the dataset in a way that reduces class impurity. The
quality of a split is evaluated using the Gini impurity criterion. The Gini impurity
for a node containing a dataset D is defined as follows:

K
Gini(D) =1 — Z p? (3.11)
i=1

Here, K denotes the number of classes, which in our case K = 3 corresponding
to the classes Healthy, Warning, and Critical. The index i denotes the class label,
and p; represents the proportion of instances in D that belong to class i, computed
as p; = n;/n, where n; is the number of samples of class i and 7 is the total number
of samples at that node.

For each feature, the algorithm considers all possible thresholds and evaluates
the resulting splits. For a given feature A and a threshold ¢, the dataset is split into
two subsets: Djest, containing all instances where A < t, and Dyignt, containing the
remainder. The Gini impurity of the split is then calculated using Formula 3.11.

The feature and threshold pair that results in the lowest text Ginigpyt is selected
to form the next node of the tree. This process is applied recursively until a stopping
condition is met. The stopping criteria of our case is reaching a maximum tree depth
or a minimum number of samples in anode. In our implementation, we set the max-
imum depth of the decision tree to four in order to maintain model interpretability
and avoid overfitting. The tree was trained using the DecisionTreeClassifier
class from the scikit-learn Python library. The input feature matrix X consisted
of the three selected SMART attributes, while the target vector y contained the
labeled health categories. The training process involved fitting the classifier using
the following command:

clf = DecisionTreeClassifier (max_depth=4, random_state=42) clf.fit(X, y)

The developed decision tree produced a series of nested conditional rules that
map SMART attribute thresholds to health labels. Table 3.2 represents an example
of decision rules learned by the developed decision tree. For example, a portion of
the learned rules is as follows:

if SMART_6 <= 0.35: if SMART_241 <= 0.15: - Predict: Healthy
else: if SMART_194 <= 0.75: - Predict: Warning else: -+ Predict: Healthy
else: if SMART_194 <= 0.35: =+ Predict: Critical else: =+ Predict: Critical

These rules form an interpretable model that can be applied in real-time systems
to assess HDD health. A disk with a moderately high value of SMART-6 and low
temperature may be classified as Critical, while one with lower values of SMART-6 and

CHAPTER 3. PROPOSED METHODOLOGY 34

Table 3.2: Example of decision rules learned by the decision tree classifier
Condition Prediction
SMART_6 < 0.35 & SMART_241 < 0.15 Healthy
SMART_6 < 0.35 & SMART_241 > 0.15 & SMART_194 < 0.75 Warning
SMART_6 < 0.35 & SMART_241 > 0.15 & SMART_194 > 0.75 Healthy
SMART_6 > 0.35 & SMART_194 < 0.35 Critical
SMART_6 > 0.35 & SMART_194 > 0.35 Critical

SMART-241 will likely be classified as Healthy. This level of explainability is critical
for system administrators seeking to understand and act on model predictions.

The final model allows us to classify each disk instance into a health category
with high accuracy. By integrating these classification results with the Bi-LSTM
RUL predictions, we obtain a comprehensive model that combines temporal degra-
dation modeling with rule-based status assessment, thereby improving both failure
prediction and operational interpretability.

The process begins by selecting parameters for the decision tree regressor, in-
cluding tree depth, number of divisions (splits), and minimum samples per leaf text
(min_samples_leaf). For each SMART attribute, a DecisionTreeRegressor model is
trained using that attribute as the sole predictor and the RUL as the target. The
decision tree partitions the data into leaves based on the feature’s value, learning
thresholds that minimize prediction error. During this training, the Mean Absolute
Error is calculated for each tree, which represents how closely the predicted RUL
values align with the actual ones across the tree’s leaves.

Once the labeling is complete, the categorized dataset is used to train the Bi-
LSTM model that was constructed in the earlier phase. During training, the model
processes sequences of SMART readings and learns to recognize temporal patterns
that correspond to the different health classes. Finally, the trained Bi-LSTM model
is evaluated using appropriate classification evaluation metrics, such as accuracy.
These metrics provide insight into how well the model distinguishes between the
health categories and how reliable its predictions are when applied to unseen
test data. This evaluation step is crucial for validating the effectiveness of the
proposed methodology in identifying disks at risk of failure and providing early
warnings based on learned temporal patterns. The implementation of the disk
health evaluation approach is presented in Algorithm 4.

Training on diverse datasets, like those from Backblaze, further broadens the
model’s applicability across different disk models and environments. The feature
selection process, using Pearson correlation and Chi-squared tests, targets the most
relevant features, minimizing reliance on dataset-specific attributes. Extensive eval-
uation and validation using metrics like accuracy and precision confirm the model’s
robustness across various settings. In the next section, the results of applying the
proposed method will be presented and discussed.

CHAPTER 3. PROPOSED METHODOLOGY 35

Algorithm 4 Phase 3: Health State Classification Using Decision Tree

1: procedure HEALTHSTATECLASSIFICATION
2: Reuse selected features from Phase 1
3: Define disk health categories based on RUL thresholds:
Healthy: RUL > 60 days
Warning: 30 < RUL < 60 days
Critical: RUL < 30 days
4; Encode health states numerically: 0 (Healthy), 1 (Warning), 2 (Critical)
5: Split the data into training and test sets
6: Initialize decision tree classifier with:
Criterion: Gini impurity
Max depth: 4-6 (tuned)
Min samples per leaf: 10-20 (tuned)
: Train the classifier on the training data
8: Predict health states on the test set
Evaluate classification performance using:
Accuracy, Precision, Recall, F1-Score
Confusion Matrix to analyze class-wise performance

10: if performance is unsatisfactory then

11: Tune decision tree parameters (e.g., max depth, min samples)
12: Retrain the classifier

13: end if

14: return Trained decision tree model

15: end procedure

The decision tree and the Bi-LSTM network serve distinct but complementary
roles in the proposed methodology. The decision tree is not part of the final predic-
tion model; rather, it is used as an evaluation tool to assess the predictive strength
of individual SMART attributes. Each attribute is tested independently, and the
Mean Absolute Error (MAE) is calculated to identify features that most effectively
correlate with disk failure. These features—those with the lowest MAE—are then
selected as inputs for the Bi-LSTM model. The Bi-LSTM processes these features as
time-series sequences, learning temporal patterns to predict either the Remaining
Useful Life (RUL) or the disk’s health category. Thus, while the decision tree does
not receive input from the ANN nor contribute to its output directly, it plays a
critical role in refining the feature selection process to improve the ANN’s learning
performance.

