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Abstract

Long-term, continuous monitoring of the human physiological state on a mas-
sive scale in the general population has the potential to revolutionize healthcare
by detecting brain and cardiac disorders before they become life-threatening. Until
recently, the technology for such monitoring has been lacking. Here, we present
the first study examining the association between heart rate variability monitored
through consumer-grade smartwatches and neuroanatomical metrics derived from
high-resolution Magnetic Resonance Imaging (MRI) scans. Twenty-two subjects
wore the watch for 1 month, continuously recording their heart rate through pho-
toplethysmography (PPG), and then underwent a 1-hour MRI scan of the heart
and brain. We found that several features of the heart rate waveform can predict
blood flow velocity through the carotid and aorta arteries. Heart rate in beats per
minute was positively associated with blood flow velocity through the aorta, and
heart rate variability was inversely associated with blood flow velocity through
both carotid arteries and aorta. We also performed full-brain correlations, finding,
in general, that blood flow in the brain’s gray matter was inversely correlated with
HRV, carotid velocity, and some pulse-wave metrics. We consider this the first evi-
dence that heart rate variability derived from consumer-grade smartwatch record-
ings can predict an individual’s neuroanatomical features, such as blood flow in
the cerebral arteries and gray matter, across a healthy population.
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Chapter 1

Introduction

1.1 Early warning signs

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associ-
ated with significant financial expenses and caregiving burden [1]. The manifes-
tation of AD covers a spectrum that extends from individuals without apparent
symptoms but with pathological evidence of AD (referred to as preclinical AD) [2]
to patients experiencing mild cognitive impairment (MCI) caused by AD (the initial
clinically detectable stage of the disease) and eventually to those with AD demen-
tia [3]. The characteristic pathological features of AD, namely β-amyloid plaques
and neurofibrillary tangles, may be observable in the brain decades before clinical
symptoms become evident [3]. Many individuals with early-stage AD remain un-
diagnosed, as subtle cognitive impairments may not significantly affect their daily
activities. Such minor changes might be interpreted as normal signs of aging by pa-
tients, families, and healthcare providers (HCPs) [4]. As the disease progresses into
AD dementia, symptoms of cognitive decline become more noticeable, frequently
disrupting daily activities, and may prompt patients to seek medical attention [5].

Sleep disruption is a prevalent and often highly disruptive behavioral symp-
tom associated with AD. It has been documented that Aβ deposition pathology
itself can impact sleep architecture [6]. Zhang et al. have recently published new
findings that shed light on this issue: they observed that sleep disturbance occurs
prior to cognitive decline and even precedes the pre-pathological stage of AD [7].
Several animal studies have reported disturbances in sleep architecture and EEG
at the pathological stage of AD [8, 9]. Consistent with these animal findings, mon-
itoring of patients with mild cognitive impairment (MCI) or mild-to-moderate AD
has revealed changes in sleep EEG [10, 11]. Patients with mild-to-moderate AD
exhibit abnormal theta oscillations in both rapid eye movement (REM) and slow-
wave sleep [11]. Another study quantified the EEG during REM sleep in MCI pa-
tients and found EEG slowing in fronto-lateral regions compared to controls [10].
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CHAPTER 1. INTRODUCTION 2

Zhang et al.’s research provides evidence that sleep disturbance already occurs be-
fore cognitive decline and even before the pre-pathological stage of AD [7]. These
findings strongly suggest that changes in sleep EEG may serve as an early indicator
of AD in the preclinical stage, offering valuable insights for preclinical evaluation
and therapeutic intervention to prevent progression to symptomatic AD.

Moreover, cardiovascular disease (CVD) is increasingly recognized as an im-
portant etiological factor of AD. CVDs such as stroke, atrial fibrillation, coronary
heart disease (CHD), and heart failure are highly prevalent in elderly individuals
and have been consistently linked to AD. This association may arise from shared
risk factors between CVDs and AD, but there could also be a direct causal relation-
ship, as cardiac disease can lead to hypoperfusion and microemboli, which have
been implicated in the etiology of AD [12, 13].

