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Abstract:  

Due to the significant role of recorded images in enhancing public 

security, this thesis focuses on the challenges of image recognition 

during walking. The foundation of recent algorithms is based on 

extracting silhouettes from input videos and averaging them over a 

walking period. However, this process is vulnerable to noise, temporal 

ordering of walking, and partial silhouette defects. To address these 

issues, a novel template based on patch-based analysis is developed to 

improve the common walking features in local regions by searching for 

neighboring patches and eliminating noisy or faulty patches. A  

Histogram of Gradient (HoG) descriptors is computed to capture 

important features in clustered regions. The gait signatures are then 

computed based on the center and samples of each cluster. Finally, the 

gait template is derived by combining Gabor features of averaged 

silhouettes and corresponding gait signatures. This approach called 

improved Patch Gait Features (iPGF), demonstrates a 1% improvement 

in Rank 1 and Rank 5 compared to the standard PGF, as observed 

through experimental results using the Random Subspace Method 

(RSM) classifier. 

Keywords: 

Gait recognition, Gabor filter, Gait classification, Patch Gait Feature, Regional Patch-

based 
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Chapter 1 

Introduction 

 

Gait recognition is an essential component in applications like 

monitoring, security, and traffic management [1, 2, 11, 99]. However, 

accuracy can be affected by factors like clothing changes and lighting 

variations. To address this, Spatio-temporal templates have been used 

to capture both spatial and temporal information. Existing templates, 

like Pixel-level Gaussian Fitting (PGF), may leave noisy pixels, leading 

to inaccurate results. This thesis aims to enhance gait recognition 

systems by improving the temporal template in Spatio-temporal 

templates. A novel modification to PGF is proposed, involving post-

processing to eliminate noisy pixels by selecting more robust patches. 

Experimental results show significant improvement in recognition rate 

compared to the original PGF method. Additionally, a feature selection 

approach called Improved Pixel-level Gaussian Fitting (IPGF) is 

investigated to enhance recognition accuracy.  

This thesis has five chapters. The first chapter introduces the 

basic concepts. The second chapter examines the works that have been 

done and studied before, and the proposed model is presented in the 

third chapter. The fourth chapter introduces the classification method, 

and the results are presented in the fifth chapter.  

1.1. The Concept of Behavioral Biometrics 

Behavioral biometrics is the measurement of a person's 

physiological or behavioral characteristics for identification and 

authentication. The most famous methods of this type of identification 

are based on fingerprints, iris, signatures, and walking [8]. In behavioral 

biometrics, physiological, behavioral, and a combination of these 

characteristics are analyzed in people. Physiological features such as 

type of signature or style of walking deal with the things that humans 
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are born with [3, 4].Behavioral traits are the result of our interaction 

with the environment and nature and can change over time. How to 

walk, how to speak, and how to write are including the combined 

features of both. For example, voice recognition can be considered in 

such a way that the size and shape of the vocal cords, the nostrils and 

lips, and the shape of the mouth on the one hand, and the age and 

geographic conditions of a person's life, on the other hand, are involved 

in this issue [3]. One of the important uses of behavioral biometrics in 

the field of information security is to identify people using the unique 

characteristics of activities at a distance in an unobtrusive way [1]. 

The daily increase in the need for security systems with computer 

vision methods has caused people to be recognized and identified with 

high accuracy and speed in surveillance environments. This type of 

identification is generally done in outdoor environments and without 

the person's knowledge. People who appear in the environment are 

identified without prior notice. Therefore, we can boldly consider the 

identification of "behavioral patterns" as one of the new technologies 

in this field. This technique is very useful in the “subtle" identification 

of people who are threats or suspects in security environments. In this 

research, we focus on human identification using gait features. Gait is 

defined as the coordinated and periodic movement of the human body, 

which leads to movement and transfer. Coordinated movements must 

be repeated according to a regular time pattern for behavior to occur [1, 

2].Therefore, people's movement patterns walking is known as an 

effective type of biometric for human identification in public 

environments in surveillance and security programs [1]. The reason for 

this is mainly due to the ease of capturing walking at a distance. 

However, any biometric system based on gait recognition is affected by 

some external factors, i.e., covariates, such as clothing conditions, 

carrying conditions, viewing angle, surface, and the passing of age (and 

time) [2, 13]. However, it is important to note that gait can still be cited 

as an irreplaceable biometric. One of the main advantages of gait 
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biometrics is that it can be captured from a distance, without requiring 

the subject to touch any devices. This makes it a convenient and non-

intrusive form of biometric identification. Additionally, gait biometrics 

can be used in situations where other biometric modalities such as 

fingerprints or facial recognition may not be feasible or reliable, such 

as in low-light conditions or when a subject's face is obscured.   

Therefore, many identification and authentication problems can be 

solved with its help and used in identification problems [14]. 

Two general algorithms for gait identification have been 

developed during the last decade [23] to properly represent the human 

movement pattern: model-based algorithm and feature-based 

algorithm. In model-based algorithms, a predetermined structure is 

considered for the motion model [27, 40]. In these models, for example, 

the joint parts of the body (limb) are characterized by some parameters, 

and the recognition process can be transformed to adjust human motion 

with the predefined model. One of the effective and early research was 

presented in [26], which two types of parameters are proposed: time-

independent parameters (static) and time-varying parameters 

(dynamic). Static parameters are limb length or body size, while 

dynamic parameters are the angles between limbs that are constantly 

changing during movement. For gait recognition, the statistical 

information of limb movement such as mean and variance of angles, is 

first calculated. Then, these features are related to previous knowledge 

in the Bayesian format and framework, and the final model is selected 

from among different models [26]. Here, although motion detection 

based on the Bayesian framework has a high performance for walking 

in the indoor environment, it has a high computational cost and is very 

vulnerable to noise [15]. Meanwhile, the model parameters can be 

effectively improved by hidden Markov model (HMM) or Fourier 

descriptors [41]. 

Nevertheless, model-based algorithms are vulnerable to some 

parameters: On the one hand, the initial model is vulnerable to noise 
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and occlusion [15, 24]; on the other hand, the fitting process of the 

model is very time-consuming, and the complexity of the model 

increases exponentially with the increase in the number of parameters 

[11, 29]. According to this hypothesis, it is reasonable to calculate the 

movement characteristic from the walking appearance. In addition, for 

better recognition, the sequence of moving silhouettes is collected and 

converted into a single image called a pattern [1, 24]. For example, the 

most famous behavior patterns based on appearance are the gait energy 

image (GEI) [1], "Gait Flow Image" (GFI) [42], and "Gait Entropy 

Image". (GEnI) [34], all of which have a simple structure with low 

computational costs. Since the nature of human movement is a Spatio-

temporal process, this type of transformation removes the time 

sequence from the appearance of walking [15, 16, 25]. More precisely, 

the templates collected and analyzed spatial-based features without 

using time-based features. 

Recently, some gait templates have been proposed to maintain 

the timing of movement steps in a periodic period [14, 15]. However, 

none of the developed features adequately characterizes the type and 

model of human movement. An optimal approach based on local 

patches, called Patch Gait Feature (PGF) [54], has recently been 

developed to solve this problem. In the proposed method, local patches 

are extracted from a motion sequence. Then the local extremum points 

are extracted, and possible distributions based on the patches are 

calculated. Finally, the final template will be calculated as a movement 

feature based on the possible distribution of patches. But this method 

has limitations in different aspects. Based on the distribution of local 

patches in human walking, the proposed approach provides an optimal 

model by focusing on extracting patches efficiently and using them 

effectively. The proposed model, iPGF or improved PGF, aims to 

enhance the limitations of the PGF template. To introduce iPGF 

completely, we will expend in the next parts. 
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1.2. What is Human Gait Recognition? 

Gait recognition is a biometric method aiming to identify people 

based on how they are walking  [6, 11]. Gait, referring to the style of 

human walking, contains valuable features that are applicable in 

various fields, including sports science, sentiment analysis, health, and 

people identification. People's walking patterns can be captured using 

different sensing methods, such as wearable sensors attached to the 

body, such as accelerometers, gyroscopes, and force and pressure 

sensors. Non-wearable gait detection systems, on the other hand, 

mainly rely on vision and are commonly referred to as vision-based gait 

detection. These systems utilize imaging sensors to record walking data 

without the need for subject cooperation, even from a considerable 

distance [25]. Since 2015, with the introduction of deep learning into 

this category, gait recognition methods based on deep learning have 

now made the subject of biometrics more practical using the most 

advanced technologies [25, 28]. 

Behavior pattern as a biometric feature has a long history. One 

of the important and old works in this field is identifying people from 

"moving light displays" (MDL). This issue was planned and followed 

by Johanson at Uppsala University  [9]. In this research, similar 

experiments were conducted to investigate how human vision is 

stimulated by moving light points. In this way, 13 different light points 

were installed on the tested person’s body. These points were installed 

on the person's head, shoulders, elbows, chest, thighs, knees and ankles 

and he was asked to move in the dark environment. Then, the lights 

received from a stationary person compared to a moving human eye 

and a moving person compared to a fixed human eye were examined 

[37]. Figure 1.1 shows several frames of moving light points in this 

experiment. 
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Figure 1.1. Several frames from the experiment of moving light points. 

 

This experiment has an important result from a biomechanical 

point of view  :people have a unique and distinct way of walking. Also, 

the results of this experiment from a psychological point of view prove 

that the human visual perception system has three other unique abilities: 

1. It can distinguish the human movement pattern Figure 1.1 from other 

movement patterns, 2. It can recognize the type of walking of its friends 

and 3. It can recognize the gender, the direction of movement and the 

conditions of carrying a person's load [8]. The type of human movement 

is not limited to how he walks, but most of the approaches use it as a 

case study [2, 9, 10]. Therefore, in the following, the behavioral pattern 

is considered to mean the "type of walking" of a person [42, 44, 52, 62, 

72]. 

1.2.1. Gait Identification 

Identification systems based on biometrics such as behavioral 

patterns usually have two phases of training and testing. In the training 

phase, patterns of people are defined and stored, and then in the testing 

phase, new patterns of people are received and compared with the 

database. The new models in the test phase refer to the different 

conditions of the individual from the training phase. For this reason, the 
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training phase is also called learning or registration. If the new template 

does not match any of the previous templates, it should be stored in the 

database [22]. The structure of a behavioral biometric system is shown 

in Figure 1.2. 

 

Figure 1.2. Schematic of the behavioral pattern biometric system[8]. In the registration (training) 

phase, the patterns are received and the features are extracted and stored according to the algorithm. 

Then, in the licensing (testing) phase, the features received from the new templates are matched 

with the predefined features. 

 

The licensing department in Figure 1.2 identifies the new person 

in two general ways. In the first case, a person's biometric information 

is obtained from input sensors such as a camera along with other 

characteristics such as an ID card and is matched with the registered 

information of the person. But in the second case, only the biometric 

information of the person is received, and the search is done with the 

database information. Thus, in the first category, we have "one-to-one 

search" and in the second category "one-to-many search" and the 

second category we have one-to-many search. Issuing a license in the 

first case is called confirmation (authentication) and in the second case, 

it is called authentication [6, 8]. 

In general, two error criteria are defined to evaluate the algorithm 

in the test phase (issuance of permission). These errors are calculated 

in terms of "False Accept Rate" (FAR) and "False Rejection Rate" 
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(FRR) from a person's model [6]. They turn out the false acceptance 

rate is an error in which the intruder is recognized as one of the people 

in the database. But the false rejection rate is the error in which the 

person in the database is not identified correctly. 

  In the collection of biometric terms, in addition to the above 

concepts, two important concepts "gallery" and "probe" are also defined 

[7]. A gallery is a collection of people whose biometric information is 

defined in the system. But the probe (or signature) is a set of people 

who should get a license [8]. Therefore, Gallery and Probe contains a 

collection of behavioral videos of people under different conditions. 

The performance of these systems is affected by various factors, 

the change which will make the diagnosis process more difficult:1. 

Changes to the person's appearance, such as carrying a 

handbag/backpack or wearing clothing such as hats or caps. put on a 

coat. 2. Changes in camera perspective. 3. occlusion factors, for 

example, where parts of the subject's body are partially covered by an 

object or part of the subject's own body known as self-occlusion, and 

4- changes in the environment, such as complex backgrounds and high 

brightness levels or Low [10, 11].     Gait identification can be expressed 

in two external and internal formats, the details of which are stated in 

the next two sections. 

  
Figure 1.3. The evolution of deep gait recognition methods 
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1.3. Gait Challenges 

The subject of identifying humans based on their behavioral 

patterns, like any other subject, is an ongoing endeavor that continues 

to face challenges. In general, two factors have continuously created 

challenges in this field: external factors and internal factors [2, 16]. 

These factors affect the performance of all three approaches mentioned 

above. In the following, these external and internal factors are briefly 

examined. 

1.3.1. External Factors 

This factor affects the accuracy of identification algorithms 

more. For example, conditions such as angle 2 and internal view 1 

(front, side, etc.), change of light (day and night), and external 

environments. 

Building, change in seasons (rainy or sunny), type of clothing 

and clothing, type of movement surface (hard or soft, wet, stairs or 4 or 

3 level concrete, grass, etc.), type of shoes (sandals, cotton, etc.) and 

the type of carrying object (backpack or handbag) affect the type and 

quality of human walking.[2] 

1.3.2. Internal Factors 

These factors change the movement from its standard state 

according to the internal state of the person. For example, various types 

of diseases, from colds and nervous diseases to organ defects, change 

the type of human movement. Also, psychological changes in the body 

due to old age, drunkenness, pregnancy, weight gain and weight loss 

are all internal factors. 

1.4. Gabor-Base Feature 

As we have explained, the average gait image is one of the most 

powerful features for gait recognition tasks. This means that a person 
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can be identified through the average obtained from their gait images 

under different conditions. Moreover, it can be said that the image 

analysis based on Gabor functions is biologically related to image 

understanding and recognition. Hence, we utilize Gabor functions to 

model average walking images [25, 29].  

1.4.1. Gabor Functions 

According to the paper presented in [28] and in [10, 11] and in 

[71], they were able to develop two-dimensional Gabor functions that 

have good orientation and frequency selectivity for spatial localization. 

Also, in [41] provided a good definition for image representation using 

Gabor functions. A Gabor function (wavelet, kernel, or filter) is the 

product of an elliptic Gaussian envelope and a complex surface wavelet 

defined as. 