The transition between Phase 2 and Phase 3 is not merely sequential but con-
ceptually complementary. Phase 2 captures complex time-dependent degradation
signals to produce fine-grained, real-valued RUL estimates. Phase 3 simplifies these
insights by classifying the predictions into actionable categories, which are easier

CHAPTER 3. PROPOSED METHODOLOGY 36

for engineers and automated systems to act upon. The reuse of selected features
and the structure of thresholds derived from RUL predictions ensures a coherent,
data-driven transition between the two phases. Together, these phases provide
both precision (through regression) and interpretability (through classification),
resulting in a robust and deployable disk failure prediction system.

Chapter 4

Experimental Results

4.1 Evaluation Indicators

As mentioned in the literature review section, most studies in disk failure pre-
diction primarily considers Accuracy (as metric), False Positive Rate (FPR), True
Positive Rate (TPR), and the time taken for prediction as the main evaluation met-
rics for evaluating the performance of the proposed methodology [9, 19, 29, 37, 44].
However, other evaluation metrics have also been reported in some papers but re-
ceived less attention. In this section, we evaluate the performance of the proposed
approach using several key metrics, including the Confusion Matrix, Accuracy,
Precision, Recall, Matthews Correlation Coefficient (MCC), F-measure, and Mean
Absolute Error (MAE). These metrics are used to validate the effectiveness of our
methodology. In the following, we briefly describe each metric used to assess the
model’s performance.

A confusion matrix evaluates classification models by presenting four outcomes:
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives
(EN). The True Positive Rate (TPR) (recall) measures the proportion of actual posi-
tives correctly identified and is calculated as:

TP

TPR= 75 TFN

(4.1)
The False Positive Rate (FPR) quantifies the rate of misclassified negatives and

is defined as:
FP

FP+TN
TPR emphasizes detection power, while FPR reflects specificity errors, both
critical for evaluating model performance.
The accuracy metric shows the percentage of correct identifications of faults. It
represents the overall performance of a fault detection method and a well-trained

FPR = (4.2)

37

CHAPTER 4. EXPERIMENTAL RESULTS 38

model.
TP +TN

A =
Uy = TPy TN + EP + EN

Precision metric measures the percentage of correctly identified faulty disks. It
is also known as True Positive Rate (TPR).

(4.3)

TP
TP+ FP

Recall is the percentage of true faulty disks correctly detected by the method. It
highlights the model’s performance in identifying actual failures.

Precision = (4.4)

TP
Recall = m (45)

Matthews Correlation Coefficient (MCC) is a composite metric that combines
precision and recall. It is particularly useful when dealing with imbalanced two-
class classification problems. MCC values range from -1 to +1, with +1 indicating
perfect detection, 0 indicating random detection, and -1 indicating complete mis-
match.

_ (TPXTN)—(FP X FN)
\/(TP +FP)X(FN +TN) X (FP+TN) X (TP + FN)

The F-measure is a combination of precision and recall, calculated using the formula
provided below.

MCC

(4.6)

r 2 X Precision X Recall 47)
-m re = .
casure Precision + Recall

Mean Absolute Error (MAE) was discussed in detail in Chapter 3.

These metrics collectively provide a comprehensive assessment of the proposed
method’s performance in disk failure prediction.

The coefficient of determination (R?) is a metric used to measure how well the
model’s predictions match the actual target values. The equation 4.8 computes how
well the model predictions §J; match the actual outcomes y;, relative to a baseline
model that always predicts the mean 7. The closer R? is to 1, the better the model.

Yy =9
Z?:l(yi - ?)2

R>=1- (4.8)

4.2 Model Evaluation

In this section, we explain the evaluation process and conduct experiments using
the proposed method. To implement and evaluate the proposed method, Python
3.8 is used within the Jupyter environment. As mentioned in the proposed method

CHAPTER 4. EXPERIMENTAL RESULTS 39

section, in the first phase, preprocessing operations were performed on the dataset.
The Backblaze dataset is built upon Self-Monitoring, Analysis, and Reporting Tech-
nology (SMART), which is a built-in feature in most modern hard drives. SMART
actively monitors and records various indicators of drive health over time. These
include key metrics such as read and write error rates, the count of reallocated
sectors, and other performance-related parameters that help assess the condition
and reliability of the disk.

The primary goal of SMART attributes is to alert users about potential disk
failures at least 24 hours before they occur, assuming there is enough time to
perform a full backup. While this was accurate for drives from ten to fifteen years
ago, which had gigabyte-level capacities, it is not necessarily true for recent hard
drives with significantly larger capacities, as they require more time to create a full
backup.

Disk manufacturers have defined SMART values to monitor the reliability of
their hard drives using various sensors and metrics. All SMART-enabled hard
drives maintain a collection of attributes referred to as "raw" and "normalized"
attributes. Normalized attribute values are vendor-specific and are derived based
on criteria set by the manufacturers. Due to the diversity in standard criteria set
by each manufacturer, we exclude normalized attributes from our dataset and only
utilize the raw SMART attributes for further analysis.

As shown in Table 4.1, there are 64 raw SMART features, and considering all of
these features is not feasible. As mentioned earlier, removing ineffective features
from a dataset with a large number of features reduces complexity and training
time for the model. Therefore, selecting a subset of features that have the most
significant impact on fault detection and prediction is crucial for improving the
performance of the fault detection and prediction method.

Table 4.1: Hard drives SMART features in the BackBlaze

dataset
No. SMART Parameter Name
1 SMART 1 raw Read Error Rate
2 SMART 2 raw Throughput Performance
3 SMART 3 raw Sign Up Time
4 SMART 4 raw Start/Stop Count
5 SMART 5 raw Reallocated Sectors
6 SMART 6 raw Read Error Rate
7 SMART 7 raw Seek Time Performance
8 SMART 8 raw Power-On Hours
9 SMART 9 raw Sign-up Retries
10 SMART 10 raw Calibration Retries

Continued on next page

CHAPTER 4. EXPERIMENTAL RESULTS

40

No.