Early and accurate diagnosis of AD is crucial for prognosis and advance care
planning [1]. While there is currently no approved treatment for the early stages
of AD that can delay disease progression, a timely AD diagnosis allows for the
initiation of advance care planning and non-pharmacological interventions. These
interventions, such as cognitive stimulation, psychological treatment, and lifestyle
changes, may help preserve cognitive function and improve the quality of life
[14–17]. Additionally, lifestyle modifications and increased social support can alle-
viate caregiver burden, delay institutionalization, and reduce healthcare costs [18].
Overall, an early and accurate diagnosis facilitates the development of an effective
care plan, which requires collaboration among patients, caregivers, family mem-
bers, healthcare providers (HCPs), specialists, social services, and payers [5].

For individuals in the United States born in and before 2018, early and accurate
diagnosis of AD could lead to cumulative savings of approximately $7 trillion in
medical and care costs [1]. Despite the growing evidence supporting the benefits
of early detection [18–20], and studies indicating that most patients and caregivers
prefer disclosure of an AD diagnosis [21], the current diagnostic process for the
early stages of AD needs improvement [22]. Although the recent US Preventive
Services Task Force Recommendation Statement has raised concerns about insuf-
ficient evidence to weigh the benefits and risks of screening for cognitive impair-
ment in older adults [23], experts have pointed out the current value of screening
for mild cognitive impairment (MCI) and emphasized that the approval of thera-
pies targeting the underlying pathophysiology of AD would further enhance the
benefits of early screening [6].

By 2030, it is estimated that around 82 million people worldwide will have de-
mentia, resulting in an annual cost of $2 trillion. Among these cases, 60 to 80% are
likely to be attributed to AD [1]. To effectively screen and manage this increasing
population of potential patients, additional resources are required. Currently, indi-
viduals suspected of having AD may face prolonged waiting periods for diagnosis
or treatment, entangling them in a cycle of continuous referrals [4]. In the absence
of an early-detection paradigm, the already limited healthcare infrastructure will
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face additional strain when a therapy targeting the underlying pathophysiology of
AD is eventually approved, leading to a surge of patients seeking treatment [22].

1.2 Heart rate variability

Heart rate refers to the number of heartbeats per minute, while heart rate vari-
ability (HRV) pertains to the variation in the time intervals between adjacent heart-
beats [24]. HRV serves as an index of neurocardiac function and is influenced by
interactions between the heart and brain, as well as dynamic non-linear processes
within the autonomic nervous system (ANS). It is an emergent property of inter-
connected regulatory systems that adapt to environmental and psychological chal-
lenges on different time scales. HRV reflects the regulation of autonomic balance,
blood pressure (BP), gas exchange, gut, heart, vascular tone (which regulates BP),
and possibly facial muscles [25].

HRV can potentially indicate imbalances in the autonomic nervous system in
a noninvasive manner. Data from numerous individuals show that lower HRV
often corresponds to a fight-or-flight response, while higher HRV may indicate a
more relaxed state. High HRV is associated with better cardiovascular fitness and
greater resilience to stress. Additionally, HRV can provide personalized feedback
on lifestyle choices, motivating individuals to adopt healthier habits such as mind-
fulness, meditation, sleep, and physical activity. By tracking HRV, individuals can
observe how their nervous system responds not only to the environment but also
to emotions, thoughts, and feelings [26].

Reduced HRV indices suggest diminished vagal activity and could potentially
be linked to the onset of dementia. The progression of neurodegeneration is inter-
twined with cardiovascular autonomic regulation. In the systematic review con-
ducted by da Silva et al. [27], the investigation focused on evaluating the effect
size (ES) of HRV indexes as a method for assessing autonomic dysfunction in older
individuals with dementia. The study aimed to explore the potential association
between decreased HRV indexes, indicating reduced vagal activity, and the onset
of dementia. This analysis considered the relationship between neurodegenerative
processes and the control of cardiovascular autonomic functions. The findings of
the study indicated that across various types of dementia and cases of mild cog-
nitive impairment, the majority of HRV indexes demonstrated a negative effect
size, suggesting impaired autonomic function. Notably, the high frequency range
emerged as the predominant frequency band within the power spectrum density
function, a pattern reported by six of the studies included in the review. However,
the meta-analysis specifically focusing on high frequency power among individ-
uals with Alzheimer’s disease exhibited considerable heterogeneity and inconclu-
sive results. The consistent negative effect size observed across different forms of
dementia and mild cognitive impairment implies the presence of autonomic dys-
function. Nonetheless, the authors highlighted the need for further investigation
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and rigorous analysis to establish robust support for these findings.
CVD is a leading cause of morbidity and mortality in developed nations. Non-