The GEI model calculated in the previous section contains two 

important points:  

1. Average behavioral images of a person under different conditions 

produce similar visual templates and 2. Average behavioral images of 

different people even in the same conditions create different templates. 

Therefore, we can identify the behavior of a person by the average of 

his behavior template. In addition, research shows that Gabor-based 

functions are very useful for image analysis and pattern recognition. In 

general, a Gabor kernel is the product of a Gaussian function with a 

complex wave: 

𝜓𝑠,𝑑(𝑥, 𝑦) = 𝜓𝑘̄(𝑥̄) =
‖𝑘̄‖

𝛿2
. 𝑒𝑥𝑝 (−

‖𝑘̄‖2.‖𝑥̄‖2

2𝛿2
) . [𝑒𝑥𝑝(𝑖𝑘̄. 𝑥̄) −

𝑒𝑥𝑝 (−
𝛿2

2
)]                                                                                                  (1-1) 

 

where the variable  is the spatial coordinates and  is the 

frequency vector that determines the scale and direction of the Gabor 
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function ( ). Also, in Gabor functions,  is the 

value . Here we put the values 2f=, 4, 3, 2, 1, 0s and 

for 0d=1,2,3,4,5,6,7. Also, in the Gabor relation, the value of exp(-δ2/2) 

is the DC component, which subtraction is used to remove this 

component and stabilize the brightness. 

 

Figure 1.4.  40 Gabor functions to display GEI according to rotation and different scales [25]. 

 

Before explaining our method, it is necessary to introduce Gabor 

filtering. A Gabor filtering was first utilized in the GTDA template. 

According to GTDA [25], five different Gabor scales with eight 

different rotation directions are calculated, producing 40 Gabor 

functions. Each function consists of two real and imaginary parts, and 

Figure 1.4 shows the real part of these 40 functions. 

Gabor’s behavioral template is obtained by GEI convolution in 

Gabor functions. The result of this convolution will be the collection of 

images in space  (h and w dimensions of each image). Also, the 

obtained images are mixed, and their size is known as the Gabor 

template of each person. But calculating and directly using these 40 
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functions for behavioral identification will be very expensive. To solve 

this problem in GTDA, three types of behavioral representations are 

proposed. These three templates are: the sum of Gabor functions on 

direction (Gabor D), the sum of Gabor functions on scale (Gabor S) and 

the sum of Gabor functions on direction and scale (Gabor SD). These 

three functions will greatly reduce the time cost, and complexity of 

calculations will be greatly reduced. Therefore, Gabor D is the size of 

the image resulting from GEI convolution with a total of 8 directions 

(with a fixed scale). 

𝐺𝑎𝑏𝑜𝑟𝑆𝐷(𝑥, 𝑦) = |∑𝐼(𝑥, 𝑦) ∗ 𝜓𝑠,𝑑(𝑥, 𝑦)

𝑑

| 

 

= |𝐼(𝑥, 𝑦) ∗ ∑ 𝜓𝑠,𝑑(𝑥, 𝑦)𝑑 |                                                         (1-2) 

 

So, in this type of display, we will have five Gabor D images 

according to different scales. Similarly, Gabor S is the size of the GEI 

convolutional image with a sum of 5 scales (with fixed direction). 

𝐺𝑎𝑏𝑜𝑟𝑆𝐷(𝑥, 𝑦) = |∑𝐼(𝑥, 𝑦) ∗ 𝜓𝑠,𝑑(𝑥, 𝑦)

𝑠

| 

= |𝐼(𝑥, 𝑦) ∗ ∑ 𝜓𝑠,𝑑(𝑥, 𝑦)𝑠 |                                                            (1-3) 

Therefore, the number of 8 Gabor S images is obtained according 

to different directions. Finally, Gabor SD is the size of the template 

resulting from GEI convolution with the sum of all 40 Gabor functions. 

𝐺𝑎𝑏𝑜𝑟𝑆𝐷(𝑥, 𝑦) = |∑∑𝐼(𝑥, 𝑦) ∗ 𝜓𝑠,𝑑(𝑥, 𝑦)

𝑑𝑠

| 

  = |𝐼(𝑥, 𝑦) ∗ ∑ ∑ 𝜓𝑠,𝑑(𝑥, 𝑦)𝑑𝑠 |                                                                                  (1-4) 
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Figure 1.5 schematically shows the steps of extracting three 

Gabor D, Gabor S and Gabor SD functions. As we can see, three types 

of Gabor behavior representation will be obtained for each person. 

These three types of representation form a total of 14 Gabor template 

images of each person. 

 

Figure 1.5.  The plan of extracting three types of behavioral templates based on Gabor functions 

[25]. 

 

𝐷(𝐴𝑆𝑃, 𝐴𝑆𝐺) = Median𝑖=1
𝑁𝑃 (𝑚𝑖𝑛𝑗=1

𝑁𝐺 ‖𝐴𝑆𝑃(𝑖) − 𝐴𝑆𝐺(𝑗)‖)                   (1-5) 

GaborSD has been used in PGF to extract patch features. In our 

method, we use GaborSD as we attempt to enhance PGF by discarding 

non-essential patches." 
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Chapter 2  

Related Work 

 

The daily increase in the need for efficient security systems has 

caused people to be recognized and identified with high accuracy and 

speed in surveillance environments. This type of identification is 

generally carried out in wide environments without the person's 

knowledge. People who travel in the environment are identified without 

prior notice [89]. 

For this purpose, the behavioral pattern is a coordinated and 

periodic combination of body movement that leads to human 

movement and transfer. Coordinated movements must be repeated 

according to a regular time pattern for the behavior to occur. Therefore, 

the two "coordinated" and "periodic" natures of human movement have 

distinguished his behavior. For example, the type of walking, running, 

walking, or climbing stairs are all types of human behavior [89, 96]. 

But sitting, lifting an object, or throwing it away are not considered 

behavior patterns. Because these are regular but non-intermittent 

movements. Also, "jumping in a person's place" is not considered his 

behavior. Because this type of movement, despite being regular and 

intermittent, does not lead to human transfer [90, 96]. Therefore, it is a 

style behavior model and a human transfer method, which is formed 

based on the regular and periodic movements of a person. The most 

common type of behavior pattern is the way a person walks on a flat 

surface. Another type is running or jogging, which has received less 

attention. Because in surveillance applications and public 

environments, the movement of the public is normal walking or 

walking. Behavioral biometrics should have five features [91, 96]: 

1- Comprehensiveness: all people should have it. 

2-Uniqueness: no two people have the same properties. 
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3-Durability and survival: These characteristics should not change over 

time. 

4- Collectable: these properties should be measurable by physical and 

practical sensors. 

5- Quality: the increase and growth of the population   ,in general,  does 

not have a noticeable effect on its measurement. 

It must be accepted that no type of biometric has fully covered 

one or all the above features. For example, the fifth item "quality" has 

a great impact on the measurement method. Therefore, the issue of 

behavioral pattern identification is important from two aspects: first, in 

terms of developing biometric systems and comparing them with other 

features such as face and fingerprints. Secondly, in terms of recognizing 

the behavioral pattern and its functional evaluation compared to similar 

methods [9]. 

Biometric systems are functionally divided into helpful and non-

helpful categories, and in terms of characteristics, they are divided into 

physiological and behavioral categories [3, 94]. In cooperative (or 

shared) systems, the person cooperates with the system to confirm his 

identity, while in non-participatory systems, the act of identifying and 

determining the identity is done without the person's knowledge. Also, 

physiological properties such as fingerprints and hand geometry are 

physical properties that are measured and calculated at several points 

in space at a specific time. But behavioral biometrics, such as the way 

a person walks, the type of signature, or the tone of voice, rely on 

approaches that begin at a specific time and continue over time. In other 

words, behavioral biometrics can be learned and recorded over time and 

is dependent on the personal state of mind [5]. In fact, Physical 

Biometrics are sufficiently distinguishable if recorded at a specific 

time. But in behavioral biometrics, each sample alone does not contain 

useful information about a person's identity, but a period of samples 

will contain useful information [3, 94, 95]. 
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Today, in most security systems, we need to identify people 

without their knowledge. Therefore, the identity and biological 

information of people should be recorded from a distance. But in real 

conditions, the presence of noise and images with low resolution limits 

the choice of biometric type. Meanwhile, the behavioral pattern can be 

identified from far distances. Therefore, one of the advantages of the 

behavior pattern compared to the face is that it has the capacity for 

remote and low-resolution identification  [16]. Even in some situations, 

people's faces cannot be measured and distinguished, but how they 

walk can be measured [4]. For example, Figure 2.1 shows three images 

of different people captured by surveillance cameras. As we can see, 

the face image, geometry of the person, or other biometric parameters 

are ambiguous and cannot be measured. But their walking style is clear 

is clear in the picture. 

 

                                          

Figure 2.1 Some examples of surveillance images [8]. 

 

2.1.  Video-Based Approaches  

In this type of identification, behavioral patterns are recorded 

from a distance using surveillance cameras. Image and video 

processing techniques are then used to extract behavioral features from 

the footage, which are then used for recognition. Older approaches use 
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step distance and movement rhythm to perform identification [12]. 

Some models also use static parameters of the body, such as height, 

distance between the head and waist, maximum distance between the 

waist and legs, and distance between the legs, for identification [12]. In 

general, most algorithms in this field perform human identification 

based on silhouettes. First, the background image is calculated, and then 

the input video is subtracted to obtain the silhouette image. For 

instance, Figure 2.2 shows several images of a person's movement 

along with their silhouette images [13, 14]. With this method, we can 

calculate the average of the silhouettes over a period and use the 

Euclidean distance to measure the similarity between these averages 

[33]. 

The initial techniques in this field had promising results in 

identifying behavioral patterns. But their big problem was the limited 

amount of data [15]. Fortunately, today, with significant progress in 

pattern recognition, the accuracy of algorithms for a large amount of 

data has increased. For example, the results on more than 1870 

behavioral videos showed a recognition accuracy of about 40%, which 

today has reached more than 70% [16]. Most of the current methods in 

gait recognition are based on extracting the motion vector (MV) 

features from the video sequences [1, 2,5, 6, 35]. In other words, In gait 

recognition, motion vector refers to a mathematical representation of 

the direction and magnitude of motion for each pixel or group of pixels 

in a video frame sequence. These vectors capture the motion 

information of the human body during walking and are used to extract 

distinctive features for gait recognition. Motion vectors can be 

computed using various techniques, such as optical flow, block 

matching, or gradient-based methods, and they are often used in 

combination with other image processing and machine learning 

algorithms to build gait recognition systems [2, 35].  The important 

fields of application of this method are surveillance systems, 

criminology, behavioral therapy, and physiotherapy. Although the 
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accuracy of this method is less than other biometrics such as 

fingerprints, it can be used as a useful tool. 

 

                                        

                                     

Figure 2.2. Several pictures of the person's movement (first row) and the corresponding silhouette 

(second row). 

 

For example, in a bank robbery in Denmark in 2007, the court 

used behavioral pattern information to identify criminals and confirm 

them  [8]. Similar applications in England and other countries indicate 

the usefulness of video-based approaches in identifying people [8]. 
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2.1.1. Model-Based Methods   

For this purpose, they first extracted a contour or edge from the 

silhouette image and then fitted an inclination model to it. In this 

method, the initial behavioral model and its parameters are produced in 

the XYT space. Then, parameters such as the frequency of movement 

of the bars, their angles relative to each other, or the length of each 

member (bar) are calculated as characteristics of the individual's 

movement. For example, Figure 2.3 shows several models of shafts for 

the lower body (left legs, L, and right legs, R) [8]. Here, the person's 

movement model consists of several different frequencies, the main 

frequency of which corresponds to a person's walking period. Also, 

other frequencies are multiples of the main frequency, which is related 

to the person's "step-by-step" movement. In model-based approaches, 

this value is set as the initial value according to the training data [27, 

45]. 

Algorithms in this category try to describe human movement 

according to a previous model. The goal of this approach is to learn a 

direct mapping of observation data to the initial structure in terms of 

training data [3, 17, 27, 28]. For this purpose, a basic model of the 

structure of the human body is described first. Then the necessary 

parameters are calculated and extracted from this initial model. Finally, 

by defining a suitable fitting function, the degree of similarity of the 

new parameters to the initial model is found. The parameters of the 

model can be dynamic characteristics such as the length of each step 

and movement speed or static characteristics such as the ratio of the 

sizes of different body parts [10, 11, 45]. Older models tried to produce 

a basic Spatio-temporal volumetric model of human movement [8]. For 

this purpose, they first extracted a contour or edge from the silhouette 

image and then fitted an inclination model to it. In this method, the 

initial behavioral model and its parameters are produced in the XYT 

space. Then, parameters such as the frequency of movement of the bars, 

their angles relative to each other, or the length of each member (bar) 
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are calculated as characteristics of the individual's movement. For 

example, Figure 2.3 shows several models of shafts for the lower body 

(left legs, L, and right legs, R) [8]. Here, the person's movement model 

consists of several different frequencies, the main frequency of which 

corresponds to a person's walking period. Also, other frequencies are 

multiples of the main frequency, which is related to the person's "step-

by-step" movement. In model-based approaches, this value is set as the 

initial value according to the training data [27, 45]. 

 (A)                            

  (B)                          

   (C)                            

 

Figure 2.3. The model of inclinations and corresponding frequencies. (a) main frequency (b) and (c) 

frequency multiplier [8]. 

The approach similar to the rod model estimates the angles 

between the thigh and the knee from the body contour model by linear 

regression analysis [10]. Then, a trigonometric polynomial function is 

used to fit the series of angles over time. Finally, the estimated 

parameter values are used to identify and identify people [9,8]. In 
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another approach, the human silhouette image is divided into local 

areas. These local areas correspond to different parts of the human 

body. Then, by fitting different ellipses, the body structure is described. 

Therefore, in this method, spectral and spatial characteristics of local 

areas have been calculated and used for identification. 

In general, in these approaches, the accuracy of motion model 

recovery depends on the quality of silhouette image extraction. 

Therefore, in the presence of noise, the extracted parameters may not 

be reliable. To solve this problem, model-based methods have been 

developed to use tracking estimates in them. For example, Bayesian 

tracking is used to estimate human motion models [26,27]. The purpose 

of this approach is to use the advantages of the Bayesian approach and 

the model-based method. 