SMART Parameter

Name

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

SMART 11 raw

SMART 12 raw

SMART 13 raw

SMART 15 raw

SMART 16 raw

SMART 17 raw

SMART 18 raw

SMART 22 raw

SMART 23 raw

SMART 24 raw

SMART 168 raw
SMART 170 raw
SMART 173 raw
SMART 174 raw
SMART 177 raw
SMART 179 raw
SMART 181 raw
SMART 182 raw
SMART 183 raw
SMART 184 raw
SMART 187 raw
SMART 188 raw
SMART 189 raw
SMART 190 raw
SMART 191 raw
SMART 192 raw
SMART 193 raw
SMART 194 raw
SMART 195 raw
SMART 196 raw
SMART 197 raw
SMART 198 raw
SMART 199 raw
SMART 200 raw
SMART 201 raw
SMART 218 raw
SMART 220 raw
SMART 222 raw
SMART 223 raw
SMART 224 raw

Power Cycle Count

Soft Read Error Rate
Vendor-specific field
Vendor-specific field
Vendor-specific field
Vendor-specific field
Vendor-specific field
Current Helium Level
Vendor-specific field
Vendor-specific field
Vendor-specific field
Reserved Block Count
Wear Level Count
Unexpected Power Loss
Wear Level Count
Used Block Count
Used Block Count
Erase Fail Count

SATA Downshifts
End-to-End error
Uncorrectable Errors
Command Timeout
High Fly Writes
Airflow Temperature
G-Sense Errors
Power-Off Retract Cycles
Load/Unload Cycles
Temperature Celsius
Hardware ECC Recovered
Reallocated Events
Current Pending Sectors
Offline Uncorrectable
CRC Error Count
Multi-Zone Error Rate
Soft Read Errors
Vendor-specific field
Disk Shift

Loaded Hours
Load/Unload Retries
Load Friction

Continued on next page

CHAPTER 4. EXPERIMENTAL RESULTS 41
No. SMART Parameter Name
51 SMART 225 raw Load/Unload Cycles
52 SMART 226 raw Load-in Time
53 SMART 231 raw Temperature
54 SMART 232 raw Available Reserved Space
55 SMART 233 raw Media Wearout Indicator
56 SMART 235 raw Good Block Count
57 SMART 240 raw Head Flying Hours
58 SMART 241 raw Total LBAs Written
59 SMART 242 raw Total LBAs Read
60 SMART 250 raw Read Error Retry Rate
61 SMART 251 raw Min Spares Remaining
62 SMART 252 raw Bad Flash Block
63 SMART 254 raw Free Fall Protection
64 SMART 255 raw Load-in Time

We calculated the Pearson correlation coefficient between each SMART attribute
and the RUL of the hard drives. This coefficient quantifies the strength and direction
of the linear relationship between two variables, ranging from -1 (perfect negative
correlation) to +1 (perfect positive correlation). We computed the correlation for
each disk. Then, took the absolute values, and averaged them to derive a global
correlation score per feature. These results are visualized in 4.1, where the blue
bars represent correlation scores and the red dots represent feature importance
determined by the developed Chi-square test.

From this analysis, we observed that SMART attributes 6, 9, 241, 242 and 194
had the strongest correlations with RUL. While SMART 7 also showed a strong
relationship, we prioritized SMART 194 due to its consistent use in related studies,
allowing fair benchmarking. To supplement and validate the findings from Pearson
correlation, we employ a Chi-square test based on the same feature set. The feature
importance scores assigned by the Chi-square test are plotted as red dots in the
tigure.

The convergence of results from these two independent techniques adds con-
fidence in the robustness of the selected features for predictive modeling. These
attributes were ultimately chosen for training the Bi-LSTM model due to their strong
predictive signal and interpretability.

Additionally, we evaluated multicollinearity between the selected features us-
ing a correlation matrix, as shown in Figure 4.2. We used the Seaborn library to
visualize the feature-to-feature correlations, and only feature pairs with a correla-
tion greater than 0.8 were retained for inspection. Highly correlated features were
reviewed for redundancy, and in cases where one of two highly correlated features
provided redundant information, it was removed to reduce overfitting and improve
generalization.

CHAPTER 4. EXPERIMENTAL RESULTS 42

101" o Feature Importance

Score/Importance

0.8

o
o

Score/lImportance

o
'S

0.2 .

0.0 -4 4 1 8% 8 8§ 8 § B B

Feature

Figure 4.1: Correlation and Chi-square test of SMART features

As shown in Figure 4.2, SMART-7, SMART-6 and SMART-242, SMART-241,
and SMART-9 exhibit the strongest correlations with each other. Since SMART 241
and 242 has less correlation together, we will remove SMART-9 from our selected
features as well as SMART-7.

The second method for finding the most important SMART features is the Chi-
square test. In this section, we apply the Chi-square test as a scoring function and
use the SelectKBest class from the scikit-learn library to identify the top ten features
of the dataset. The results are presented in Table 4.2.

Table 4.3 presents the combined set of features obtained from both the Pear-
son Correlation Coefficient and Chi-square test methods. The results show that
SMART-194 and SMART-6 have overwhelmingly high Chi-square scores, indicat-
ing they are the most statistically significant features for distinguishing disk health
states. The remaining features such as SMART-187, SMART-5, SMART-9 also
show meaningful contributions but with significantly lower scores. This suggests
that SMART-194 and SMART-6 and SMART-241 are likely to carry the strongest
predictive power among the selected attributes.

As shown in Table 4.3, the common features are highlighted, and these are
the selected features. Additionally, features SMART_7, SMART_242, SMART_1,
SMART_5, and SMART_187, which are among the top features according to the
Chi-square test method, have also been selected as final features, and they are also
common with the features from previous studies [4, 8, 9].

In the second phase of the proposed method, to train the fault detection and pre-
diction model, we utilize the Bi-LSTM, Repeat Vector layer, and the SGD optimizer.

CHAPTER 4. EXPERIMENTAL RESULTS 43

Feature Correlation

smart_7_raw

smart_6_raw

smart_242_raw

smart_241_raw

smart_9_raw

Figure 4.2: Features correlation matrix

This is in contrast to the baseline method, which used only a single Bi-LSTM layer
and the Adam optimizer. To evaluate the proposed method and compare it with
the baseline method, we train our model using both Adam and SGD optimizers
with time steps of 5, 7, 10, and 15. To ensure fair comparisons, we use the same
dataset and common hyperparameters with the baseline method.