invasive measurement of HRV is used to assess cardiac autonomic dysfunction,
which is a risk factor for developing CVD [28]. Physiologically, HRV is believed to
result from adaptive changes in heart rate driven by the sympathetic and parasym-
pathetic nervous systems, aiming to regulate blood pressure [29]. Reduced com-
pensatory changes (low HRV) suggest a weakened adaptive autonomic nervous
system and are associated with increased morbidity. HRV has been linked to mor-
bidity and mortality after myocardial infarction, as confirmed by multiple stud-
ies [30–32]. Furthermore, reduced HRV has been associated with congestive heart
failure and arrhythmias [33, 34].

1.3 Previous studies using smartwatch

The prevalence of wearable medical technology has been steadily increasing ev-
ery year [35]. Among consumers, the smartwatch has emerged as the most popu-
lar choice. These watches utilize photoplethysmographic signals to non-invasively
monitor both heart rate and rhythm. Numerous studies have demonstrated the
accurate monitoring of heart rhythms by smartwatches. For instance, the WATCH-
AF trial demonstrated that photoplethysmographic-based smartwatches can accu-
rately diagnose atrial fibrillation in 96% of cases compared to a diagnosis made
by a cardiologist [36]. However, the trial also noted a high rate of subject dropout
due to insignificant signal quality. While there have been emerging case reports
of smartwatches detecting other types of atrial and ventricular tachycardias [37,
38], no reported cases of smartwatches leading to the incidental discovery of non-
cardiovascular pathologies have been documented.

Clinicians should exercise caution and not fully rely on a device produced out-
side the rigorous healthcare standards. Perez et al. conducted a study involving
nearly 420,000 patients who wore smartwatches for a median follow-up period of
117 days. Among them, 2,161 patients received alerts for an irregular heart rhythm,
but only 450 returned ECG traces that could be analyzed. Ultimately, only 153 of
these patients were confirmed to have an arrhythmia [39].

The purpose of this research is to investigate the potential of a consumer-grade
wearable device to predict features of an individual’s high-resolution anatomical
MRI scan. This endeavor will establish the groundwork for a new era of wearable-
derived biomarker extraction in preventive medicine. The ultimate objective, pro-
jected to be realized in the next 10+ years, is to leverage these consumer-grade
wearable devices to provide early warning signs of potential failures in cardiac
and cerebral systems.



Chapter 2

Materials and methods

2.1 Smartwatch hardware

To verify data quality from the Galaxy Watch, we conducted a pilot experi-
ment involving simultaneous PPG recordings. These recordings were taken for 1
minute every 5 minutes throughout the duration of a single night on a single sub-
ject. After 30 days, the smartwatch was returned to the researcher, and the data
were extracted.

Table 2.1 shows the hardware specifications for the device used in the experi-
ment.

Table 2.1: Samsung Galaxy Watch Active 2 Specifications
Processor Samsung Exynos 9110

RAM 750 MB
Storage 4 GB
Battery 340 mAh
Display Super AMOLED, 360 x 360 Pixels
Camera No

OS Tizen-based wearable OS 4.0

2.2 MRI scanner and sequences

2.2.1 T1-weighted image

Figure 2.1 shows an axial slice from a representative subject’s T1-weighted im-
age.

5
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Figure 2.1: T1-weighted image.

Table 2.2 gives the MRI parameters used for the acquisition of the T1-weighted
image.