2.1.2. Feature-based Approaches   

The most important limitation of model-based approaches is the 

dependence of the accuracy of the algorithm on the quality of the initial 

model. Therefore, if the initial model is somewhat noisy or the model 

has an error, then the identification accuracy will drop a lot. This issue 

has led to the development of feature-based approaches. In this 

approach, suitable features are extracted and collected from the 

behavioral template during the person's movement, and the calculated 

features of people (and not the initial templates) are compared  [2, 5]. 

These behavioral features are of different types, the most important of 

which are: full silhouette image [2, 5, 6, 15] Fourier descriptor [28], 

Gabor filter [25, 29], Radon transform [30], scatter display [11], color 

behavioral image (CGI), wavelet transform, capsule neural network 

(LBC) based feature [86], and patch-based features [53, 62]. Since the 

feature-based approach works better in different conditions, we use it 

in this research as well. 

Feature-based approaches are divided into two general groups 

regardless of the feature type of temporal information preservation. 
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These two approaches are known as time models and format models [2, 

11, 24]. In fact, these two models refer to the way of extracting shape 

and behavioral dynamics. The first strategy stores time information for 

pattern recognition. Therefore, behavioral videos of human movement 

are stored in this field. Then, according to the fact that each video 

contains several cycles of human movement, movement strings are 

extracted. Finally, in this model, these movement sequences (including 

an individual movement period) are directly compared [2]. In this field, 

the Hidden Markov Model (HMM) and its population type (pHMM) 

[5] or Fourier analysis [28] are widely used. Here, to increase the 

accuracy, a large amount of data should be used for learning. Therefore, 

the most important weakness in the direct comparison of disciplines is 

its computational complexity. In addition, a lot of memory is needed to 

store data. 

In the second strategy, the sequence of images is converted into 

a single template [1, 24, 31, 32]. For example, the simplest way is to 

average human silhouettes during movement [1,14], known as 

"Behavioral Energy Image" (GEI). In this model, a gray image is 

produced from the average of binary silhouettes. Then, the feature 

space is reduced by analyzing the basic components. Finally, 

identification is done by defining the distance in the reduced space. 

Thus, with the development of GEI, the methods of "General Tensor 

Discrete Analysis" (GTDA) [25] or "Discrete Analysis with Tensor 

Representation" (DATER) were obtained for pattern recognition [6]. 

Another approach is "multilinear tensor-based nonparametric 

dimensionality reduction" (MTP) [23]. In addition, recently, the MTP 

method has also been used to identify behavioral templates with low 

resolution [4]. The most important limitation of this approach is the loss 

of "temporal order" between human movement phases. Because there 

is no temporal information in the mean templates. To solve this 

problem, a multi-channel technique called color behavioral imaging 

(CGI) has recently been developed [15]. Here, to preserve temporal 
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information, each motion phase is represented by a separate color 

(channel). Then averaging is done in the RGB color space to get an 

average color image. In addition, a model was obtained by analyzing 

statistical information that examines the effect of different 

characteristics on behavioral templates [33]. In general, regardless of 

the variety of model-free approaches, the models of this field have 

progressed in two directions: 1- extraction of more powerful features 

and 2- more detailed analysis of basic components and more effective 

reduction of feature dimensions. For example, the extraction of suitable 

features has led to a behavioral color image [14] or sparse data 

representation [11]. Also, significant developments have been made in 

reducing dimensions. For example, classical techniques used "Principal 

Component Analysis" (PCA) and "Linear Discrete Analysis" (LDA). 

But newer methods use tensor approaches in which the behavioral 

energy image is expressed with a second-order tensor (i.e. matrix) to 

maintain the two-dimensional structure of the data [15, 34, 35]. 

2.2. Gait Energy Image 

As stated, all human motion frames are compared in time 

characteristics. The accuracy of these models depends on the 

synchronization of movement phases. Because the beginning, middle 

and end frames of the movement sequences should refer to the same 

state of the person's step [14]. For example, in videos with a low frame 

rate, the movement phases between the gallery set and the probe are 

reduced, and the probability of moving frames is high. Because the 

behavioral characteristics in each movement cycle are very scattered 

and few. To solve the problem of synchronization, the features of the 

template in behavioral recognition have been proposed and developed. 

In these models, all images are converted into a single image in one 

motion cycle. Then the unit images are compared and identified. The 

simplest approach in this model is the averaging of silhouette images 

[1, 2]. 
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One of the most useful approaches in extracting the feature of the 

template and the basis of the approaches in this field is "Behavioral 

Energy Image" (GEI). This model was proposed and developed in 

2006[1]. The results show that this method has good accuracy despite 

its simplicity in the calculation. Here we represent the sequence of input 

silhouette images at time t by Bt(x,y). Therefore, the GEI template, 

G(x,y), will simply be the average of the silhouette images in a motion 

cycle: 

  𝐺(𝑥, 𝑦) =
1

𝑁
∑ 𝐵𝑡(𝑥, 𝑦)

𝑁
𝑡=1                                                                            

(2-1) 

 

where N is the complete cycle of the behavior template. Figure 

2.4 shows two strings of binary images of the motion template and its 

extracted GEI template. 

 

          

   

Figure 2.4. Shows behavioral energy templates. Multiple movement threads (left side) and 

extractive template (right side) [1]. 

As can be seen, GEI shows the main shape of silhouette images 

and their movement over time. This template is of the energy type 

because 1. each silhouette image is a normalized spatial image of the 

person's movement, 2. GEI is obtained from the accumulation of 
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temporal energies, and 3. a pixel with a higher brightness (or energy) 

value means that the number of moves at that point has been higher. 

The use of this type of display is important from two aspects. 

First, we prove that GEI is more robust to noise than the silhouette 

image. Secondly, in this algorithm, a model for extracting artificial 

images is proposed, which is more effective in increasing the efficiency 

of the identification algorithm. For behavioral identification, the 

discrete linear analysis (LDA) approach has been used, and for 

classification, the Euclidean distance criterion has been used in the 

reduced space[36]. 

The second step after extracting the GEI template is to generate 

synthetic images. In general, the number of images for each person is 

limited. This issue makes it difficult to accurately identify the behavior 

template under different conditions. A solution is directly comparing of 

the sequence of images used by temporal models. But as mentioned, 

this approach is sensitive to silhouette changes such as size change and 

displacement. To overcome this problem, we produce two real and 

artificial sets of behavioral templates. Real formats ({Ri}) are obtained 

by direct calculation from the string of images in the data [1]. But the 

artificial templates ({Si}) are obtained from the Ri and using a 

deviation model [1]. This deviation model is somewhat stable to 

silhouette changes and similar to the original model. Therefore, from a 

real form, R0, several synthetic models are developed that have the 

general properties of the GEI form. To produce this template, we cut 

and resize the lower parts of the template in different scales. Because 

most of the silhouette changes in different people happen in the leg area, 

we use this area to remove the changes. The experiment silhouettes that 

the height of the bottom of the leg to the top of the ankle in the silhouette 

image is about 1.24 of the total shadow. To ensure the scale, in the 

production of synthetic images, 3.24 of the height of each silhouette 

image is selected for cutting. Finally, with an iterative process, the 

lower rows of the silhouette are cut and each time the cut image is 
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resized. Table 2.1 shows the pseudocode of the steps of producing 

synthetic templates [1]. 

 

Table 2.1. GEI synthetic template generation pseudocode [1]. 

1. The input GEI template (R0) with dimensions Y×X is known. 

2. The h variable indicates the maximum cutting height from the floor. This value 

shows the maximum allowed deviation from the original template. 

3. We initialize k=2 and i=1. 

4. Remove r=k*i number of rows from the input template. 

5. Resize the obtained template with dimensions Y×(X-r) to size (XY/X-r)×X. 

6. Cut the left and right edges equally to get the Si templatewith Y×X dimensions. 

7. i=i+1 

8. If k*i≤h go to step 4, otherwise, stop the process of generating artificial images. 
 

With this process, several synthetic templates are produced from 

each real template. Figure 2.5 shows 8 synthetic templates produced 

from real templates. The image on the left shows the original GEI. Also, 

the first row of the cutting steps and the second row of Figure 2.5 shows 

the fitting steps. Also in the GEI, it has been applied nearest neighbor 

interpolation for fitting. These synthetic templates are generated for all 

individuals in the gallery and probe sets. 

 

 

Figure 2.5. Some examples of synthetic images produced from the original example (top left) [1]. 
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After producing these images, a comparison and matching 

between the gallery collection and the probe should be made. For this 

purpose, in GEI, examine the real patterntemplates together and the 

artificial templates separately and finally combine the results. 

To identify, first, a transformation matrix is generated using the 

real data by the LDA method. Then, by this transformation matrix, the 

feature space of artificial data is also reduced. After reducing the space, 

we compare the real and artificial sets using the similarity criterion and 

finally combine the results. Figure 2.6 shows the general block diagram 

of the identification algorithm based on GEI. 

 

Figure 2.6. General block diagram of behavioral identification algorithm based on GEI [1] 

 

To measure the similarity, we use the Euclidean distance 

measure in the reduced space. Here, the sets {ri} and {si} are the real 

and artificial samples in the i-th class, c is the number of classes, and 

the average of the real and artificial samples in the i-th class. With this 

assumption, to calculate the distance of the probe templates to the 

average of each class, D(Rp, Ri), which is: 
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 𝐷(𝑅𝑝, 𝑅𝑖) =
1

𝑛𝑝
∑ ‖𝑟𝑗 − 𝑚𝑟𝑖‖,     𝑖 = 1, … , 𝑐

𝑛𝑝

𝑗=1
                       (2-2) 

 

where rj is the transformed matrix of the probe template and np 

is the number of probe samples. Therefore, the similarity of the probe 

template to my class will be obtained by minimizing this distance: 

 𝐷(𝑅𝑝, 𝑅𝑘) min
i=1→c 

𝐷(𝑅𝑝, 𝑅𝑖)                                                            (2-3) 

 

Similarly, to calculate the distance between artificial templates, 

we have: 

𝐷(𝑆𝑝, 𝑆𝑖) = ∑‖𝑆𝑗 − 𝑚𝑠𝑖‖,       𝑖 = 1, … , 𝑐 

𝑛𝑠

𝑗=1

 

𝐷(𝑆𝑝, 𝑆𝑘 ) = min
i=1→c 

𝐷(𝑆𝑝, 𝑆𝑖)                                                                (2-4) 

where sj is the transformed matrix of the probe template and np 

is the number of probe samples. By combining real and synthetic 

distances, it is: 

𝐷({𝑅𝑝, 𝑆𝑝}, {𝑅𝑖 , 𝑆𝑖}) =  

𝐷(𝑅𝑝,𝑅𝑖)

𝑁𝑅𝑅
+

𝐷(𝑆𝑝,𝑆𝑖)

𝑁𝑆𝑆
        , 𝑖 = 1, … , 𝑐                                                       (2-5) 

 

where 𝑁𝑅𝑅 = 2∑ ∑
𝐷(𝑅𝑖,𝑅𝑗)

𝑐(𝑐−1)
𝑐
𝑗=1,𝑗≠𝑖

𝑐
𝑖=1  and   𝑁𝑆𝑆 =

∑ ∑
𝐷(𝑆𝑖,𝑆𝑗)

𝑐(𝑐−1)
𝑐
𝑗=1,𝑗≠𝑖

𝑐
𝑖=1       are the normalization coefficients of real and 

artificial templates, respectively. Finally, the distance between the 

probe pa and the gallery ka will be obtained by minimizing this 

distance: 
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𝐷({𝑅𝑝, 𝑆𝑝}, {𝑅𝑘 , 𝑆𝑘}) = 𝑚𝑖𝑛𝑖=1
𝑐 𝐷({𝑅𝑝, 𝑆𝑝}, {𝑅𝑖 . 𝑆𝑖})                     (2-6) 

 

2.3. Chrono-Gait Image 

One of the most recent ideas developed in the field of behavioral 

recognition is the Chrono (color image) algorithm. The initial model of 

this algorithm was proposed in 2010 and standardized in 2012 [14]. The 

purpose of this algorithm is to display the average behavioral image in 

color to describe it more appropriately. Because the most important 

limitation of template models is the removal of information and time 

sequence from the individual's behavior. Thus, chrono-behavioral 

imaging (CGI) is a type of multi-channel coding in which the 

behavioral string is converted into a color multi-channel image. This 

conversion will preserve the temporal information of the behavioral 

template [14]. Here, if the number of channels is 3, then the multi-

channel image will become an RGB color image, each channel of which 

is a function of the individual's behavior in time. This algorithm is 

based on three different steps:  

1.calculation of behavioral periodicity, 2. multi-channel mapping, and 

3.CGI production. In the following, we briefly review these three 

stages. 

The first step in CGI extraction is to calculate the behavioral 

periodicity. This is because the proposed method aims to determine the 

position and state of each frame relative to the initial frame of the 

period, and time information is obtained in terms of the distance from 

the beginning. In this process, as in the basic algorithm, the distance 

between the legs is used to calculate the frequency. However, factors 

such as bags, silhouettes, and surfaces can cause changes in efficiency 

and errors in calculating frequency. Therefore, in CGI, the effective 

distance of the legs (W) in the Ith image is calculated as follows: 
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𝑊 =
1

𝛽ℎ−𝛼ℎ+1
∑ (𝑅𝑖 − 𝐿𝑖),     0 ≤ 𝛼 ≤ 𝛽 ≤ 1 

𝛽ℎ
𝑖=𝛼ℎ                         (2-7) 

where h is half of the odd height and Ri and Li are the locations of 

the left and right pixels of the i-th line in the foreground image, 

respectively. Pay attention that in relation (2-7) the height of the person 

is used instead of the length of the whole image. Because anatomical 

studies show that the points of the body in most people have a specific 

proportion to the person's height [14]. Here, α and β parameters are used 

to limit the area of the legs and reduce the influence of external factors 

in calculating the frequency, Figure 2.7 shows the alternating signal 

calculated by the CGI method. (Blue line) verses baseline method  (red 

line). As we can see, the CGI approach produces sharper peaks than the 

basic algorithm. This issue makes comparison and period extraction 

more accurate. 
 

 

Figure 2.7. Alternating signal extracted from behavioral templates [15]. 