In training the Bi-LSTM model, Adam initially provided faster convergence,
helping the network adjust quickly to the data. However, after fine-tuning, SGD
with momentum achieved the best performance when using a time step of 15,
reaching an accuracy of 98.36%, with a recall rate of 99%, and a loss function value
of 0.016. This shows that while Adam is efficient for early learning, SGD with
momentum can provide better generalization and stability in long-term training.

The number of data points used for training and testing the model is provided
in Table 4.4.

To synchronize the training of the model with appropriate performance, we
manually review the hyperparameters and investigate them through trial and error.
Table 4.5 lists the hyperparameters used in the base paper and the hyperparameters
used for training the proposed model.

To evaluate the proposed model, we consider 80 percent of the data for training
and used the hyperparameters mentioned in Table 4.5. The remaining 20 percent
is used for model evaluation.

CHAPTER 4. EXPERIMENTAL RESULTS 44

Table 4.2: Selection of the top ten features with Chi-square test
No. Feature Rank

1 SMART 194 3.73x10%
2 SMART 6 3.80 x 10°
3 SMART 8 0.04 x 107
4 SMART_ 5 2.07 x 107
5 SMART 241 2.93x107
6 SMART 9 2.71 x 10°
7 SMART_7 1.03 x 10°
8 SMART 187 2.28 x10°
9 SMART 1 0.83 x 10°
10 SMART 242 1.48x10°

Table 4.3: The set of features of Pearson correlation coefficient and Chi-square test

Method Features

Pearson correlation coefficient SMART 194, SMART 6, SMART 241, SMART
242

Chi-square test SMART 194, SMART 6, SMART 8, SMART 5,
SMART 242, SMART 9, SMART 241, SMART
187, SMART 1, SMART 7

4.3 Results and Comparison

4.3.1 Evaluating the Efficiency of the Trained Model

In this section, we present the fault detection model in each case, considering the
optimizer used and various time intervals, and compare them with each other. In
the training section, we use the aforementioned time intervals, and for the test
section, we consider the remaining time to failure as 40 days. Table 4.6 shows the
evaluation results of the base model using the Adam optimizer, and tables 4.7 and
4.8, respectively, show the evaluation results of the proposed model using the Adam
and SGD optimizers in fault detection with 40 days prior to the actual failure.

Table 4.4: The number of training and test data of failure prediction model

Data type Number of training data Number of test data Total

Healthy Data 27840 6961 34801
Unhealthy Data 232 58 290

CHAPTER 4. EXPERIMENTAL RESULTS 45

Table 4.5: Comparison of hyperparameters for the base and proposed models

Evaluation Epochs Batches Time step Learning Dropout prob. Hidden
method rate layers
Base model 50 64 5,10, 15, 30 - - 1
Proposed model 300 128 5,7,10,15 0.0001 0.0035 5

Table 4.6: Evaluation results of the basic method with Adam’s optimizer and 30
days before failure

Time step Accuracy R?> MAE value

5 93.90% 0.999 0.131
10 93.40% 0.997 0.190
15 96.40% 0.998 0.120
30 96.00% 0.987 0.483

Table 4.7: Evaluation results of the diagnosis model with Adam’s optimizer and 40
days before failure

Time Accuracy Precision Recall F-score False neg. Loss MAE MCC
step (%) (%) (%) rate func. value value
5 89.25 80.00 85.16 63.32 0.560 0.410 0.720 0.58
7 94.70 91.52 96.40 93.50 0.300 0.230 0.076 0.72
10 93.20 91.00 94.80 92.70 0.019 0.170 0.050 0.86
15 95.70 96.80 97.00 96.10 0.014 0.021 0.038 0.94

Table 4.8: Evaluation results of diagnosis model with SGD optimizer and 40 days
before failure

Time Accuracy Precision Recall F-score False neg. Loss MAE MCC
step (%) (%) (%) rate func. value value
5 91.00 86.00 8949 88.35 0.2800 0.320 1.3700 0.45
7 93.70 91.52 9550 92.96 0.0200 0.210 0.1200 0.64
10 96.00 95.30 97.00 96.40 0.0180 0.130 0.0300 0.92

15 98.36 97.80 99.00 98.83 0.0014 0.016 0.0012 0.95

CHAPTER 4. EXPERIMENTAL RESULTS 46

1.2 1

1.0 A

0.8

loss

0.6 1

0.4 4

0.2 1

0 50 100 150 200 250 300
epoch

Figure 4.3: Loss function diagram with 5 time steps

As shown in the above tables, the performance of the proposed model using
the SGD optimizer and with a time step of 15 has been better compared to the base
method with various time steps. In the base model, the best performance at a time
step of 15 and only 30 days before the failure was with an accuracy of 96.4%. In
contrast, the proposed model with the SGD optimizer, with a similar time step of
15 and 40 days before the failure, has the best performance with an accuracy value
of 98.36%, the lowest loss function with a value of 0.016, and a recall rate of 99%.
These results indicate that the model, with the least error and with a 99% recall,
correctly identifies the fault detection when the actual fault occurs. Therefore, the
efficiency of the proposed model in correctly distinguishing between healthy and
unhealthy disk samples has improved compared to the base method, and the time
before failure in the proposed model has also performed better than the base model.

In Figures 4.3 to 4.6, the minimization of the loss function in each epoch in the
proposed model are shown.

As shown in Figures 4.3 to 4.6; the value of the loss function in 4-time steps of 5,
7,10, and 15 has gradually decreased with an equal number of epochs and reached
a value less than 0.01. The effectiveness of the Bi-LSTM model was evaluated by
analyzing the loss function trends across different time-step settings. These trends
show how well the model minimizes prediction errors and adjusts to different time
ranges.

For the 5-time-step setting, the loss quickly decreased from about 0.4 to 0.05
within the first 10 epochs and then stabilized. This sharp decline indicates that the
model quickly learns short-term patterns. However, the early stabilization suggests
that extending training beyond this point does not bring significant improvements,
likely due to the limited time window.