Table 2.2: T1 Attributes
Manufacturer Philips Medical Systems

Institution Name CHUS FLEURIMONT Philips 3t
Body Part Examined BRAIN

Slice Thickness 1
Repetition Time 8.11559963226318

Echo Time 3.722
Magnetic Field Strength 3
Spacing Between Slices 1

2.2.2 Functional magnetic resonance imaging (fMRI)

Figure 2.2 shows an axial slice from a representative subject’s blood oxygen
level dependent (BOLD) fMRI image. The BOLD fMRI image has a lower resolu-
tion than the T1 due to the fact that BOLD fMRI acquisition consists of repeated
scans over time in order to acquire a time series of brain activity in each voxel.
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Figure 2.2: BOLD fMRI image.

Table 2.3 gives the MRI parameters used for the acquisition of the BOLD fMRI
image.

Table 2.3: fMRI Attributes
Manufacturer Philips Medical Systems

Institution Name CHUS FLEURIMONT Philips 3t
Body Part Examined BRAIN

Slice Thickness 3
Repetition Time 1349.99926757812

Echo Time 30
Magnetic Field Strength 3
Spacing Between Slices 3

2.2.3 Quantitative Flow (QFlow)

Figure 2.3 shows an axial slice from a representative subject’s QFlow image of
the carotid arteries.
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Figure 2.3: QFlow image of the carotid arteries.

Table 2.4 gives the MRI parameters used for the acquisition of the QFlow image
of the carotid arteries.

Table 2.4: QFlow (Carotid Artery) Attributes
Manufacturer Philips Medical Systems

Institution Name CHUS FLEURIMONT Philips 3t
Body Part Examined BRAIN

Slice Thickness 8
Repetition Time 5.42910003662109

Echo Time 3.474
Magnetic Field Strength 3
Spacing Between Slices 8
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Figure 2.4 shows an axial slice from a representative subject’s QFlow image of
the aorta.

Figure 2.4: QFlow image of the aorta.

Table 2.5 gives the MRI parameters used for the acquisition of the QFlow image
of the aorta.

Table 2.5: QFlow (Aorta) Attributes
Manufacturer Philips Medical Systems

Institution Name CHUS FLEURIMONT Philips 3t
Body Part Examined HEART

Slice Thickness 8
Repetition Time 4.25110006332397

Echo Time 2.654
Magnetic Field Strength 3
Spacing Between Slices 8

2.3 Subjects

Twenty-two subjects were healthy 18-40 year old individuals, with a gender ra-
tio of 1:1, selected from the local population of Sherbrooke, Quebec. All subjects
were initially briefed on the nature of the study and the requirements throughout
the study, including best practices for smartwatch usage (regularly charging the
device, wearing it at night, etc.). Informed consent was obtained from all subjects
prior to any data collection. Subjects wore the smartwatch for 1 month and then
underwent a 1-hour MRI scan at the CHUS Fleurimont 3T Ingenia MRI scanner.
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Subjects were compensated for their participation with a $150 CAD monetary re-
ward.

2.4 Feature extraction: PPG

2.4.1 PPG waveform features

Figure 2.5 depicts the process of obtaining the PPG waveform, which is derived
from the amount of light absorption recorded with a photodetector after light is
transmitted through or reflected from human tissue [40]. The amplitude of the
PPG waveform is measured in arbitrary units due to variations in physical charac-
teristics among individuals, such as oxygen-carrying capacity, bone size, skin color,
blood vessel distribution, cardiac output, vascular stiffness, and vascular compli-
ance [41–43]. The measurement of the waveform is influenced by environmental
factors, such as ambient light [44, 45].