 

The second step in CGI calculation is multichannel mapping. For 

this purpose, the outer contour information of the silhouette image is 

calculated first. Because the contour is a suitable spatial feature of the 

silhouette information. But to calculate the contour, there are various 

methods such as gradient operator, LoG and local entropy. In CGI, the 
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use of local entropy information expresses more suitable properties of 

the edge [14]. Therefore, using this method, edge information is 

extracted here, which is beyond the scope of the discussion. After 

calculating the contour, a linear interpolation between the frames is 

done to obtain the position of each contour relative to the reference. 

First, by using a function, the position of each frame of the motion 

sequence is mapped to the interval [0,1] in 1.4 behavior intervals. 

𝑟𝑡 =
𝑊𝑡−𝑊𝑚𝑖𝑛

𝑊𝑚𝑎𝑥−𝑊𝑚𝑖𝑛
                                                                           (2-8) 

 

where Wt is the average leg width signal (relationship (2-8)), 

Wmax and Wmin are the upper and lower limits of leg width in 4/
1 

behavioral frequency. Then, according to the position of each frame, a 

different weight (Ci (rt)) is assigned to it to form the color of the 

channel. When the number of channels is one (k=1), the strategy will 

be the same as the GEI template; That is, each frame has the same 

weight in color composition. 

But when k>1 all frames are divided into k-1 equal parts during 

4/
1 interval. The border between these parts is determined by the points 

1 - pi=
i/(k-1), i=0, 1 ,…,k . Then we assign a certain weight to the i-th 

channel of the image to describe the (i-i th to i-1 part of this time 

interval: 

𝐶𝑖(𝑟𝑡) =

{
 

 (
𝑟𝑡−𝑝𝑖−2

𝑝𝑖−1−𝑝𝑖−2
) 𝐼            𝑝𝑖−2 < 𝑟𝑡 < 𝑝𝑖−1

(1 −
𝑟𝑡−𝑝𝑖−1

𝑝𝑖−𝑝𝑖−1
) 𝐼       𝑝𝑖−1 < 𝑟𝑡 < 𝑝𝑖

0                                      𝑂𝑡ℎ𝑒𝑟𝑠

                          (2-9) 

 

where I is the maximum brightness (or value of 255). For a 

proper description of the channels, their number is chosen equal to 3 (K 

= 3) to correspond to the weight in red, green and blue channels. 
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Therefore, the weight of human movement in 4/1 of its behavioral 

frequency is mapped to the RGB space as follows: 

 

𝐵(𝑟𝑡) = 𝐶1(𝑟𝑡) = {
(1 − 2𝑟𝑡)𝐼    0 ≤ 𝑟𝑡 ≤ 1/2
0                     1/2 < 𝑟𝑡 ≤ 1

                    

(2-10) 

𝐺(𝑟𝑡) = 𝐶2(𝑟𝑡) = {
2𝑟𝑡𝐼                0 ≤ 𝑟𝑡 ≤ 1/2
(2 − 2𝑟𝑡)𝐼    1/2 < 𝑟𝑡 ≤ 1

                                 

(2-11) 

𝑅(𝑟𝑡) = 𝐶3(𝑟𝑡) = {
0                     0 ≤ 𝑟𝑡 ≤ 1/2
(2𝑟𝑡 − 1)𝐼    1/2 < 𝑟𝑡 ≤ 1

                        (2-12) 

 

In the third step and before calculating the CGI template, a multi-

channel behavioral contour image (Ct) is obtained by multiplying the 

RGB weights in the input image (ht). 

𝐶𝑡(𝑥, 𝑦) = (

ℎ𝑡(𝑥, 𝑦) ∗ 𝐶1(𝑟𝑡)

ℎ𝑡(𝑥, 𝑦) ∗ 𝐶2(𝑟𝑡)

⋮
ℎ𝑡(𝑥, 𝑦) ∗ 𝐶𝑘(𝑟𝑡)

)                                          (2-13) 

 

Then, by summing the Ct values in the direction of all the 

channels (ni), the middle image of PGI ( ) is obtained 

in every interval of 4/1  intervals. Finally, by adding PGIs and averaging 

them, a CGI template is produced. 

       

 𝐶𝐺𝐼(𝑥, 𝑦) =
1

𝑝
∑ 𝑃𝐺𝐼𝑖(𝑥, 𝑦)

𝑝
𝑖=1                                                     (2-14) 

 

Where p is the number of 4/1 behavioral intervals. Pay attention 

that we have used " saturated addition " in calculating PGI.  Thus, 

whenever the total value exceeds the maximum brightness value (ı), the 
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result will be the value of ı. But in the calculation of the CGI template, 

the values are added normally, Because the sum operation is just a 

simple averaging over the color channels. 

After extracting CGIs in the set of probe and gallery images, the 

similarity between templates should be measured. Here are the steps of 

behavioral identification similar to the GEI model [14]. In this way, 

first a set of artificial images is produced, and the templates are not 

compared directly. Because firstly, the number of CGI templates is very 

small and cannot model the behavioral characteristics of training data 

(sample reduction problem). Secondly, if each pixel is considered as a 

dimension in the feature space, the feature space is very large, and we 

face the problem of the " curse of dimensionality ". 

To solve these problems, in addition to producing artificial 

images, the dimensions of the feature are reduced, and the distance 

criterion is calculated in the new space. To produce artificial templates 

like GEI, we repeatedly cut the bottom lines of the image and resize the 

result. Also, the PCA+LDA combination is used to overcome the 

dimensionality limitation problem. Therefore, the reduction of 

dimensions is done in two steps. First, the feature space is reduced by 

PCA, and then by LDA again, the dimensions of the reduction and the 

new space are obtained. Figure 2.8 shows some examples of real CGI 

images (in the first row) and artificial templates (in the second row). 
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Figure 2.8. Some examples of CGI templates (first row) and artificial templates (second row) 

[15]. 

 

The distance criterion in the new space is also calculated in the 

same way as the equation (2-9). Thus, if d(Rp, Ri) is the distance 

between Rp and Ri (real) templates, d(Sp, Si) is the distance between 

Sp and Si artificial templates, Sp and Si and C is the number of gallery 

classes; Then to calculate the total distance we will have: 

   

𝑑(𝑅𝑃, 𝑆𝑃, 𝑅𝑖 , 𝑆𝑖) =
𝑑(𝑅𝑃, 𝑅𝑖)

min 𝑑
𝑗

(𝑅𝑃, 𝑅𝑗)
+

𝑑(𝑆𝑃, 𝑆𝑖)

min 𝑑
𝑗

(𝑆𝑃, 𝑆𝑗)
,            

𝑖, 𝑗 = 1,⋯ , 𝐶                                                                                   (2-15) 

 

Therefore, similar to the relation (2-12), the input probe template 

is assigned the k class label whenever its overall distance is minimized: 

 

 

𝑘 = argmin 𝑑
𝑖

(𝑅𝑃, 𝑆𝑃, 𝑅𝑖 , 𝑆𝑖),      𝑖 = 1, … , 𝐶                                     (2-16) 
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2.4. Patch Gait Features (PGF) 

Recently, an approach based on local patches as mentioned in the 

previous chapter has been developed. In this method, local patches are 

extracted from movement sequences. Then the local extremum points 

are extracted, and the probability distribution based on the patches is 

calculated. Finally, the final template will be formatted and calculated 

as Patch Gait Features [50]. Since patch-based methods have been 

developed in recent years to identify the movement template [11, 47, 

48, 51, 52], its use will be the ability to effectively display human 

movement. Because with the help of these patches, we can obtain 

Spatio-temporal and local information about the human movement 

process in periodic intervals. Figure 2.9 shows the structure of PGF [53] 

whit three main steps. Considering the PGF approach, some movement 

patches are more important than others. But the major limitation of the 

PGF approach is that all patches in the Spatio-temporal space are given 

the same importance. Only its histogram is calculated in the formation 

of the probability distribution (second step). In other words, the location 

of some patches may indicate local noise distorting the probability 

distribution. This issue will decrease the quality of the final feature 

display. To solve this limitation in this thesis, we add a condition that 

patches are monitored (refined) after being selected in the first step. 

Then we will use the monitored patches for possible distribution in the 

second step. The proposed algorithm is called the improved Patch Gait 

Feature (iPGF). 
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Figure 2.9. General overview of three main steps of PGF [53]. 

 

The PGF approach is based on three main steps [53]:  

A.1. preprocessing and silhouette extraction of Spatio-spatial 

patches  

        A.2. calculation of the probability distribution of patches  

        A.3. calculation of PGF  

In the following, we briefly explain these steps. 

This section describes a different algorithm. In the proposed 

method, local patches are extracted from a motion sequence, and the 

local extremum points are identified. The probability distribution based 

on the patch is then calculated, and the final template is formatted and 

computed as a motion feature based on the possible distribution of 

patches [50]. The use of patch-based methods has been developed in 
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recent years to identify movement templates [11, 47, 48, 51, 52]. By 

utilizing these patches, the proposed method is able to effectively 

display human movement and obtain Spatio-temporal and local 

information about the human movement process in periodic intervals. 

Since the extraction of patches is based on the use of Gabor 

filters, the proposed method will briefly explain the relevant 

relationships before proceeding with the extraction of the patches. 

These patches will then be utilized to describe the movement template. 

To describe the motion template based on local patches, two different 

algorithms are presented in this section. First, the "patch-based motion 

features" (PGF) algorithm will be described, in which Spatio-temporal 

motion information will be added to the final templates [50]. Then, in 

the second part, "Gabor energy weighted template" (wGbEI) is stated, 

in which the information of patches and their density will be used in the 

description of the final template. Both features stated in this section are 

more accurate than filter-based features and are more suitable for 

describing spatial and temporal information [11, 47, 48, 51, 52].  

2.4.1. Local patch extraction 

Recently, the Gabor filter feature has been recognized as an 

effective feature for modeling human movement templates [11, 25, 35]. 

A set of Gabor filters in a default pixel z=(x,y) is defined as a complex 

exponential function (relation (2-7)), which briefly consists of: 

 

𝜙𝜏,𝑣(𝑧) =
‖𝑟𝜏,𝑣‖

2

𝛿2
𝑒
−

‖𝑟𝜏,𝑣‖
2
‖𝑧‖2

2𝛿2 [𝑒𝑖𝑟𝜏,𝑣.𝑧 − 𝑒−
𝛿2

2 ],                     (2-17)          

 

where it  ,
vi

vr e


 = represents the scale and direction of the Gabor 

kernel function. In the above relationship similar to [25], the value of u 

is equal to {0, 1, 2, 3, 4} and v is equal to {0, 1, 2, 3, 4, 5, 6, 7}. As a 

result, 40 Gabor kernel functions are obtained in 5 scales and 8 different 
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directions (according to Figure 2.8). Also, the value
2exp( ( 2))−

   in relation 

(2-17) is subtracted so that the functions are independent of the DC 

value and are resistant to changes in brightness. 

In the proposed approach, all motion frames are channelized with 

the above filters to extract the patches. For each image with dimensions 

N2×N1, 40 Gabor filter responses are obtained after convolution. Of 

course, according to relations (2-8) to (2-10) [25], the absolute value of 

each response is calculated to obtain real functions. Also, to reduce the 

computational burden, the dimensions of the Gabor images are reduced 

to [𝑁1
2⁄ ]×[ 𝑁2

2⁄ ], where [𝑁1
2⁄ ] and [𝑁2

2⁄ ] are the largest integers smaller 

than or equal to 𝑁1
2⁄   and 𝑁2

2⁄  [11]. It has been proven that this dimension 

reduction lowers the computational load without reducing the 

identification accuracy [11]. 

𝑅𝑆𝐷 = |∑∑𝐼(𝑧) ∗ 𝜙𝜏,𝑣(𝑧)

𝑣𝜏

| 

= |𝐼(𝑧) ∗ ∑ ∑ 𝜙𝜏,𝑣(𝑧)𝑣𝜏 |                                   (2-18)   

 

where I (z) is the input image with reduced samples and "*" is the 

convolution operator. In patch-based approaches [11], the spatial 

information of the pixels is added to the value of the pixels obtained 

from the Gabor filter. Therefore, the enhanced Gabor filter (ρ = 42) 

𝑝ℎ = [𝑞ℎ
𝑇 , 𝑋ℎ, 𝑌ℎ]

𝑇
∈ 𝑅𝜌

 is obtained by adding pixel information. 

Also, qh  (h=1...H) is the value of Gabor pixels, where it [
𝑁1

2
] × [

𝑁2

2
] is 

the value of all filter pixels. 

But in the proposed approach, instead of adding the coordinates of the 

pixels, first the appropriate extremes are extracted from the response of 

the filters and the Spatio-temporal coordinates will be added to the filter 

values. 
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Suppose all the silhouette images are filtered according to the 

equation (2-18) in a motion interval and their responses are calculated. 

Then, all of them are collected in a standard format (called image 

stack). Then consider a window with dimensions wt  ×  wy  ×  wx in x, y 

and t directions (3×3×3 in this research). Now, by moving the window 

in the original space, the maximum values are found within each 3D 

window. Suppose the location of the local maximum point is at the 

point (Xi, Yj, tk), then by searching for local points in the entire image 

space, the coordinate values of the local maxima are stored. Obviously, 

by completing this process, the desired values will be in the range of 

i=1... [
𝑁1

2
], j=1... [

𝑁2

2
] and t=1...T (T time period) [50]. The distribution 

of these extremes (or representative of local patches) will be used to 

represent the features of the motion template. 

2.4.2. The Possible Distribution of Patches 

After collecting the extremum points (or patches), the next step 

is to use the Spatio-temporal statistical distribution of the patches. 

These points and their distribution in the stack of images are the Spatio-

temporal characteristics of the desired movement template. The PGF 

has been used histograms to describe this dispersion in the image stack 

space. Suppose the function is a function that assigns the location of the 

local maximum Xi to the index b(Xi). The probability distribution 

function (histogram) of the coordinates of extremes in three dimensions 

can be calculated as follows: 

𝑞𝑢,𝑥 = 𝐶𝑥 ∑𝛿[𝑏(𝑋𝑖) − 𝑢]

[
𝑁1
2

]

𝑖=1

 

𝑞𝑢,𝑦 = 𝐶𝑦 ∑𝛿[𝑏(𝑌𝑗) − 𝑢]

[
𝑁2
2

]

𝑗=1

, 

𝑞𝑢,𝑡 = 𝐶𝑡 ∑ 𝛿[𝑏(𝑡𝑘) − 𝑢]𝑇
𝑘=1                (2-19) 
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where Cx, Cy and Ct coefficients are ∑ 𝑞𝑢
𝑚
𝑢=1 = 1normalization 

coefficients so that by calculating the above histograms, we will have 

three possible distributions corresponding to the horizontal, vertical and 

time directions. In the next section, it has been used these histograms 

to form enhanced patches. 