Expanding the time step to 7 increased the initial loss to about 0.5, which then

CHAPTER 4. EXPERIMENTAL RESULTS

loss

loss

0.61

0.5

0.4

0.3 1

0.2 1

0 50 100 150 200 250 300
epoch
Figure 4.4: Loss function diagram with 7 time steps

0.5 A

0.4 ~

0.3 ~

0.2 A L

0.1 ~

0 50 100 150 200 250 300

epoch

Figure 4.5: Loss function diagram with 10 time steps

47

CHAPTER 4. EXPERIMENTAL RESULTS 48

0.8 -

0.6
v
o
= 0.4 +

0.2 - \

0 50 100 150 200 250 300
epoch

Figure 4.6: Loss function diagram with 15 time steps

gradually dropped to 0.076 by epoch 10 and stabilized around 0.02-0.03 after epoch
15. This shows that a wider time range helps the model learn better, but it also
takes more epochs to fine-tune predictions and reduce residual errors.

For the 10-time-step configuration, the initial loss was lower, around 0.2, and
it decreased steadily to 0.05 by epoch 15 before settling at about 0.03-0.04 after
epoch 20. This longer convergence time suggests that handling medium-term
dependencies requires more computational resources while maintaining efficiency.

The 15-time-step setup produced the best performance. The loss dropped from
about 0.4 to 0.016 within 10 epochs and stabilized near 0.001-0.002. This quick
convergence to almost zero error indicates the model’s strong ability to recognize
long-term patterns, aligning with its high accuracy of 98.36% for 40-day failure
predictions. Additionally, stabilizing within 10 epochs makes it suitable for real-
time use in dynamic storage environments.

All configurations showed stable loss within 10 to 20 epochs, demonstrating
the Bi-LSTM model’s ability to balance fast learning with reliability. Longer time
steps resulted in lower final loss values, proving that the model effectively utilizes
historical data to improve predictions. The observed trade-off between time-step
length and convergence speed suggests that while longer time windows enhance
accuracy, they do not necessarily compromise efficiency. The strong performance
of the 15-time-step model confirms that extended temporal information can be
effectively used without causing excessive computational overhead. Therefore, the
results indicate that the trained neural network, with the increase of time steps and
over time, has been properly trained and achieved better accuracy, and it has an

CHAPTER 4. EXPERIMENTAL RESULTS 49

Table 4.9: MAE value of the selected features
No. SMART number MAE

Smart_6_raw 0.1489700
Smart 9 _raw 0.1846040
Smart_8_raw 0.0615700

Smart_194_raw 0.0041856
Smart_242_raw 0.1090580
Smart_5_raw 0.0007600
Smart_241_raw 0.1167400

N O Ul W N =

acceptable accuracy and loss function value. On the other hand, because quick
training is important for practical use, the proposed model is designed to train
efficiently, with an average training time of just 11 minutes.

4.3.2 Performance Evaluation for Disk Health Status

In this section, we evaluate the model’s performance concerning the classification
of the disk’s condition. As mentioned in the third phase of the proposed workflow,
we initially built a decision tree for each feature based on the MAE criterion and
the number of samples. We then identified the feature with the lowest MAE
value and the best decision tree. the objective was to determine which individual
SMART attributes could most accurately estimate the number of days remaining
until failure, referred to in the dataset as day-num.

To define day-num, the dataset was restructured such that each hard disk record
was annotated with the number of days remaining before its observed failure. For
failing hard drives, the final record prior to failure was labeled as day-num = 0,
the record preceding it as day-num =1, and so forth. This backward counting
approach transformed each disk’s timeline into a failure countdown, enabling the
model to treat time-to-failure as a supervised regression problem. Non-failing
drives were excluded from this labeling to focus the model’s learning process on
true degradation trajectories.

Each SMART feature was then individually evaluated using a univariate re-
gression tree model. For this purpose, the DecisionTreeRegressor from the scikit-
learn library was configured with the AbsoluteEerror criterion, which directly
minimizes MAE during tree construction. The maximum depth of the tree was set
to 4 to prevent overfitting, and the minimum number of samples per leaf was fixed
at 5 to ensure sufficient representation in each split. The tree was trained on each
SMART feature separately, with day-num serving as the target variable, and the
resulting MAE was recorded as the feature’s predictive performance score. Table
4.9 displays the obtained features along with the MAE value for each.

The results of this analysis are presented in Table 4.9, which lists the evaluated

CHAPTER 4. EXPERIMENTAL RESULTS 50

SMART features along with their corresponding MAE values. The lowest MAE
was observed for SMART 5 raw, with an error of 0.0007600, indicating it was the
most informative individual feature for estimating the time to failure. SMART 194
raw and SMART 8 raw also performed well, yielding MAE values of 0.0041856 and
0.0615700, respectively. Conversely, SMART 9 raw and SMART 6 raw exhibited
comparatively higher MAE scores, suggesting weaker relevance for this specific
prediction task. In the next step, we first classify the ’num_day’ feature, which
counts the number of days until the failure in the dataset, according to the four
defined disk states. Then, based on the two obtained features, we feed the model
trained in the second phase of the proposed method.

In order to further analyze the predictive power of individual SMART attributes,
a decision tree was constructed using the SMART 5 raw feature, which had previ-
ously demonstrated the lowest MAE value (0.00076) during the feature evaluation
phase. The purpose of this decision tree was to visualize the relationship between
SMART 5 raw values and the estimated number of days remaining until failure
(day_num). The decision tree was trained using the DecisionTreeRegressor model
from the scikit-learn library, configured with the absolute_error criterion to
minimize the mean absolute error directly. A maximum tree depth of four and a
minimum of five samples per leaf were applied to maintain both interpretability
and generalizability.

The resulting decision tree is presented in Figure 4.7. It reveals a set of threshold-
based decision rules that map SMART 5 raw values to different predictions for the
remaining days to failure. Each internal node in the tree represents a binary decision
based on the value of SMART 5. For instance, the root node may split the dataset
based on whether SMART 5 is less than or equal to a particular threshold. Based on
this decision, samples are passed either to the left or the right child node, where
further conditions are recursively evaluated. This process continues until a terminal
(leaf) node is reached.

Each leaf node provides a summary of the decision outcome for the samples
that satisfy the conditions along the path leading to that node. Specifically, the node
displays the number of samples it contains, the predicted average value of day_num
for those samples, and the associated mean absolute error. The tree structure
indicates how specific ranges of SMART 5 raw correspond to estimated remaining
lifespans, revealing that even this single SMART attribute can yield informative and
interpretable estimates of time to failure.