The PPG waveform undergoes changes based on cardiac activity and can also
be affected by respiration, autonomic nervous system activity, arterial activity, and
venous activity [46–50]. Frequency analysis of the PPG waveform includes both
cardiac and lung activities. Shin and Min have reported that most of the energy in
the waveform is contained up to the 3rd harmonics [51]. The PPG waveform ex-
hibits a rising curve during cardiac contraction (systolic phase) due to an increase
in capillary blood volume and a descending curve during cardiac dilation (dias-
tolic phase) caused by a decrease in capillary blood volume. The waveform repeats
in response to cardiac activity. Pulse onset is defined as the point where pulsa-
tion begins, represented by the lowest blood volume before the systolic phase. The
systolic peak is identified at the point of maximum blood volume. Transient ris-
ing and falling of the PPG waveform during diastole occur when blood volume
in capillaries temporarily increases due to a pressure gradient in the opposite di-
rection of blood flow, just before the aortic valve closes [52, 53]. At this moment,
the recessed point is referred to as the dicrotic notch, and the point where the first
derivative of the waveform is closest to zero after the systolic peak is known as
the diastolic peak [54]. The PPG waveform can be influenced by body composi-
tion, physiological status, and external stimuli. Additionally, the PPG baseline is
affected by factors like respiration, vascular compliance, vascular tone, pain, and
drug use [55–57]. The amplitude of the systolic peak, a representative characteris-
tic of the PPG waveform, is significantly correlated with microvascular expansion
and is proportional to the cardiac output [58, 59]. The dicrotic notch is influenced
by vascular tone and compliance, with its occurrence advancing with increased
vascular tone [60]. Moreover, it has been observed that the time difference between
the diastolic peak and systolic peak decreases with aging [61].
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Figure 2.5: Principle of phototoplethysmogram generation and waveform features.

The PPG waveform has the following features:

• Beats per minute (BPM) is the number of times your heart beats per minute.

• Heart rate variability (HRV) is the physiological phenomenon of variation in
the time interval between heartbeats.

• Systolic peak is defined at the point where blood volume is maximized [40].

• Dicrotic notch represents the closure of the aortic semi-lunar valve and sub-
sequent receding blood flow when ventricles relax [40].

• Diastolic peak is a result of reflections of the pressure wave by arteries of the
lower body [40].

• Pulse width (PW) is a measure of the elapsed time between the leading and
trailing edges of a single pulse of energy [40].

• Crest time (CT) is the duration from the foot point to the peak of a pulse
wave [40].

• Peak to peak time (PPT) is calculated as the time between the systolic and
diastolic peaks within the PPG signal [40].

• A1 is the systolic area [62].

• A2 is the diastolic area [62].
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• The inflection point area ratio (IPA) is used to refer to A2/A1 [62].

• Reflection index (RI) measures the stiffness level of small to moderate arteries
[63].

Figures 2.6 to 2.9 show PPG waveform features computed in our method.

Figure 2.6: Systolic peak, dicrotic notch,
diastolic peak, and pulse width.

Figure 2.7: Crest time and peak to peak
time.

Figure 2.8: A1 and A2.

Figure 2.9: Reflection index.

2.4.2 PPG feature extraction methods

We create a script to process all CSV files, determining the most frequent BPM
for each subject. Then, locate the corresponding CSV file based on the most fre-
quent BPM. To mitigate the impact of baseline wander, apply a 5th-order Butter-
worth Infinite Impulse Response (IIR) high-pass filter with a cutoff frequency of
0.5 Hz to filter the PPG signal. Figure 2.10 shows a comparison before and after
using the filter. To compute the PPG features for each subject, we use SciPy to cal-
culate the troughs and peaks of each PPG waveform. The use of troughs also aims
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to identify each individual PPG waveform within the PPG signal. Subsequently,
we utilize the troughs, peaks, and the Second Derivative of Photoplethysmogra-
phy (SDPPG) to compute the features for each individual waveform [64]. Figure
2.11 shows the Second Derivative of Photoplethysmography. Finally, we calculate
the mean of these features. In certain instances, specific dicrotic notches and dias-
tolic peaks might not be distinctly discernible. Therefore, exclude such instances to
ensure the accuracy of the results.

Figure 2.10: Raw PPG signal and filtered PPG signal.

Figure 2.11: The second derivative of photoplethysmography. (a) Fingertip pho-
toplethysmogram. (b) Second derivative wave of photoplethysmogram. The pho-
toplethysmogram waveform consists of one systolic wave and one diastolic wave,
while the second derivative photoplethysmogram waveform consists of four sys-
tolic waves (a, b, c, and d waves) and one diastolic wave (e wave).
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2.5 Feature extraction: MRI

2.5.1 Blood flow velocity calculation on the carotid arteries and the aorta

We manually define a region of interest (ROI) mask on the qFLOW images.
Figure 2.12 shows the ROIs of the left carotid artery and right carotid artery, and
Figure 2.13 shows the ROI of the ascending aorta.