Figure 2.10(a) shows the process of processing and calculating 

Spatio-temporal histograms. Each moving window in D+t2 space has a 

local maximum whose coordinates are mapped to an index and placed 

in the corresponding histogram. The location of extremes in the entire 

D+t2 space represents the distribution of Spatio-temporal patches for 

each person. Figure 2.10(b, c, and d) shows sets of X, Y, and T 

histograms for three different people, each of which has a unique color 

bar.  

 

 

A,B 
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C,D 

Figure 2.10. (a) The process of calculating X-Y-T histograms based on the location of local extrema, 

(b), (c), and (d) the summary of vertical, horizontal and time histograms for different people 

expressed by blue, green, and red bars [53]. 

As can be seen, each graph of desires for people has different 

distributions and they have little similarity to each other. Therefore, 

they have a suitable capacity to display local patches or movement 

templates. In other words, the sum of these three histograms is known 

as the signature of the motion template [50]. For the three-dimensional 

visualization of the distribution of patches in the stack of images and in 

the D+t2 space, Figure 2.10(a) shows the position of the 20 most 

histogram values in Figure 2.10(b-d). 
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Figure 2.11. D+t2 position of top 20 X-Y-T histogram indices for three different people, (a) 3D 

view and (b) 2D view [53]. 

 

The higher the value of the corresponding histogram index, the 

larger the circle's radius. Then, the two-dimensional view of these 

yellow circles on the X-Y plane is shown in Figure 2.10(b). In Figure 

2.11, it can be said that the larger radius is related to the higher density 

of local patches in the motion space. Because the higher the density of 

patches in a region of 2D+t space, the higher the histogram index [50]. 

It is clear from Figures 2.10 and 2.11 that a set of X-Y-T histograms 

can be used as a motion template signature to describe people's walking 

type. In fact, for each walking condition, there are some essential points 

whose probability in 2D+t space can be used to describe the type of 

movement. It should be noted that most of the patches are in the areas 
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around the feet, hands and shoulders, in other words, the proposed 

algorithm highlights these areas for better identification. The calculated 

histograms are used to form the final template. The final template is an 

enhanced Gabor feature where the 3D coordinates are added to the 

Gabor filter values.  
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Approches references principle invariance Used 

Metric 

Complexity 

if it is 

Available  

Computer 

Configuration 

if it is 

available 

Dataset  Scores  

CGI [14] a colorful template in 

which the rhythm of 

walking in time domain is 

represented in color 

spectrum. It has been 

proved that such colorful 

template can represent gait 

in different conditions 

more accurately 

Check if there 
is invariance 
to light, 
rotation, etc.  
If there is no 
invariance, 
please 
mention the 
used 
preprocessing 
to achieve it  
 

Rank1 & 

rank2 
the time 

complexity 

of 

generating 

all CGI 

templates 

for each 

training and 

test data is 

ðNtrTWHk 

þ 

NteTWHkÞ, 

w 

run a Matlab 

code on a 

machine with 

an Intel Core2 

Duo CPU 

T9600 2.80 

GHZ and 3 

GB of DDR3 

memory 

CASIA 

database 

(Dataset 

B). 

Obtained 
scores on 
each 
dataset 

PGF [11,47, 

48,50, 

51,52 

,53] 

local patches are extracted 

from a motion sequence. 

Then the local extremum 

points are extracted, and 

possible distributions 

based on the patches are 

calculated. Finally, the 

final template will be 

calculated as a movement 

feature based on the 

possible distribution of 

patches 

Shoes type 

Viewing angle 

Walking surface  

Time + Shoes 

+Surface 

+Clothing 

Rank1 & 

rank2 
the general 

complexity 

of all the 

PGF 

templates is 

in the order 

of O(40(T + 

1) (ngl + 

npr)WHwh) 

the time of 

computing a 

PGF for an 

individual is 

820 ms using 

MATLAB 

8.3.0 

(2014a) 

running on an 

Intel (R) Core 

(TM) i7 

processor with 

8 GB RAM 

working at 

2.39-GHz 

for USF 

dataset 

USF 

HumanID 

dataset 

(dataset 

version 

2.1), 

CASIA 

Dataset 

(Dataset 

B)  and 

OU-ISIR 

(Dataset 

B)  

The OU-

ISIR 

dataset 

includes of 

48 

individuals 

walking 

on a 

treadmill 

with 32 

types of 

different 

clothing 

 

The USF 

dataset 

consists of 

122 

individuals 

walking in 

elliptical 

paths in 
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Table 2.2. Three Approches synthetic template generation pseudocode[1]. 

 

 

 

 

 

 

 

 

 

front of 

the 

camera. 

GSI [24, 97] A pattern called gait 

salience image (GSI), 

which encodes relevant 

Spatio-temporal features 

into a single pattern. One 

of the great strengths of 

GSI is the extraction of 

motion-based features by 

applying a filter scheme to 

walking silhouettes. In 

other words, a Spatio-

temporal impulse response 

is adapted to compute the 

local walking features in a 

video sequence. Since 

there are two steps with the 

same walking mode in 

each walking period, 

therefore, the filtering 

process is repeated in each 

step, i.e. half of the period, 

separately.  

-grass, C-

concrete, A-

shoe A, B-shoe 

B, R-right 

view, L-left 

view, NB-no 

briefcase, BF-

briefcase, T-

time and avg. 

period-the 

average period 

of the 

individuals in 

given set 

Rank1 & 

rank2 
total 

complexity 

of GSI 

templates 

will be 

O(4(ntr + 

nte) 

NgWHwh) 

 

 1-NN 

classifier 

The 

processing 

time is 

measured with 

MATLAB 

code running 

on a machine 

with Intel 

Core2 Duo 

CPU P8400 

2.20 GHz and 

2 GB of 

DDR2 

memory. 

USF 

(Sarkar et 

al., 2005) 

and 

CASIA 

(Yu et al., 

2006) 

 

filtering is 

optimised 

to measure 

the 

motions 

captures 

from 90 

degrees 

 

GEI [14] It only considers individual 

recognition with activity-

specific human motion, for 

example, regular human 

walking, which is used in 

most current approaches to 

individual recognition with 

walking. 

clothing, shoes, 

or 

environmental 

context 

Rank1 & 

rank2 
1-Nearest 

Neighbor 

(1-NN) 

run a Matlab 

code on a 

machine with 

an Intel Core2 

Duo CPU 

T9600 2.80 

GHZ and 3 

GB of DDR3 

memory 

CASIA 

Gait 

Database 
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Chapter 3 

Proposed Method 
 

3.1. Proposed Method 

In this section, we describe the proposed method in detail. Our 

method is a contribution of PGF that is trying to keep the most useful 

valuable patches and withdraw noisy patches, and this is done by 

adding two more steps to original PGF.  

This is achieved by first creating an efficient template, which 

requires the use of robust gait templates. Based on this, templates are 

divided into two categories: spatial templates and Spatio-temporal 

templates. The difference between the two categories is that the latter 

captures both the spatial and temporal features of the walking template. 

Spatial templates only represent the spatial characteristics of walking 

templates, meaning they only consider the features of the person's 

silhouette or body shape in a given moment. They are extracted from 

individual frames of a video or series of images that capture the person's 

walking motion. On the other hand, Spatio-temporal templates 

represent the changes in the person's silhouette or body shape over time, 

taking into account the dynamics of the walking motion. They are 

typically extracted from a sequence of images or video frames that 

capture the person's walking motion. 

For better gait detection, an improved Spatio-temporal template 

is needed, especially in clothing conditions. Due to limitations in 

complexity, the parameters of features should be decreased, and only 

efficient features should be kept. After reviewing recent Spatio-

temporal templates, including CGI, GSI, GSTI, and PGF, I chose PGF 

for its simplicity, robustness, and low complexities [97]. However, 

some noisy pixels remain in the final PGF template. 



 
 

47 
 

The heart of PGF is the patch extraction process, and the most 

important part is to select the most significant features. Thus, I proposed 

a method to select the most important features called iPGF. 

In summary, spatial templates only capture the static appearance 

of a person's walking template, while Spatio-temporal templates 

capture both the appearance and the dynamics of the walking template. 

The basis of the development of current algorithms is the 

baseline approach to identifying the movement template. The initial 

idea of template-based templates was presented by Mr.Han et al. [1] 

under the title "Gait Energy Image" (GEI). In addition, features of the 

enhanced template have been developed based on the Gabor filter. For 

example, Mr.Tao et al. [7] presented a GTDA algorithm based on the 

Gabor filter in which the calculated features, like the GEI algorithm, 

are collected in one image. Recently, an improved Gabor algorithm 

based on patch statistical patch (Gabor-PDF) has been developed, 

solving many matching problems [5, 6]. 

Certainly, here's a summary of the role of Gabor filters in 

walking detection compared to other filters, based on the proposed 

Spatio-temporal walking models using regional adjacent patch 

descriptors: 

Gabor filters are a specific type of linear filter widely used in 

image processing to analyze textures and edges. They excel at capturing 

information from various orientations within the same image, making 

them highly effective in gait detection compared to other filters like 

Fourier. 

Orientation Sensitivity: Gabor filters are sensitive to specific 

orientations in an image, a crucial trait for gait detection. Body parts 

like legs and arms move in different directions during walking, and 

Gabor filters automatically capture these directional features, whereas 

Fourier transforms might struggle to do so. 
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Frequency and Spatial Localization: Gabor filters 

simultaneously handle frequency and spatial information, making them 

suitable for detecting local patterns in walking, such as the movement 

of different body parts. In contrast, Fourier transforms excel in 

capturing frequency but may miss gait-specific attributes. 

Analysis Flexibility: Gabor filters can adapt to various 

detections and analyze characteristics in different ways. This is 

essential for gait recognition, which involves both fine-grained details 

and overall movement patterns. Fourier transforms lack this versatility. 

Robustness to Change: Gabor filters' ability to capture texture 

and orientation makes them robust in handling changes due to lighting, 

clothing, and other environmental factors, unlike Fourier-based 

sources. 

Multi-Directional Features: Gabor filters diversify responses in 

different directions, making them crucial in capturing features 

irrespective of orientation. This is vital for analyzing body parts moving 

in diverse directions during walking. 

Texture and Edges: Gabor filters excel in capturing fine texture 

details and edges, crucial in identifying individuals based on clothing 

and body parts. Fourier filters primarily focus on frequency data. 

Localization and Selectivity: Gabor filters can localize in both 

domain and frequency, pinpointing specific attributes in a spatial region 

while considering frequency characteristics. This is important for 

recording localized movement patterns of body parts. 

In contrast, Fourier transforms emphasize frequency components 

and lack the same level of directional sensitivity and multi-orientation 

feature detection as Gabor filters. Gabor filters provide a 

comprehensive representation of gait features, capturing both 

directional and localized details. Their ability to analyze diverse 

orientations and scales makes them particularly effective for gait 
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detection, especially when features exist in various directions. This 

thorough analysis distinguishes Gabor filters from Fourier-based 

methods, enhancing the accuracy of gait detection techniques. 

As mentioned, the main weakness of template-based systems is 

the elimination of movement parameters. For example, the time 

sequence of human movement is removed in the final image. Various 

features have been proposed to calculate the time sequence and provide 

the template based on it [5, 8, 9, 10] (e.g. CGI, GSTI, etc.) to solve this 

problem. 

Two steps are suggested in this thesis for refining local patches 

and throwing away noisy patches. In the first step, a local feature vector 

is calculated and collected from the region around each patch. Like this 

feature, vector has already been developed in SIFT and SURF pairs. 

Then, in the second step, the local patch feature vectors are clustered 

using the k-means technique, and the segmented information is used to 

calculate the histogram in the second step of Figure 3.1 Finally, the rest 

of the steps are calculated according to Figure 3.1, and the final 

template is obtained. Figure 3.1 shows the two proposed steps. 
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Figure 3.1. The main steps of our iPGF method. In this step, first, a feature vector is calculated from 

the surrounding regions of each patch. Then, three data clustering distributions are calculated along 

the x, y, and z directions. The histogram of the patches is obtained in the second stage of iPGF based 

on the clustered data so that the center of each cluster will be a bin of the histogram. 

 

3.1.1. iPGF Approach 

The generated patches in the first stage allowed us to obtain the 

template distribution of each individual in space-time. But due to the 

patch calculation process, local noise may be generated in the feature 

vector, and the accuracy of the description will decrease. A two-step 

solution was proposed to solve this problem.  

Step1. computing HOG features 

In the first step, a local region around each patch is defined and 

weighted by a Gaussian function. In other words, it gives more weight 

to the areas near the patch and less to surrounding areas. Then the 

gradient histogram vector (Histogram of Gradient - HoG) is calculated 

from all these local areas and is the basis of the description of the area. 

In the second step, all the gradient vectors of the areas are collected and 

Step 1 of PGF 

Filtering & Local 

Patch Extraction 

p1 

p2 

pn 

Step 2 of PGF 

Patch Probability 

Distribution 

Clustering the patch 

descriptors 

Computing the patch descriptors 
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using the k-means clustering algorithm, the states are identified and 

grouped. In other words, the data obtained from clustering is given to 

the second stage of PGF and based on that, two cluster distributions are 

obtained in X and Y directions, and the PGF template will be calculated 

according to Figure 3.1. 

Suppose the coordinates of the local patches are in the x and y 

directions, and w and h are the width and height of the input image. A 

local area around this patch is defined as follows: 

𝑅𝑒𝑔𝑖𝑜𝑛𝑖 ≡ 𝑅𝜎(𝑝𝑖,𝑗,𝑘) = {(𝑥, 𝑦) ∶ 𝑥 − 𝜎 ≤ 𝑗 < 𝑥 + 𝜎;  𝑦 − 𝜎 ≤ 𝑘 <

𝑦 + 𝜎}                                                                                                                       (3-1) 

where σ is the standard deviation of the Gaussian function in the 

area around each patch. 𝑅𝑒𝑔𝑖𝑜𝑛 𝑖 represents a region of the image that 

surrounds the patch 𝑝𝑖,𝑗,𝑘. 

