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Abstract 

This thesis conducts an extensive analysis of Bitcoin daily price forecasting, using ARIMA, 

LSTM and the new method of the ARIMA-LSTM paralleling by weight of regression 

coefficients. Feature engineering emerged as a key determinant by integrating technical 

indicators as supplementary features, including Simple Moving Average, Exponential 

Moving Average, RSI and MACD. Certain features, including Close, Returns, Upper 

Bollinger Band, and Lower Bollinger Band, emerged as influential contributors to enhance 

model performance. Research is structured around three distinct time periods, offering 

insights into market stability, heightened volatility, and a comprehensive overview of the 

entire timeframe. Among the models examined, LSTM model, with the evaluation metrics 

of MAPE = 1.37%, RMSE = 442.81, and R2-score= 0.99. outperformed other models. 

While LSTM excelled, for the multivariate forecasting involving “Close” and “Returns” 

features, the ARIMA-LSTM improved overall performance as it reduced MAPE from 

5.77% to 1.98% and increased R2-score from 0.41 to 0.96. 

 

Keywords: Time-Series Forecasting, Deep Learning, ARIMA, LSTM, Hybrid ARIMA-

LSTM, Feature Engineering,  
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Chapter 1:     Introduction 

1.1 Introduction 

Bitcoin, the first and most important decentralized digital crypto currency, was 

developed and introduced by an anonymous person or group of people using the 

pseudonym Satoshi Nakamoto in 2009. [1] The Bitcoin network is rapidly expanding as a 

result of the rise in transaction volume. As of August 2023, its market capitalization is 

valued at more than 500 billion USD. [2] 

As the Bitcoin market continues to mature, precise predictions of its prices can have 

significant implications for investors, traders, financial institutions, and policymakers. 

These predictions serve to optimize trading strategies, mitigate risks, and inform 

investment decisions within the dynamic and volatile cryptocurrency domain. In this thesis, 

two methodologies for Bitcoin price prediction are examined: the Autoregressive 

Integrated Moving Average (ARIMA) and the Long Short-Term Memory (LSTM) 

networks. Additionally, an innovative hybrid ARIMA-LSTM approach is introduced, 

combining the strengths of both models for enhanced forecasting accuracy. 

Numerous studies have already explored predicting Bitcoin and cryptocurrency prices, 

but understanding this market is still one of the most discussed subjects and difficult to 

analyze. This study introduces a new method to improve predictions by using data sources 

like historical data and technical indicators. These findings could enhance prediction 

models, helping investors make smarter decisions in the cryptocurrency world. 

This study is driven by three key objectives: 

1. Predicting Bitcoin prices using three distinct models: ARIMA, LSTM, and a 

hybrid ARIMA-LSTM approach. 

2. Comparing the performance of these models in terms of accuracy and reliability in 

predicting Bitcoin prices. 

3. Evaluating the impact of incorporating technical indicators as additional features 

on the prediction outcomes of these models. 

With these objectives driving the research, this study strives to contribute insights to the 

field of cryptocurrency forecasting, equipping stakeholders with informed decision-making 

tools in the ever-evolving world of digital finance. 

1.2 Thesis Outline 

Chapter 2 provides an in-depth exploration of the existing research in the field of Bitcoin 

price prediction. Previous works that have employed ARIMA, LSTM, and hybrid ARIMA-

LSTM methods are reviewed. In addition, it provides the fundamental concepts and 
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principles of the research. Related works that have contributed to the understanding of time 

series analysis and deep learning techniques are investigated. 

Chapter 3 describes the dataset used and the analysis performed on it before it was used. 

Then, describes the time series analysis techniques that were utilized to make operational 

decisions on the applied algorithms. Finally, the algorithms are proposed, along with the 

metrics and statistical techniques that have been used to evaluate their performance. This 

research focuses on quantitative prediction, as it relies on Bitcoin's historical data. 

Regression functions using supervised learning strategies are used to reach this goal. The 

prediction models are coded in Python 3.9.16, utilizing libraries such as Keras, Tensor 

Flow, Scikit-learn, Statsmodels, Numpy, Pandas, Seaborn, matplotlib, and yfinance. The 

models are developed on the Google Colab Free version, which provides a virtual RAM 

space of 12.7 GB for running the code efficiently. 

Chapter 4 provides the results obtained from the experimentation of each model. The 

outcomes of ARIMA, LSTM, and hybrid ARIMA-LSTM models are showcased. 

Comprehensive evaluation metrics, prediction plots, and insightful analyses for each time 

frame are featured. 