Figure 2.12: ROI on the carotid arteries. Figure 2.13: ROI on the aorta.

Then, we average the time series across all voxels in the mask and extract the
velocity from the averaged time series across carotid arteries and aorta. Figures
2.14 and 2.15 show the velocity of a representative subject from the averaged time
series across the carotid arteries and aorta, respectively.

Figure 2.14: Time series across carotid arteries.
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Figure 2.15: Time series across aorta.

2.5.2 fMRI preprocessing and ReHo calculation

The fMRI images underwent several preprocessing steps. Firstly, motion cor-
rection was applied, and then to account for small misalignments in the registra-
tion procedure, the images were smoothed with a 9 mm full-width half-maximum
(FWHM) Gaussian kernel. A bandpass filter ranging from 0.01 to 0.1 Hz was sub-
sequently applied to the data using the AFNI software package to remove physi-
ological noise. After these steps, each fMRI image was registered to the space of
a randomly selected template subject using the ANTs registration software pack-
age. Once aligned, regional homogeneity (ReHo) was calculated separately for
each subject, resulting in a 3D ReHo map for each individual in template space.
Figure 2.16 shows a representative subject’s 3D ReHo map. These ReHo maps were
then used in the subsequent full-brain correlation analysis.

Figure 2.16: 3D ReHo map.
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Results

In this chapter, we present the PPG and MRI results of all subjects, and the
means of all subjects (the grand mean).

3.1 PPG feature results

3.1.1 Time of day average BPM and accelerometer

Figure 3.1 shows the average heart rate in BPM and accelerometer (ACC) data
extracted from the smartwatch and averaged over 30 days for a representative sub-
ject. The curve demonstrates a clear decrease in heart rate during the night (2 AM
to 6 AM) during sleep, followed by an increase in heart rate and activity levels
throughout the day.

Figure 3.1: Time of day average BPM and ACC.

16
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3.1.2 The grand mean of BPM and accelerometer

Figure 3.2 shows the grand mean of BPM and accelerometer.

Figure 3.2: The grand mean of BPM and ACC.

3.2 MRI feature results

3.2.1 Carotid artery waveforms and aorta waveforms for all subjects

Figures 3.3 and 3.4 show the individual subject velocity waveform for carotid
artery and aorta, respectively.

Figure 3.3: Carotid artery waveforms for all subjects.
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Figure 3.4: Aorta waveforms for all subjects.

3.2.2 The grand mean of carotid artery waveforms and aorta waveforms

Figures 3.5 and 3.6 show the grand mean across all subjects for carotid artery
and aorta, respectively.

Figure 3.5: The grand mean of carotid artery waveforms.
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Figure 3.6: The grand mean of aorta waveforms.

3.2.3 ReHo maps for all subjects and the grand mean of ReHo maps

Figure 3.7 shows an axial slice in from each subject’s raw ReHo map. As can be
seen, ReHo values are higher in the gray matter.

Figure 3.7: ReHo maps for all subjects.
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Figure 3.8 shows the grand mean of ReHo map.

Figure 3.8: The grand mean of ReHo.

3.3 Correlation results

3.3.1 Correlation matrix

Figure 3.9 shows the correlation matrix between all features extracted from PPG
and MRI.

Figure 3.9: Correlation matrix of all features.
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3.3.2 Scatter plots

Figure 3.10 shows the significant correlations found between PPG features and
MRI velocity metrics from the carotid artery and aorta.

Figure 3.10: Correlations between pulse-wave metrics and blood flow velocity met-
rics.

Figure 3.11 shows the significant correlations between HRV and BPM metrics
and velocity metrics. In general, subjects with higher HRV had lower arterial ve-
locities, and subjects with higher heartrate had higher velocity.