This decision tree thus confirms the critical role of SMART 5 raw as a highly
informative predictor. Its strong performance supports its selection as one of the
primary inputs to the Bi-LSTM model. Moreover, the tree visualization provides
practical insight into how changes in SMART feature values translate into failure
risk levels.

Since in the predictive phase, the model has forecasted a remaining useful life
of 40 days until the actual failure, if there are 50 to 60 days left before the failure, it

CHAPTER 4. EXPERIMENTAL RESULTS 51

SMART_5_raw <= 100.5
absolute_error = 12.82
samples = 100

value = 23.5

SMART_5_raw <= 55.5 SMART 5_raw <= 105.5
absolute_error = 12.71 absolute_error = 12.2
samples = 51 samples = 49
value = 19.0 value = 29.0

SMART_5_raw <= 38.0 SMART_5_raw <= 80.5
absolute_error = 12.78 absolute_error = 10.79
samples = 32 samples = 19
value = 23.0 value = 11.0

SMART_5_raw <= 118.5
absolute_error = 11.7
samples = 44
value = 26.0

absolute_error = 4.4
samples = 5
value = 48.0

samples = 18 samples = 14
value = 17.5 value = 31.5

samples = 8 samples = 11 samples =5 samples = 39

absolute_error = 12.11 absolute_error = 11.5
value = 10.0 value = 19.0 value = 18.0 value = 27.0

labsoluteiermr = 8.25‘ labso\uteiermr = 11.73‘ labsoluteiermr = 13.0‘ labso\uteiermr =11.31

Figure 4.7: Decision tree for SMART-5 trained to predict remaining days until failure

is considered a good condition. From 40 to 50 days is considered a warning status
because based on the remaining useful life prediction until the failure obtained
in the second phase of the proposed method, a warning should be given to the
technician at most 40 days before the actual failure. If there are fewer than 20 days
left until the failure, a red warning is issued to the technician.

In the study by Santo et al. [9], time intervals of 5, 7, 10, and 14 days are
considered. Since we consider a 15-day interval in our proposed method, for
comparing our results with the base paper, we only review the results of the 14- day
interval from the base paper. Table 4.10 shows the evaluation results of the other
state-of-the-art methods compared to the proposed method.

As shown in Table 4.10, in comparing our proposed method with existing ap-
proaches, we observe that the LSTM model of Santo et al. [9] achieved an accuracy
of 98.45% with a precision and recall of over 98%, evaluated 45 days before failure.
The Random Forest model by Aussel et al. [2] reported slightly lower accuracy at
96.4%, with a 60-day prediction window but did not specify precision and recall.
The CNN-LSTM approach by Lu et al. [22] focused on precision and recall, achiev-
ing values of 93% and 94%, respectively, but did not report accuracy or specific
time steps. Our proposed method outperforms these models, achieving a 99.27%
accuracy, 98.65% precision, and 99.04% recall with a 60-day prediction window,
demonstrating superior predictive capability.

The proposed method effectively addresses the dynamic nature of disk health
and failure prediction by continuously updating its predictions with real-time data,

CHAPTER 4. EXPERIMENTAL RESULTS 52

Table 4.10: Results evaluation of the other state-of-the-art methods and the pro-
posed solution

Evaluation method Time be- Time Accuracy Precision Recall
fore failure step (%) (%) (%)
(days) (days)
LSTM [9] 45 14 98.45 98.33 98.34
Random Forest [2] 20 - - 95.00 67.00
CNN-LSTM [22] 10 - - 93.00 94.00
decision tree [19] 14 - 95.50 93.00 93.00
GBRTs [19] 14 - 87.20 90.00 87.00
Proposed approach 60 15 99.27 98.65 99.04

leveraging historical disk performance data to identify trends, and dynamically se-
lecting relevant features. This approach ensures the model remains effective despite
evolving workloads, hardware changes, and usage patterns. To mitigate challenges,
the method involves continuous training to keep the model up-to-date, balancing
early failure detection with minimizing false alarms, and employing techniques
to handle data drift, ensuring sustained performance even as data characteristics
change over time.

This study, like many others in the field, utilized the Backblaze dataset due to its
accessibility, specifically focusing on data from 2019 and 2020. While this dataset
provided a robust foundation, the feature set selected may be optimized for the
specific disk models used in this study, limiting its generalizability to other models
or datasets, such as those from Alibaba or Baidu.

Overall, our proposed method tackles variations in disk failure patterns across
different years and datasets by integrating advanced machine learning algorithms
and thorough data analysis. By employing Bi-LSTM networks, the method ef-
fectively captures temporal dependencies, making it adaptable to evolving failure
patterns. Rigorous data preprocessing, including feature normalization and selec-
tion, ensures that the model focuses on the most predictive indicators, enhancing
its generalizability.

Training on diverse datasets, like those from Backblaze and Baidu, further
broadens the model’s applicability across different disk models and environments.
The feature selection process, using Pearson correlation and Chi-squared tests, tar-
gets the most relevant features, minimizing reliance on dataset-specific attributes.
Extensive evaluation and validation using metrics like accuracy and precision con-
firm the model’s robustness across various settings.

The method’s flexible architecture allows for easy adaptation and scaling, en-
suring it can be applied to different data center environments. Additionally, con-
tinuous learning mechanisms enable the model to stay relevant and accurate over

CHAPTER 4. EXPERIMENTAL RESULTS 53

time, adapting to new failure patterns and technological changes. All in all, this
approach provides a reliable, generalizable solution for predicting disk failures in
diverse storage systems.

Chapter 5

Conclusion and Future Research
Directions

In this research, we addressed the critical challenge of predicting disk failures in
large-scale data storage systems by leveraging deep learning and feature selection
techniques. By applying Pearson correlation and Chi-square tests, we identified
the most relevant features from the Backblaze and Baidu datasets, effectively re-
ducing model complexity while enhancing performance. We developed a Bi-LSTM
model that showed excellent predictive performance, achieving 98.36% accuracy
and 97.8% precision, and was able to predict failures as early as 40 days in advance.
Furthermore, we developed a decision tree-based health evaluation model to es-
timate the remaining useful life of hard disks and categorize them into Healthy,
Warning, and Critical states. This model further improved prediction accuracy to
99.27% and precision to 98.65%. Overall, our approach provides a reliable and ef-
ficient solution for early disk failure detection and health assessment, contributing
to improved data center reliability and reduced risk of data loss.