First, we define a two-dimensional Gaussian function as follows: 

𝐺𝑗𝑘(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒𝑥𝑝( −

(𝑥−𝑝𝑖(𝑥))
2

2𝜎2
−

(𝑦−𝑝𝑖(𝑦))
2

2𝜎2
)                      (3-2) 

 

where pi(x) and pi(y) are the coordinates of the patch in the x and 

y directions, respectively. In this way, the local area is smoothed by this 

Gaussian function: 

𝑅𝑒𝑔𝑖𝑜𝑛𝑖_𝑛𝑜𝑟𝑚 = 𝑅𝑒𝑔𝑖𝑜𝑛𝑖 × 𝐺𝑗𝑘                                                     (3-3) 

 

To calculate the features in this area, we use the gradient 

histogram (HoG) vector. For this purpose, first, the magnitude of the 

gradient, m (x, y), and its angle, θ (x, y), are calculated in the above 

area: 
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𝑚(𝑥. 𝑦) =  √(𝑅(𝑥 + 1. 𝑦) − 𝑅(𝑥 − 1. 𝑦))
2
+ (𝑅(𝑥. 𝑦 + 1) − 𝑅(𝑥. 𝑦 − 1))

2

𝜃(𝑥. 𝑦) = 𝑎𝑡𝑎𝑛2(𝑅(𝑥. 𝑦 + 1) − 𝑅(𝑥. 𝑦 − 1). 𝑅(𝑥 + 1. 𝑦) − 𝑅(𝑥 − 1. 𝑦))

     

                                                                                                                                     (3-4) 

 

where R is the pixels of the smooth region (Relation (3-4)). After 

calculating the magnitude of the gradient and its angle, the histogram 

of the gradient is calculated similar to equation (3-4): 

𝑔𝑢.𝑥 = 𝐶ℎ ∑ 𝛿[𝑏(𝑚𝑥.𝑦) − 𝑢𝜃]
180
𝜃=0                   (3-5) 

 

where g_(u.x).u=1...180 is the histogram index (bin) value 

corresponding to the x,y area. This histogram is used to describe each 

area. Then all these histograms are placed next to each other to form 

the final description vector, GX,Y. This final vector represents all the 

areas in the motion space, and with its help we can model the 

distribution of patches. 

Step 2. Clustering the features  

In the second step of the proposed approach, this feature vector 

is clustered to obtain the weights. For this purpose, we use the k-means 

technique to group similar features (related to the same areas). The 

number of clusters, k, in this method will be equal to [
𝑁1

2
] × [

𝑁2

2
]   (the 

number of image pixels). More precisely, the number of generated data 

related to each pixel will be categorized using k-means. If we call the 

label of each pixel, xi, IDX, then by a multi-step process and updating 

over several time steps, (t), the labels, k, will be obtained as follows: 

𝐼𝐷𝑋(𝑡) = {𝑔𝑢 : ‖𝑔𝑢 − 𝑥𝑖
(𝑡)

‖
2
≤ ‖𝑔𝑢 − 𝑥𝑗

(𝑡)
‖

2
.  ∀𝑗. 1 ≤ 𝑗 ≤ 𝑘}   (3-6) 
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Finally, we get help from these labels to produce weights. The 

weight of the pixels in this step will be obtained simply by counting the 

number of labels generated for each pixel. After calculating the 

weights, the rest of the steps will be calculated according to the PGF 

approach. These weights will replace qu, x, and qu, y in equations (3-

12). 

In the second step of the proposed approach, K-means clustering 

is employed to group similar features, which correspond to specific 

areas in the patch distribution. The primary objective of K-means 

clustering is to identify coherent patterns among the gradient vectors 

derived from local regions around patches. While the total number of 

clusters (k) is indeed equal to [
𝑁1

2
] × [

𝑁2

2
], where 𝑁1 and 𝑁2 represent 

the dimensions of the image, not every pixel becomes a cluster. Instead, 

the clustering process involves categorizing the gradient vectors 

obtained from specific local areas around patches. Each gradient vector 

corresponds to a specific pixel within that area. The clustering groups 

together similar gradient vectors, implying that similar local patterns in 

the input image result in shared cluster assignments. The purpose of 

clustering is to establish a meaningful grouping of gradient vectors 

based on their similarity, allowing for the identification of coherent 

motion patterns in different areas of the image. K-means clustering is 

performed on the gradient vectors extracted from local regions around 

patches, and the clusters represent similar patterns of gradient changes. 

This technique enables the identification of distinctive motion 

characteristics in the gait patterns, contributing to the accuracy of the 

subsequent steps in the iPGF approach. In the context of the proposed 

iPGF approach, the goal of clustering using the K-means algorithm is 

not to create a cluster for each individual pixel in the image. Instead, 

the clustering is performed on the gradient vectors extracted from 

specific local areas around patches. Here's how the clustering process 

works: Local Area Selection: The image is divided into a grid of 

patches, and each patch represents a localized region of pixels. For each 
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patch, a local region around it is defined, typically using a Gaussian 

weighting function to emphasize the central area and attenuate the 

influence of pixels farther from the center. Gradient Computation: 

Within each local area, the gradient vectors (both magnitude and angle) 

are calculated based on the intensity changes in the pixels. These 

gradient vectors represent how the intensity values change across 

neighboring pixels within that area. Feature Vector Creation: Each local 

area's gradient vectors are combined to create a feature vector that 

describes the gradient information within that area. This feature vector 

captures the local texture and edge information. Applying K-means: 

The K-means algorithm is then applied to these feature vectors, not 

individual pixels. The goal of K-means is to group similar feature 

vectors together in a way that minimizes the variation within each group 

and maximizes the difference between groups. Cluster Centers: K-

means identifies cluster centers, which are representative points within 

the feature space. These cluster centers are determined by iteratively 

updating them to minimize the sum of squared distances between the 

feature vectors in the same cluster and the cluster center. Assigning 

Pixels: Once the K-means algorithm has converged and the cluster 

centers are determined, each local area's feature vector is assigned to 

the nearest cluster center. This assignment indicates which cluster the 

local area's gradient information is most similar to. In summary, the 

clustering process involves grouping together similar gradient feature 

vectors that describe specific local areas around patches, not individual 

pixels. This allows the method to capture coherent motion patterns and 

texture variations within these localized regions of the image. The 

outcome of the clustering is a set of cluster centers that represent 

distinct patterns of gradient changes. These cluster centers are then used 

to compute weights that contribute to the subsequent steps of the iPGF 

approach, enhancing the accuracy of gait detection and analysis.In the 

next part, we will explain how to classify people, and then classify the 

input templates with the help of it. 
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3.2.Gait Classification 

The iPGF format, introduced in the previous part, is calculated 

for each sequence in a data set. In this section, I have reviewed various 

classification methods for my project, such as 1NN and PCA LDA. The 

reason for choosing these two methods is their good performance in 

gait recognition. However, using only these two methods does not 

increase classification accuracy in noisy conditions. For this reason, we 

have examined other methods such as Ensemble Learning, in which 

thousands of Week Classifiers need to be created. And the basis of this 

method is 2D PCA and 2D LDA. In the next step, the output of these 

thousand Week Classifiers is Mager T voting. Then from these 1000 

observations, 600 are assigned to class one and 400 to class two. I 

choose class one and one of the most effective and result-oriented 

methods mentioned in an article explaining PCA and LDA methods. 

According to this article, 1D PCA and 1D LDA methods vectorize the 

image well. This method is not desirable for us because it messes up 

the image structure. For this reason, I went to the two-dimensional 

image and chose a Rubos classifier. Like in Spatio-temporal templates, 

linear transformation of two-dimensional images is necessary for 

suitable classification. For example, 2 D PCA or 2D LDA 

ENSEMBLE, but using them does not increase classification accuracy 

in noisy conditions. For this reason, I went to methods in which we can 

create 1000 learnings. And put it on 2D PCA and 2D LDA base [97].  

For classifying generated templates, Principal Component 

Analysis (PCA) or Linear Discriminant Analysis (LDA), are two well-

known methods for reducing dimensions and template recognition [2, 

3]. The main idea of PCA or LDA is to calculate a set of correlated 

variables in a low-dimension space. However, in conventional PCA or 

LDA, two-dimensional (2D) walking templates are transformed into 

one-dimensional feature vectors. This projection removes the image’s 
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two-dimensional (2D) structure and converts it into one-dimensional 

(1D) structures. To deal with this problem, several tensor-based 

classification tools have been developed to represent input feature 

vector spaces in the last decade. For example, in classifications based 

on tensor, we can say the Random Subspace Method (RSM) [15,35], 

which overcomes covariance variates and impressively improve 

diagnosis. This is to create a weak classifier with a random sampling of 

tensor-based feature vectors for better decisions. Then the final decision 

is made by majority voting of weak classifiers. 

RSM classification includes three main steps [3]: spatial random 

sampling, generating weak classifications, and final voting. These steps 

are shown graphically in Figure 3.2, which are discussed in more detail 

in the following subsection. 

 

 

Figure 3.2. The general structure of RSM classification. 

 

3.2.1. Random Subspace Sampling 

Assume there are n gait templates Ai (i=1…n) (or GSTI) in the 

training set (gallery) with a dimension of N1×N2 pixels. In RSM, we 

compute 2DPCA projection matrix based on the 2D scatter matrix: 

 = 𝑢1, 𝑢2, . . . , 𝑢𝑑 ∈  𝑁2×𝑑

2DPCA

Random Subspace
Construction

…
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𝑋𝑖
𝑘

∈  𝑁1×𝑁 ,  𝑖 = 1, . . . , 𝑛, 𝑘 = 1,2, . . . ,  
Random Feature

Extraction(2DPCA)

IDR/QR

𝑌𝑖
𝑘 ∈   ×𝑁 𝑌 𝑖

𝑘 ∈  𝑆
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 𝑃  
𝑘 ∈  𝑁2×𝑁

Concatenating
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…
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𝑆 =
1

𝑛
∑ (𝐴𝑖 − 𝑀)𝑇 × (𝐴𝑖 − 𝑀)𝑛

𝑖=1                              (3-7) 

 

where 𝑀 =
1

𝑛
∑ 𝐴𝑖

𝑛
𝑖=1   is the global mean of the samples from all 

classes of the training set. Afterwards, the eigenvectors of the scatter 

matrix S are computed leading to d eigenvectors with non-zero 

eigenvalues  = [𝑢1, 𝑢2, … , 𝑢𝑑] ∈ ℜ𝑁2×𝑑
.,. The K random subspace  

{ 𝑃  
𝑖 ∈ ℜ𝑁2×𝑁}

𝑖=1

𝐾
 can be computed by random selection of N (N ≤ d) 

unique eigenvectors from subsets U and repeating the process K-times. 

As a result, the random feature sets will be generated in lower 

dimension space as follows [16]:  

𝑋𝑖
𝑘 = 𝐴𝑖 𝑃  

𝑘 ,         𝑖 = 1,… , 𝑛, 𝑘 = 1,2, … ,  .             (3-8) 

 

It can be proved that random sampling of eigenvectors can 

preserve the covariate factors in lower dimension feature space 

efficiently [3]. However, some redundant information remains in the 

feature vector K

iX  that may affect the performance of the final decision. 

To improve the recognition rate, another classification step will be 

applied in RSM. 

3.2.2.  Dimensionality Enhancing 

The random features in Equation (3-4) have still redundant 

information that may affect the quality of the decision. To obtain more 

discriminant features for weak classifiers, an additional dimensionality 

reduction method should be performed. Here, two known techniques, 

i.e. 2D Linear Discriminant Analysis (2DLDA) [22] and Incremental 

Dimension Reduction algorithm via QR decomposition (IDR/QR) [22] 

can be used alternatively [3]. In this section, both the 2DLDA and 

IDR/QR methods are being reviewed. The features for final decision 

are then extracted from each method separately.   
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In 2DLDA, the class labels are considered to get between-class 

scatter matrix k

BS  and within-class scatter matrix k

WS : 

𝑆𝐵
𝑘 = ∑ 𝑛𝑖(𝑚𝑖

𝑘 − 𝑀𝑘) × (𝑚𝑖
𝑘 − 𝑀𝑘)𝑇𝑐

𝑖=1                               (3-9) 

𝑆𝑊
𝑘 = ∑ ∑ (𝑋𝑗

𝑘 − 𝑚𝑖
𝑘) × (𝑋𝑗

𝑘 − 𝑚𝑖
𝑘)𝑇𝑋𝑗

𝑘∈𝐷𝑖
𝑘

𝑐
𝑖=1                      (3-10) 

 

where Mk is the global mean of all samples in kth subspace and 

Di
k is the index of ith class with sample number ni and mean of 

k

im . By 

computing the eigenvectors of  (𝑆𝑊
𝑘 )

−1
𝑆𝐵
𝑘 in each subspace and 

selecting M leading eigenvectors, we obtain K transition matrix   𝐷 
𝑘 =

{𝜑𝑖}𝑖=1
  (k=1…K) where each one has M random-selected eigenvectors.  

An alternative solution to the 2DLDA approach is the IDR/QR 

technique which applies QR decomposition to maximize the 

separability of between-class features [3]. Unlike the 2DLDA, the 1D 

vectors are processed rather than 2D matrices. Therefore, the extracted 

random features {𝑋𝑖
𝑘 ∈ ℜ𝑁2×𝑁}  should be vectorized before training 

IDR/QR model. By setting 2vN N N= , the vectorized random features 

can be represented as{𝑋 𝑖
𝑘 ∈ ℜ𝑁𝑣}. Now for each subspace, the set of 

within-class centroids 𝐶 = [𝑚̂1
𝑘 , 𝑚̂2

𝑘 , … , 𝑚̂𝑐
𝑘] is first computed and QR 

decomposition will be performed on C, as C QR= , and 𝑄 ∈ ℜ ×𝑐
  [3]. 