Figure 3.11: Correlations between HRV and BPM metrics and blood flow velocity
metrics.
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3.4 ReHo correlation maps

Sagittal slices showing full brain correlations between ReHo in each voxel and
the PPG/velocity metrics are shown in Figures 3.12 to 3.26. Figure 3.12 (BPM), Fig-
ure 3.13 (BPM at night only), Figure 3.14 (HRV), Figure 3.15 (HRV at night only),
Figure 3.16 (age), Figure 3.17 (weight), Figure 3.18 (PW), Figure 3.19 (CT), Figure
3.20 (A1), Figure 3.21 (A2), Figure 3.22 (IPA), Figure 3.23 (PPT), Figure 3.24 (RI),
Figure 3.25 (velocity in carotid), Figure 3.26 (velocity in aorta). We found strong in-
verse correlations between HRV and ReHo in a voxel pattern matching the default-
mode network (Figure 3.14) indicating that subjects with higher levels of HRV had
lower glucose consumption in the default mode network. Weight was positively
associated with ReHo across many voxels (Figure 3.17) indicating increased glu-
cose consumption in heavier individuals. Figure 3.18 to 3.24 show correlations
between metrics derived from PPG waveform and ReHo in each voxel. Most gray
matter voxels show an inverse correlation, indicating that PPG waveform metrics
are inversely correlated with glucose consumption across the brain. Finally, sub-
jects with lower blood flow velocity through the carotid also had lower ReHo val-
ues in the gray matter (Figure 3.25), indicating that increased glucose consumption
across the brain is associated with higher blood flow velocity.

Figure 3.12: Correlation maps with BPM.
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Figure 3.13: Correlation maps with BPM (1AM to 6AM).

Figure 3.14: Correlation maps with HRV.
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Figure 3.15: Correlation maps with HRV (1AM to 6AM).

Figure 3.16: Correlation maps with age.
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Figure 3.17: Correlation maps with weight.

Figure 3.18: Correlation maps with PW.



CHAPTER 3. RESULTS 26

Figure 3.19: Correlation maps with CT.

Figure 3.20: Correlation maps with A1.
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Figure 3.21: Correlation maps with A2.

Figure 3.22: Correlation maps with IPA.
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Figure 3.23: Correlation maps with PPT.

Figure 3.24: Correlation maps with RI.
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Figure 3.25: Correlation maps with carotid blood flow velocity.

Figure 3.26: Correlation maps with aorta blood flow velocity.



Chapter 4

Discussion

We show results from the first study to investigate the association between
heartrate metrics (HRV and others) derived from consumer-grade smartwatch and
more sensitive metrics of cerebrovascular and cardiac function derived from de-
tailed in-vivo MRI scans in a group of 22 healthy human subjects.

Our main results include the significant positive and negative correlations de-
tected between several pulse-wave metrics (A1, A2, IPA, PPT, PW, RI) derived from
the PPG signal and blood flow velocity through the carotid and aorta, as derived
from the MRI scans. This indicates that within a healthy population, the velocity
of an individual’s blood flow can be predicted solely based on data acquired from
a consumer-grade smartwatch device, which is a promising result. Additionally,
we also found significant inverse correlations between HRV and carotid/aorta ve-
locity. This is important because it has been well established that HRV is positively
correlated with general metrics of well-being, including athletic performance, risk
of heart attack, etc. The observed inverse correlation between HRV and higher
blood flow velocity in the carotid/aorta suggests that elevated blood flow velocity
may serve as an early risk factor for diseases such as stroke or heart attack.

Finally, we generated full-brain correlation maps between our PPG features and
ReHo. ReHo is an fMRI-derived metric thought to serve as a proxy for glucose
metabolism in the aging brain. Therefore, higher levels of ReHo are associated
with higher levels of glucose metabolism. In general, we found inverse correlations
between gray matter ReHo and both PPG and blood flow velocity metrics. The
result, while awaiting further data to be confirmed, suggests that individuals with
lower HRV may have ’less efficient’ brains that require more glucose metabolism
and a higher blood flow velocity to maintain basic cerebral function.

The future work will involve expanding the study to a cohort of healthy ag-
ing subjects (aged 65 and above) and to more specific populations, such as those
suffering from dementia or those at a high risk of heart attack or stroke (including
individuals who are overweight, diabetic, or have high blood pressure, etc.).
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