In the future, the proposed method can be further developed to better handle
the evolving nature of data storage systems, including the growing use of edge
computing. Additionally, the architecture can be improved to support continuous
learning by regularly updating the model with new data. This would allow it to
adapt to recent patterns while gradually forgetting outdated or less relevant infor-
mation, helping maintain accuracy and performance over time. Such adaptability
would make the system more scalable and practical for real-world applications
where disk usage and behavior change frequently. Also, future work could imple-
ment a hard drive RUL prediction model into a real system, testing the performance
of the model on real-time hard drive data to prevent them from failure. Addition-
ally, future research could expand the dataset by including more disk models and
data sources, and improve prediction granularity by adjusting the model to predict
failures by the hour rather than the day. These enhancements will ensure the model
remains robust, adaptable, and effective in various storage environments.

54

Bibliography

[1] A. F. Acarap, Deep learning using rectified linear units (relu), arXiv preprint
arXiv:1803.08375, (2018), pp. 1-7.

[2] N. AusseL, S. JauLiN, G. GanpoN, Y. PeteniN, E. Fazii, AND S. CHABRIDON, Pre-
dictive models of hard drive failures based on operational data, in 2017 16th ieee
international conference on machine learning and applications (icmla), IEEE,
(2017), pp. 619-625.

[3] Backsraze.com, Hard Drive Test Data. Retrieved July 2025.

[4] S.Basak, S. SENGUPTA, S.-J. WEN, aAND A. DuBky, Spatio-temporal ai inference engine
for estimating hard disk reliability, Pervasive and Mobile Computing, 70 (2021),
p. 101283.

[5] M. M. Botezary, I. Giurary, J. Bocojeska, aND D. WiesMaNN, Predicting disk re-
placement towards reliable data centers, in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, (2016),
pp- 39-48.

[6] L. C. Cuaves, M. R. P. DE Paura, L. G. LErtg, J. P. P. GoMmEs, aND J. C. MACHADO,
Hard disk drive failure prediction method based on a bayesian network, in 2018
International Joint Conference on Neural Networks (IJCNN), IEEE, (2018),

pp- 1-7.

[7] Z.CueN,M. Wy, R. Znao, F. GuretNO, R. YaN, anD X. L1, Machine remaining useful
life prediction via an attention-based deep learning approach, IEEE Transactions on
Industrial Electronics, 68 (2020), pp. 2521-2531.

[8] A.Coursky, G. NartH, S. PRABHU, AND S. SENGUPTA, Remaining useful life estimation
of hard disk drives using bidirectional Istm networks, in 2021 IEEE International
Conference on Big Data (Big Data), IEEE, 2021, pp. 4832-4841.

[9] A. Dk Santo, A. GatLi, M. GraviNa, V. Moscato, aND G. SperLl, Deep learning
for hdd health assessment: An application based on Istm, IEEE Transactions on
Computers, 71 (2020), pp. 69-80.

55

https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data

BIBLIOGRAPHY 56

[10] J. Domsr anD T. J6NAs, Generalizing the sigmoid function using continuous-valued
logic, Fuzzy Sets and Systems, 449 (2022), pp. 79-99.

[11] B.S. Everitr AND A. SKRONDAL, The Cambridge dictionary of statistics, Cambridge
University Press, 2010. p. 22.

[12] V. GanesH aND M. Kamarasan, Parameter tuned bi-directional long short term
memory based emotion with intensity sentiment classification model using twitter
data, in 2020 International Conference on System, Computation, Automation
and Networking (ICSCAN), IEEE, (2020), pp. 1-6.

[13] F. A. GErs, J. ScCHMIDHUBER, AND F. CumMINs, Learning to forget: Continual predic-
tion with Istm, Neural computation, 12 (2000), pp. 2451-2471.

[14] S. Han, P. P. Leg, Z. Suen, C. Hg, Y. Liy, anp T. Huang, Toward adaptive disk
failure prediction via stream mining, in 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS), IEEE, (2020), pp. 628-638.

[15] S.HaN,]. Wy, E. Xu, C. Hg, P. P. Leg, Y. Qiang, Q. ZHeNg, T. Huang, Z. Huang,
AND R. L1, Robust data preprocessing for machine-learning-based disk failure predic-
tion in cloud production environments, arXiv preprint arXiv:1912.09722, (2019),
pp- 1-12.

[16] S. HOCHREITER AND J. SCHMIDHUBER, Long short-term memory, Neural computa-
tion, 9 (1997), pp. 1735-1780.

[17] L. Hy, L. Han, Z. Xu, T. Jiang, anp H. Qu, A disk failure prediction method based
on Istm network due to its individual specificity, Procedia Computer Science, 176
(2020), pp. 791-799.

[18] A. KieN, 2020 Hard Drive Reliability Report by Make and Model. Retrieved
January 2025.

[19] J. Ly, R.]J. Stones, G. WaNg, X. Ly, Z. L1, anp M. Xu, Hard drive failure prediction
using decision trees, Reliability Engineering & System Safety, 164 (2017), pp. 55—
65.

[20] F. D. S. Lima, F. L. F. Pereira, L. G. Leitg, J. P. P. GoMmes, anD J. C. MACHADO,
Remaining useful life estimation of hard disk drives based on deep neural networks,
in 2018 International Joint Conference on Neural Networks (IJCNN), IEEE,
(2018), pp. 1-7.

[21] Y. Ly, L. WaNg, T. SHi, anp J. L1, Detection of spam reviews through a hierarchi-
cal attention architecture with n-gram cnn and bi-Istm, Information Systems, 103
(2022), p. 101865.

https://www.backblaze.com/blog/backblaze-hard-drive-stats-for-2020/

BIBLIOGRAPHY 57

[22] S. Ly, B. Luo, T. Patet, Y. Yao, D. Tiwari, anp W. Sui, Making disk failure predic-
tions {SMARTer}, in 18th USENIX Conference on File and Storage Technologies
(FAST 20), (2020), pp. 151-167.

[23] A.Ma, R. TrayLoR, F. DoucLis, M. CHaMmNESss, G. Lu, D. SawYER, S. CHANDRA, AND
W. Hsu, Raidshield: characterizing, monitoring, and proactively protecting against
disk failures, ACM Transactions on Storage (TOS), 11 (2015), pp. 1-28.