With setting,𝑒𝑗 = (1,1, … ,1)𝑇 ∈ ℜ𝑛𝑗 two predefined matrices 𝐻𝑊
𝑘  and 

𝐻𝐵
𝑘 will be derived as follow: 

𝐻𝑊
𝑘 = [𝐷̂1

𝑘 − 𝑚̂1
𝑘𝑒1

𝑇 , 𝐷̂2
𝑘 − 𝑚̂2

𝑘𝑒2
𝑇 , … , 𝐷̂𝑐

𝑘 − 𝑚̂𝑐
𝑘𝑒𝑐

𝑇]                    (3-10) 

𝐻𝐵
𝑘 = [√𝑛1(𝑚̂1

𝑘 − 𝑀̂𝑘), √𝑛2(𝑚̂2
𝑘 − 𝑀̂𝑘), … , √𝑛𝑐(𝑚̂𝑐

𝑘 − 𝑀̂𝑘)]  (3-11) 
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Similar to 2DLDA, ˆ kM is the global centroid (mean of all 

samples) of kth subspace and ˆ k

iD is index of the ith class with centroid 

ˆ k

im and sample number ni. Here, within-class and between-class scatter 

matrices can be computed as: 

𝑆𝑊
𝑘 = ((𝐻𝑊

𝑘 )
𝑇
𝑄)

𝑇
((𝐻𝑊

𝑘 )
𝑇
𝑄)                                                  (3-12) 

𝑆𝐵
𝑘 = ((𝐻𝐵

𝑘)
𝑇
𝑄)

𝑇
((𝐻𝐵

𝑘)
𝑇
𝑄)                                         (3-13) 

 

For each subspace, the given transformation matrix   𝑅𝐷
𝑘  is 

computed from eigenvectors of (𝑆𝑊
𝑘 )−1𝑆𝐵

𝑘and selecting the M leading 

eigenvectors 𝑘 = {𝜙𝑖}𝑖=1
 :: 

  𝑅𝐷
𝑘 =  𝑘𝑄                                                                        (3-13) 

 

Therefore, K IDR/QR-based transformation matrix {  𝑅𝐷
𝑘 ∈

ℜ
𝑆× } will be used to extract more discriminant features. 

Now considering two mentioned techniques, three sets of 

transformation matrices are achieved in the training phase as: 2DPCA 

matrix, { 𝑃  
𝑖 ∈ ℜ𝑁2×𝑁}

𝑖=1

𝐾
,  , 2DLDA (  𝐷 

𝑘 ) and IDR/QR (  𝑅𝐷
𝑘 ). For 

each subspace, dimensionality of our gait templates (GSTI) can be 

reduced by applying the 2DPCA, 2DLDA, and IDR/QR projection 

matrices written here: 

𝑋𝑖
𝑘 = 𝐴𝑖 𝑃  

𝑘 ,              𝑖 = 1,… , 𝑛, 𝑘 = 1,2, … ,  ,                     (3-14) 

𝑌𝑖
𝑘 = (  𝐷 

𝑘 )𝑇𝑋𝑖
𝑘 ,       𝑖 = 1, … , 𝑛, 𝑘 = 1,2, … ,  ,                      (3-12)    

𝑌 𝑖
𝑘 = (  𝑅𝐷

𝑘 )𝑇𝑋 𝑖
𝑘 ,       𝑖 = 1, … , 𝑛, 𝑘 = 1,2, … ,               (3-13) 
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where k

iX ,  k

iY , and ˆ k

iY are 2DPCA random, 2DLDA enhanced, 

and vectorized IDR/QR features sets, respectively. Once the mentioned 

projection matrices are computed, two different methods known as 

2DPCA+2DLDA (or 2DLDA) and 2DPCA+IDR/QR (or IDR/QR) is 

being used for K random feature extraction. The hybrid decision level 

is then achieved based on the outputs of random classifiers which are 

discussed in the following subsection. 

 3.2.3.  Final Classification 

The basic idea behind the ensemble methods is to find a robust 

classifier based on the performance of the weak classifiers. Here, each 

feature set in kth subspace can make weak decisions according to the 

covariate factors. The final decision will be taken based on the sub-

decisions in each subspace. Suppose there are c classes in the training 

set (gallery) and each has ni (i=1,…,c) samples. For the kth subspace, 

let 𝑚𝑖
𝑘(𝑖 = 1,… , 𝑐) be the mean of the samples in each class and Rk be 

the feature samples of the probe set (including np gait samples) [35]. 

The Euclidean distance between Rk and the mean of ith class of the 

gallery k

im can be expressed as:  

 

𝑑(𝑅𝑘𝑚,𝑚𝑖
𝑘)

=
1

𝑛𝑝
∑‖𝑅𝑗

𝑘 − 𝑚𝑖
𝑘‖,   𝑖

𝑛𝑝

𝑗=1

= 1,… , 𝑐 . 

                                       

(3-14) 

 

Now, the minimum distance of a given probe template to each 

class,  
1

c

i i


=
 in the gallery set is considered as weak decision:  

𝛺𝑘(𝑅𝑘) = argmin
𝜔𝑖

𝑑(𝑅𝑘 , 𝑚𝑖
𝑘), 𝑖 = 1,… , 𝑐.                     (3-15) 
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Here, we have two sets of weak classifiers based on two feature 

sets (2DLDA and IDR/QR). A Hybrid Decision-level Fusion (HDF) 

among K subspace in each set of weak classifiers can be achieved 

simply by majority voting of all K classifiers [3]. More precisely, for a 

probe gait query
1{ }k K

kR R == , the mode of K labels in all subspaces is 

considered the final decision. The correctness of this consideration can 

be represented as a binary function: 

 𝜃𝜔𝑖

𝑘 = {
 1, 𝑖𝑓     Ω𝑘(𝑅𝑘) = 𝜔𝑖  
0,                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  , 𝑖 ∈ [1, 𝑐]                                  (3-16) 

and final classification by majority voting can be expressed as: 

𝛺(𝑅) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜔𝑖

∑ 𝜃𝜔𝑖

𝑘 ,   𝐾
𝑘=1 𝑖 ∈ [1, 𝑐]                                         (3-17) 

 

where ( )R is the final class assigned to the given probe 

templates.  

To further improve the performance of the decision, a hybrid strategy 

has been applied by fusion of the results from two different classifiers 

[3]. Let ( )LDA R  and ( )QRD R  be the final decision corresponding to 

the 2DPCA+2DLDA and 2DPCA+IDR/QR -based features for a query 

gait R. The hybrid classifier (HC) can be performed by [3]: 

   Ω𝐻 (𝑅) = {

𝜔𝑖, 𝑖𝑓 ΩLDA(𝑅) =

𝜔𝑖, 𝑖𝑓 ΩQDR(𝑅) = 𝜔𝑖  , 𝑖 ∈ [𝑐]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     (3-18) 

 

It is inferred from Equation (3-18) that HC decision is guaranteed 

if one of the corresponding classifiers recognizes given individual 

correctly. 
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Chapter 4  

Results 

 

4.1. Implementation and Result 

In this section, we will describe the results related to the Gait 

classification with the help of the proposed approach. For this purpose, 

we will just use the USF [2] database. In comparison with other well-

known dataset such as CASIA [25], the USF provide more competitive 

conditions while the quality of silhouettes is noisier and guiltier [53].  

The selected algorithms for evaluation and comparison are 

Baseline algorithm [2] LGSR [11], GEI+RSM [35], Gabor+RSM [35], 

VI-MGR [13], LPSELA [49], GSTI [16] and PGF [54] will be. Then, 

in the final part, the proposed approach to PGF will be evaluated from 

the perspective of computational complexity and memory issues. 

The process for pi one involves using 100 templates in the probe 

and 122 in the gallery. The algorithm receives each person one by one 

and produces a classification output based on similarity or distance, 

which is denoted as D. This process is repeated for all 122 people in the 

gallery. After calculating the distance, we sort them and compare the 

labels to find the best match. We consider P1 to be the same as P1 and 

repeat this process for the rest of the labels. 

The distances are sorted from lowest to highest, and the lowest 

distance for pi one indicates that the classifier has recognized pi one. 

We then match the labels to determine the most similar person. This 

process is repeated for the entire probe set, and we check which person 

has the highest matching rank, which is known as rank one. 

For rank five, we sort the distances and check whether matching 

has occurred in the top five distances. We determine whether the 
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minimum distance falls within the specified interval and whether 

matching has occurred. 

Overall, the process involves sorting the distances and matching 

labels to determine the most similar person. We repeat this process for 

the entire probe set to determine the rank of the matching person. 

The implementations have been done in Google Collab and 

Python, and the features have been calculated locally in the laptop due 

to the limited space of Google Collab. 

Tools:  

1-simulation software: Python 

2-Hardware: 

 -Core i7 

-Processor11thGenIntel(R)Core(TM)i7-

11800H@2.30GHz,2304Mhz,8 core(s)  

-installed physical memory (RAM) 32.0GB 

3-This project will use USF [3] and CASIA (SET B) datasets [7]. 

4.2. Gait Dataset  

The USF database consists of 122 subjects moving in an elliptical 

path in front of the camera [2, 16, 24]. Briefly, walking conditions are 

movement level (S), shoe type (H), viewing angle (V), bag carrying 

requirements (C) and, elapsed time (T). Considering these five 

challenging factors, in this database, the motion sequence with the 

condition "grass surface, shoe type A, shooting from the right side of 

the camera, no bag, and recorded at time t1 (May)" is selected for the 

gallery collection. are Then, 12 different and distinct tests have been 

selected for the probe set. 

 

mailto:i7-11800H@2.30GHz,2304Mhz,8
mailto:i7-11800H@2.30GHz,2304Mhz,8
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Table 4.1. The specification of probe sets in USF gait dataset [2, 15]. 

Experiment A B C D E F G 

Covariates V H VH S SH SV SHV 

Num. of People 122 54 54 121 60 121 60 

Variance Shoes/View Surface+Shoes/View 

Experiment H I J K L  

Covariates B BH BV THC STHC 

Num. of People 120 60 120 33 33  

Variance Briefcase + Shoes/View Time+ Shoes +Surface+Clothing 

V-View, H-Shoe, S-Surface, C-Carriage, T-Time, C-Clothing 

 

The conditions in the gallery and each probe set are unique, and 

there is no commonality between motion conditions in the probe set. 

All tests in the database can be divided into four distinct groups. The 

difference between each group to the gallery set, the difference in 

groups, and the list of probe sets belonging to each group are also 

shown in table 4.1. In this database, the sequence of normalized 

silhouettes (Sequence of normalized silhouettes) is also presented. 

4.2.1. Algorithm Benchmark 

Every biometric system operates in two working modes. The first 

mode is responsible for the identity measurement and the second mode 

is responsible for the authenticity measurement of people. Based on 

this, two criteria, "cumulative match characteristics" (CMC) and 

"receiver operating characteristics" (ROC) have been developed to 

evaluate these two modes [2, 5]. In the CMC criterion, the behavior 

template of each person from the probe set is measured with all the 

templates of people in the gallery set and a similarity score is given to 

the people. This score indicates the similarity of a person from the probe 

to all the people in the gallery. Then, the goal of CMC is to measure the 

answer to the question, "Is the person in question in the probe among 

the k people with the highest score from the gallery?" If the desired 
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person from the probe was among the top k people from the gallery, 

then we will have a correct identification rate in the kth row. In general, 

suppose that in a probe set, P is the total number of individuals to be 

scored and, Rk is the number of individuals among the top k matches. 

In this case, the identification rate is equal to: 

CMC(𝑘) =
𝑅𝑘

𝑃
                             (4-1) 

By calculating this value for different values of k, the CMC curve 

is obtained [2]. In articles, CMC results for two values of k=1 and k=5 

are usually expressed as a measure of biometric system accuracy. 

Therefore, the results are called "Correct Classification Rate" (CCR) 

Rank 1 (Rank1) and Rank 5 (Rank5) in the articles [11, 15]. This model 

of identification is called "set-package" and it means that the correct 

answer is always present in the gallery set [2, 7]. In other words, the 

person tested in the probe set is one of the selected people in the gallery 

set, whose movement conditions (such as shoes, ground surface, etc.) 

are different. For example, in the USF behavioral data set, the number 

of people in the gallery set is 122 and the number of people selected in 

one of the probes (for example, B or C) is 54 people. With this 

assumption, in a biometric system, the Rank1 value equal to 95% means 

that 95% of the people in that probe have been correctly placed and 

identified in the first row of scoring. Also, the value of Rank5 is equal 

to 98%, which means that 98% of the people in the probe have been 

correctly identified except for the first five people. Finally, in some 

articles, the CMC curve is used to express accuracy [63]. The horizontal 

axis in this curve is different values of k and the vertical axis is the 

CMC values of relation (4-2). 

Now, in the USF dataset, because the number of people in each 

probe set is different, the weighted average of the identification rate of 

Rank1 and Rank5 is also expressed as a quantitative measure. The value 

of the weighted average identification rate (W-AvgI) can be calculated 

according to the following equation: 
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𝑊 − 𝐴𝑣𝑔𝐼 =
∑ 𝑤𝑖𝑅𝑘

𝑔
𝑖=1

∑ 𝑤𝑖
𝑔
𝑖=1

                                                               (4-2)  

Where, wi is the number of people in each probe set and g is the 

number of tests (g=12). In this section, we will use the value of W-AvgI 

to calculate the average accuracy of Rank1 and Rank5. 

4.3. USF dataset Result 
  In 2005, extensive research was conducted on the effects of five 

external factors on behavioral patterns. These factors include two 

shooting angles (L and R), two types of shoes, two types of surfaces 

(concrete and grass), type of carrying object (without a bag and with a 

bag) and shooting time (May and November). The results were 

compiled into the USF standard data, which consists of 1870 motion 

videos of 122 individuals. 

The set of experiments was defined by combining these five 

factors in two change modes, resulting in 32 different test conditions. 

The purpose of this research was to provide challenging conditions for 

remote behavioral recognition in surveillance applications. Researchers 

aimed to develop algorithms that could handle various environmental 

challenges such as variable background silhouettes and different 

lighting conditions. 

The USF data encompass changes in surface type, shoe type, and 

carrying object, as these factors were hypothesized to influence both 

walking behavior and selection characteristics of individuals. 

Researchers from CMU, MIT, Sampton Land MIT, and Georgia Tech 

agreed that these five variable factors present significant challenges in 

the field. 

The test conditions were designed to be neither too easy nor too 

difficult, allowing the evaluation of behavioral recognition algorithms 

effectively. Among the 1870 videos, 12 different tests were defined, 
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consisting of 7 probes (input data) and one fixed test as a gallery (care 

list). 

Overall, the USF data with its 32 modes and 1870 motion videos 

provided a suitable and challenging dataset for testing and evaluating 

algorithms in the realm of behavioral recognition. 