[24] J. MEza, Q. Wy, S. KuMagr, anp O. MutLu, A large-scale study of flash memory
failures in the field, ACM SIGMETRICS Performance Evaluation Review, 43
(2015), pp. 177-190.

[25] J. F. Murray, G. F. Hugnss, K. Kreutz-DELGADO, AND D. ScHUURMANS, Machine
learning methods for predicting failures in hard drives: A multiple-instance applica-
tion., Journal of Machine Learning Research, 6 (2005), pp. 783-816.

[26] NTFS.com, S.M.A.R.T. Attributes. Retrieved January 2025.

[27] N. C. Oza anp S. J. RusseLr, Online bagging and boosting, in International Work-
shop on Artificial Intelligence and Statistics, PMLR, (2001), pp. 229-236.

[28] L.P. Queiroz, F. C. M. RobriGuss, J. P. P. Gomes, E. T. Brito, I. C. CHaves, M. R. P.
Paura, M. R. SALvADOR, AND J. C. MacHADO, A fault detection method for hard disk
drives based on mixture of gaussians and nonparametric statistics, IEEE Transactions
on Industrial Informatics, 13 (2016), pp. 542-550.

[29] C. A. RiNcON, J.-F. PAris, R. ViLarra, A. M. Cueng, anp D. D. Long, Disk
failure prediction in heterogeneous environments, in 2017 International Sympo-

sium on Performance Evaluation of Computer and Telecommunication Sys-
tems (SPECTS), IEEE, (2017), pp. 1-7.

[30] B. ScHROEDER, R. LAGIsETTY, AND A. MERCHANT, Flash reliability in the field: The
expected and the unexpected, in Usenix FAST, (2016), pp. 1-15.

[31] N. Srivastava, G. HintoN, A. KrizHEVSKY, [. SUTSKEVER, AND R. SALAKHUTDINOV,
Dropout: a simple way to prevent neural networks from overfitting, The journal of
machine learning research, 15 (2014), pp. 1929-1958.

[32] Y. VErma, Complete guide to bidirectional Istm (with python codes), Analytics India
Magazine, (2021).

[33] G. Wang, Y. Wang, anp X. SuN, Multi-instance deep learning based on attention
mechanism for failure prediction of unlabeled hard disk drives, IEEE Transactions on
Instrumentation and Measurement, 70 (2021), pp. 1-9.

[34] L. Wang, X. Xu, Q. Su, Y. Song, H. WaNG, anp M. Xig, Automatic gear shift
strategy for manual transmission of mine truck based on bi-Istm network, Expert
Systems with Applications, 209 (2022), p. 118197.

https://ntfs.com/disk-monitor-smart-attributes.htm

BIBLIOGRAPHY 58

[35] Y.Wang, L. HE, S. Jiang, anD T. W. Crow, Failure prediction of hard disk drives based
on adaptive rao—-blackwellized particle filter error tracking method, IEEE Transactions
on Industrial Informatics, 17 (2020), pp. 913-921.

[36] Y.WaNG, S. Jiang, L. H, Y. PENG, anp T. W. CHow, Hard disk drives failure detection
using a dynamic tracking method, in 2019 IEEE 17th International Conference on
Industrial Informatics (INDIN), vol. 1, IEEE, 2019, pp. 1473-1477.

[37] Y. Wang, E. W. Ma, T. W. Crow, anp K.-L. Tsui, A two-step parametric method for
failure prediction in hard disk drives, IEEE Transactions on industrial informatics,
10 (2013), pp. 419-430.

[38] Y. Wang, Q. M1ao, E. W. Ma, K.-L. Tsui, anp M. G. Pecur, Online anomaly
detection for hard disk drives based on mahalanobis distance, IEEE Transactions on
Reliability, 62 (2013), pp. 136-145.

[39] E. W. WerssteIN, Hyperbolic functions, 2003. Wolfram Research, Inc.

[40] J. X1a0, Z. X10NG, S. Wy, Y. Y1, H. JiN, anD K. Hu, Disk failure prediction in data
centers via online learning, in Proceedings of the 47th International Conference
on Parallel Processing, (2018), pp. 1-10.

[41] C.Xu, G. Wang, X. Ly, D. Guo, anp T.-Y. L, Health status assessment and failure
prediction for hard drives with recurrent neural networks, IEEE Transactions on
Computers, 65 (2016), pp. 3502-3508.

[42] Y. Xy, K. Suy, R. Yao, H. Zuang, Q. LiN, Y. Dang, P. L1, K. Jiang, W. ZHANG,
J.-G. Lov, Et AL., Improving service availability of cloud systems by predicting disk
error, in 2018 USENIX Annual Technical Conference (USENIX ATC 18), (2018),
pp- 481-494.

[43] S. Yan, Understanding Istm and its diagrams, MLReview. com, (2016).

[44] Q. Yang, X. Jia, X. Ly, J. FENg, W. L1, aND J. Leg, Evaluating feature selection and
anomaly detection methods of hard drive failure prediction, IEEE Transactions on
Reliability, 70 (2020), pp. 749-760.

[45] W. Yu, Q. CrENG, anD S. GuaN, Improved variable step-size least mean square
algorithm based on sigmoid function, Procedia Computer Science, 199 (2022),
pp- 1466-1473.

[46] I. N. YuLita, M. 1. FaNaNy, aAND A. M. ArRyMUTHY, Bi-directional long short-term
memory using quantized data of deep belief networks for sleep stage classification,
Procedia computer science, 116 (2017), pp. 530-538.

[47] B.Znu, G. Wang, X. L1y, D. Hy, S. LiN, AND J. Ma, Proactive drive failure prediction
for large scale storage systems, in 2013 IEEE 29th symposium on mass storage
systems and technologies (MSST), IEEE, (2013), pp. 1-5.

https://mathworld.wolfram.com/

	Introduction
	Problem Statement

	Literature Review
	Failure Detection Approach
	Disk Health Degree Prediction
	Remaining Useful Life Prediction

	Proposed Methodology
	Model Training
	Evaluation of Disk Health

	Experimental Results
	Evaluation Indicators
	Model Evaluation
	Results and Comparison
	Evaluating the Efficiency of the Trained Model
	Performance Evaluation for Disk Health Status

	Conclusion and Future Research Directions
	Bibliography