The results of Rank1 and Rank5 are presented in tables 4.2 and 

4.3, respectively. It should be mentioned that the RSM algorithm has 

been used to classify of features for an accurate and fair evaluation. 

Also, the results of recent methods have generally used the same or 

similar classification algorithm. 

   Table 4.2. Comparisons of Rank1 CCR (%) of the approaches on USF dataset. 

Exp. A B C D E F G H I J K L W–AvgI 

Method Rank5 Performance 

LGSR 

GEI+RSM 

Gabor+RSM 

VI-MGR  

LPSELA 

GSTI 

PGF 

95 

98 

100 

95 

95 

97 

100 

93 

95 

95 

96 

91 

95 

96 

89 

88 

94 

86 

78 

93 

98 

51 

54 

73 

54 

66 

53 

62 

50 

60 

73 

57 

59 

49 

59 

29 

37 

55 

34 

46 

41 

43 

36 

44 

64 

36 

52 

46 

46 

85 

90 

97 

91 

93 

96 

100 

83 

93 

99 

90 

88 

97 

99 

68 

83 

94 

78 

69 

92 

94 

18 

33 

41 

31 

30 

33 

28 

24 

21 

42 

28 

27 

21 

30 

70.07 

70.16 

81.15 

68.13 

70.49 

72.25 

76.01 

iPGF (ours) 100 96 94 65 61 46 46 100 99 94 33 30 76.84 

 

By evaluating the performance of the proposed algorithms in 

table 4.2, the following results are obtained: 

1) Average Rank1 in the proposed algorithm is very close to the 

average of  the PGF algorithm and comparable with other approaches. 

The reason is a slight decrease in accuracy in some probes. 

2) The proposed system had the best results in 6 out of 12 

experiments (probes D, E, F, G, K and L), compared to the PGF 
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approach. Also, in the remaining six tests (probes A, D, G, H, I, L), the 

results are very close to each other and are very close to the top value 

of Rank1. Therefore, in general, we have improved in most of the 

results. 

3) In the conditions of change of level and time (probes D, E, F, 

G, K and L) where the results of the algorithms are relatively low, the 

results of the proposed algorithm have been somewhat improved due to 

the use of local area information. In these probes, there are noisy 

conditions, and the quality of silhouettes is deficient. 

4) The results of the proposed patch-based algorithm (PGF and 

iPGF) are relatively superior to the filter-based approaches (GSTI), and 

the reason for this is the removal of extra information from the images 

and the extraction of local features. 

In general, by checking the accuracy of Rank1 identification, it 

can be concluded that by combining the information of the areas around 

the patch and using the gradient vectors of the regions, the quality of 

the extracted features will be improved, and its performance will be 

better. We evaluate the Rank5 results in table 4.3 for a more detailed 

review. 

                   Table 4.3. Comparisons of Rank5 CCR (%) of the approaches on USF dataset. 

Exp. A B C D E F G H I J K L W–AvgI 

Method Rank5 Performance 

LGSR 

GEI+RSM 

Gabor+RSM 

VI-MGR 

LPSELA 

GSTI 

PGF  

99 

99 

100 

100 

100 

100 

100 

94 

99 

98 

98 

96 

96 

98 

96 

97 

98 

96 

93 

97 

98 

89 

71 

85 

80 

84 

78 

80 

91 

68 

84 

79 

83 

76 

77 

64 

49 

73 

66 

73 

72 

77 

64 

56 

79 

65 

74 

74 

60 

99 

98 

98 

97 

95 

99 

100 

98 

97 

99 

95 

96 

99 

100 

92 

91 

98 

89 

89 

99 

99 

39 

40 

55 

50 

64 

42 

48 

45 

38 

58 

48 

52 

36 

45 

85.31 

79.01 

88.59 

83.75 

86.09 

85.64 

86.59 

iPGF(ours) 100 98 95 80 78 83 60 100 100 98 46 48 87.14 
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By evaluating the performance of the proposed algorithms in table 4.3, 

the following results are obtained: 

1) The average Rank1 in the proposed algorithm is very close to 

the average of the PGF algorithm and comparable to other approaches. 

The reason is a slight decrease in accuracy in some probes. 

2) The proposed system had the best results in 6 out of 12 

experiments (probes D, E, F, G, K and L), compared to the PGF 

approach. Also, in the remaining six experiments (probes A, D, G, I, 

L), results are very close to each other and are very close to the top 

value of Rank1. Therefore, in general, we have improved in most of the 

results. 

3) In the conditions of change of level and time (probes D, E, F, 

G, K and L) where the results of the algorithms are relatively low, the 

results of the proposed algorithm have been relatively improved due to 

the use of local area information. In these probes, the conditions are 

noisy, and the quality of silhouettes is very low. 

4) The results of the proposed patch-based algorithm (PGF and 

iPGF) are relatively superior to the filter-based approaches (GSTI) and 

the reason for this is the removal of additional information from the 

images and the extraction of local features. 

From Table 4.3, the proposed gait identification system has much 

better results and better performance compared to recent approaches 

(especially PGF). In other words, the average rank of 5 in iPGF process 

is improved overall methods (except Gabor+RSM). In the GEI+RSM 

and Gabor+RSM algorithm, a more significant number of random 

classifiers (parameter K=1000 in RSM from Chapter4 are used to 

improve performance, which increases the computational load and 

memory of the algorithm. However, a smaller number of categories has 

been used in the proposed approach due to maintaining the 

computational load and increasing the calculation speed [15]. 
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According to the proposed methods in tables 4.3 and 4.4, it is vulnerable 

to the change of surface and time, but this performance is still 

comparable with other methods. In addition, the detection rate ranked 

5 in Table 4.4 for the proposed methods has improved performance 

over PGF in some tests. More precisely, in 3 out of 12 tests (probes E, 

F and L) the accuracy of the proposed algorithms has improved and in 

the rest of the cases (except for probe C and K) it has been equal to 

PGF. In these tests, the Rank 5 values of the iPGF method are close to 

the highest values in the table. 

The results obtained in Tables 4.2 and 4.3 state that the patch-

based augmented feature can perform better than the conventional 

patch-based methods, namely LGSR [11] and LPSELA [49], and PGF 

[53]. In addition, the interesting point in table 5.4 is that in 3 tests 

(probes A, H, and I) the accuracy of Rank 5 was 100% and in fact, the 

patch-based approach was able to recognize all the people correctly. 

Also, the obtained results confirm that the use of advanced 

classification can create a motion template detection system with an 

average detection rate of about 1% compared to methods such as LGSR 

[11], GEI+RSM [35], VI-MGR [13], LPSELA [49] and PGF [53]). 

4.4. Complexities 

In the final part, the proposed system will be evaluated from the 

point of view of processing time and memory consumption. These two 

criteria together, with the identification accuracy will show a system’s 

efficiency. The obtained results will be compared with similar designs 

to evaluate the improvement rate. 

In evaluating of iPGF, its computational complexity is similar to 

PGF, with the difference that in the second part, the weight coefficients 

of the patches are extracted from local information. In the iPGF 

algorithm, if we assume the computational volume of the triple step is 

c1, c2, and c3, the total computational volume will equal ctot = c1 + c2 
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+ c3. But in the first part, the number T (T movement period) of the 40 

Gabor filter response is calculated. If we denote the time complexity of 

each filter by the symbol O(Idn-filt), then the time complexity of the 

algorithm for one movement period is equal to O(40TIdn-filt(nte+ntr)) 

(ntr and nte data training and testing). Of course, it goes without saying 

that the computational burden of O(Idn-filt) is equal to 0.25 of the input 

image filter O(Ifilt); Because, to maintain the computational load, the 

number of input image samples has been reduced by half along the 

length and width [16]. But the time spent to calculate a filter with 

dimensions w*h in an image with dimensions W*H is equal to O(Ifilt) 

~ O(WHwh) [25]. Therefore, the time complexity of the first stage of 

iPGF in a data set will be equal to c1 ~ O(10(nte+ntr)TWHwh) (W,H 

image dimensions and w,h Gabor filter dimensions). Also, in the third 

step of iPGF, due to the fact that a Gabor filter is applied again to the 

average images, the computational complexity will be approximately 

equal to c3 ~ O(10Ifilt) [24]. But in the second step, the main 

calculations are related to the k-means clustering calculation. Because 

the steps of calculating the gradient histogram of the areas will not be 

very time-consuming. The time to figure k-means for k clusters, and the 

number of n data and I iterations (for convergence) is approximately 

equal to c2 ~ O(I*k*n) [24]. The total calculation time of the iPGF 

algorithm for a dataset is calculated according to the following 

equation: 

𝑂(𝑖𝑃𝐺𝐹) ≈ 𝑐1 + 𝑐2 + 𝑐3 ≈ 

𝑂(10(𝑛𝑡𝑒 + 𝑛𝑡𝑟) 𝑊𝐻𝑤ℎ) + 𝑂(𝐼 × 𝑘 × 𝑛(𝑛𝑡𝑒 + 𝑛𝑡𝑟)) + 𝑂(10(𝑛𝑡𝑒 +

𝑛𝑡𝑟)𝑊𝐻𝑤ℎ)                                                                                                                         (4-3) 
 

By simplifying the formulas, the calculation time of the proposed 

algorithm is obtained according to the following formula. 

𝑂(𝑎𝑃𝐺𝐹) ≈ 𝑂((nte + ntr){(10 𝑊𝐻𝑤ℎ) + (𝐼 × 𝑘 × 𝑛)}          (4-4) 
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In the USF data set in this research, the value of I×k×n is 

≈0.1*TWHwh, and therefore the computational burden of the proposed 

algorithm is equal to O(iPGF)≈O(10.1(nte+ntr)TWHwh). Compared to 

the PGF algorithm, the computational load will increase by about 10%. 

Also, the complexity of CGI, with the number of k channels (that is, 3) 

will be of the order of O(k(ntr+nte)TWH) [14]. Therefore, the 

calculation time of iPGF compared to CGI will be approximately 

O(10.1wh/3)≈O(10.1wh/k). Finally, the calculation time of 

Gabor+RSM [35] will be equal to O(40T(nte+ntr)WHwh). Therefore, 

the proposed systems will perform well in describing the movement 

template while maintaining the computational load. Implementing the 

algorithm in standard Google Colab account shows that the calculation 

time of iPGF will be 4.5 frames per second. 

Also, the memory required to calculate k-means is O ((I + k)*n). 

This amount of memory will be almost four times more in the settings 

of the proposed algorithm. With this assumption and considering the 

PGF [24] algorithm, the total memory required in the entire database 

will be O(50(T+1) WH(nte+ntr)). More precisely, if we assume that the 

input image dimensions of the USF dataset are 88x128, the filter 

dimensions are 39x39, the average periodicity of the entire base is T ≈ 

32, and ntr + nte = 1080, the total amount of memory required to 

calculate the iPGF feature It will be equal to 14.75 GB. 

Now, let's evaluate the calculation load graph and the memory 

consumption compared to the USF and CASIA databases. Suppose 

there are three variable parameters in each database that have a direct 

impact on the performance of the proposed algorithm: 1- the size of the 

input image (H×W), 2- the number of people in the gallery and test set 

(ntr+nte), and 3- Average periodicity (T). If we consider the dimensions 

of the input image to be the same (W=H=N), then the order of changes 

in the size of the input image will be equal to H = N2×W. In addition, 

the number of people in a database (according to the evaluated data) is 

two default values ntr + nte = n = {1000, 1300}. The period value 
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should also be defined as two default values T={30, 20}. The filters’ 

time and memory increase factor is equal to wh = 39*39 = 1521. With 

these assumptions, the graph of the changes in computational load and 

memory in the proposed algorithm compared to similar algorithms will 

be shown in Figure 4.1. 

 

 

Figure 4.1. Computational load (in seconds) for different algorithms in different settings. 
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Figure 4.2. Amount of memory consumed (in GB) for different algorithms in different 

settings. 

 

According to Figures 4.1 and 4.2, we can see that the calculation 

time of the proposed algorithm is very close to PGF and much faster 

than Gabor+RSM [35]. Also, the computational load of the iPGF 

algorithm is not much slower than CGI, and the speed reduction can be 

compensated by using the techniques of fast algorithm implementation 

and optimal functions. In addition, the memory consumption for iPGF 

calculations is close to Gabor+RSM, which can be solved using modern 

data storage techniques. In short, the proposed algorithm can identify 

the movement template in relatively more complex conditions with 

better accuracy. This issue has caused a slight increase in the 

computational load and an increase in the amount of memory used. But 

compared to similar algorithms, the computational load is competitive. 

Therefore, as a suitable algorithm, we can use it to identify the 

movement template. 
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Chapter 5  

Conclusion 

We propose an approach to enhance Spatio-temporal walking 

characteristics using regional adjacent spot descriptors and investigate 

a new approach for re-identifying people. We introduce the basic idea 

of an improved template derived by the Gabor filter and discuss the 

weaknesses of advanced algorithms. The PGF method can extract 

human motion information effectively but is vulnerable to local noise 

and mismatch. We solve this problem by refining local chunks and 

weighting them based on their importance. Our method, iPGF, is 

combined with RSM for gait template recognition in the USF database, 

resulting in a 1% improvement in rank 1 and 5. 

The proposed iPGF can compete with well-known gait detection 

methods, but it can also be further improved by using stronger filtering 

or deep learning techniques to handle gait problems in real-life 

scenarios. Classification and feature extraction can be combined, but 

the amount of processing becomes very high, and normal computers 

cannot handle this level of calculation and processing. Therefore, we 

used classical machine learning due to the hardware and resource 

limitations in this project. Additionally, under normal conditions, our 

accuracy was about 100%, and this method solves our need by choosing 

optimal features. 

One potential method for improvement in the future is to use 

wavelets instead of Gabor filters in the PGF method, as this may result 

in more optimal features from the image. Another method is to have an 

adaptive expectation mechanism for upper body patches, where if a 

person wears a long raincoat in the image, their movement behavior in 

the upper body does not change, but in the lower part of the body, there 

is a change in walking. We can give more weight to the upper body, 

such as the arms, head, and neck, to accommodate clothing conditions. 

The same approach can be taken for bagging, where the bag is seen as 
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noise in the image that we must manage by weighting other parts of the 

image and reducing the weight of the parts of the image that have noise. 

In addition, while the current investigation resulted in an accuracy of 

100%, the use of deep learning may be a viable alternative for a 

different database. 
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