In Chapter 5, the cumulative findings of the study are summarized.  
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Chapter 2:     Literature Review 

2.1 Review of Previous Studies 

The use of advanced machine learning methods has led to a fascinating change in the 

way financial predictions are made in recent years. Two significant approaches in this field 

are the traditional Autoregressive Integrated Moving Average (ARIMA) and the deep 

learning Long Short-Term Memory (LSTM) models. The ARIMA model is proficient at 

capturing past patterns by utilizing its autoregressive and moving average components. On 

the other hand, the LSTM model, excels in grasping sequential data dynamics, particularly 

complex temporal dependencies, using its gated memory cells. 

In 2020, [3] presented a comprehensive exploration of time-series forecasting for 

Bitcoin prices, employing high-dimensional features and machine learning models. The 

study stands as the pioneering study to consider price indicators up until December 31, 

2019, and to provide accurate forecasts for end-of-day, short-term, and mid-term BTC 

prices utilizing four machine learning techniques including ANN, SANN, SVM, and 

LSTM. The dataset utilized in this study was sourced from bitinfocharts.com. the data was 

partitioned into three distinct intervals. The first interval covered the time period from April 

1, 2013, to July 19, 2016. The second interval spanned from April 1, 2013, to April 1, 2017. 

Lastly, the third interval, which was previously unexplored in existing literature, consisted 

of data from April 1, 2013, to December 31, 2019, making it the most extensive interval 

under consideration. The developed models all showcased satisfactory performance, with 

LSTM showing the best overall results. For daily price predictions, the Mean Absolute 

Percentage Error (MAPE) was found to be as low as 1.44%. However, in longer 

timeframes, from seven to ninety days, the MAPE varied between 2.88% and 4.10%. 

In [4], the authors provided a comprehensive analysis about the performance of LSTM 

and ARIMA models in forecasting short-term Bitcoin values. This study utilizes a dataset 

of Bitcoin (BTC) historical Closing Prices, covering a period of one year from December 

21, 2020, 0:00 to December 21, 2021, 16:00. The data points were collected at intervals of 

10 minutes. The dataset has been partitioned into training and test subsets, with a 

distribution of 99.5% for training and 0.5% for testing. The results of the study provide 

interesting observations regarding each model’s behaviors. The ARIMA model better 

performs in capturing the increasing trend of Bitcoin, which is consistent with the 

characteristics of the ARIMA model. It is important to acknowledge that the performance 

of ARIMA may fluctuate when confronted with a downward trend. On the other hand, 

LSTM stands out as the top performer, achieving prediction accuracy of 99.73%. In this 

context, 'accuracy' serves as the key evaluation metric. 

In [5], researchers integrated machine learning methodologies with sentiment analysis 

to provide a multidimensional perspective on cryptocurrency price movements. The 
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research utilized two datasets. The historical data has been sourced from cryptocurrency 

exchanges, including Coinmarketcap, Bitstamp, Coinbase, and Blockchain Info. The 

second dataset comprised tweets sourced from Twitter and posts extracted from Reddit. 

The incorporation of this combination introduced a social and emotional dimension to the 

investigation. Dataset is divided into train/test with 70% split ratio. The comparative 

evaluation of ARIMA and LSTM model is conducted by the Root Mean Square Error 

(RMSE) metric. The LSTM model demonstrated superior performance in terms of RMSE 

values, with 198.448 for single feature and 197.515 for multi-feature, in contrast to the 

ARIMA model's RMSE value of 209.263. The (RMSE) of the LSTM model is minimized 

due to the variability in the data, ranging from 0 to 10000 USD, and the substantial 

fluctuations observed in the closing prices.  

Authors in [6] were the first to combine dimension engineering on Bitcoin price 

granularity with advanced machine learning methodologies, resulting in improved 

predictive precision. The study used two datasets. One, obtained from 

CoinMarketCap.com, containing daily Bitcoin prices as well as a variety of variables such 

as network and property data, trading and market data, media and investor influence and 

gold spot price from February 2, 2017, to February 1, 2019. The second dataset was 

collected from Binance with a 5-minute interval at a high frequency spanning from 

February 2, 2017, to February 1, 2019. The statistical approach (LR and LD)) has shown 

proficiency in forecasting daily data, achieving an average accuracy rate of 65.0%, 

surpassing the performance of machine learning models which achieved an accuracy rate 

of 55.3%. In contrast, the machine learning models showed better results with 5-minute 

interval dataset. The LSTM model achieved a result of 67.2% in accuracy. 

 

 
Figure 2.1. Overview of the research framework. Image from [6] 

 In the context of financial prediction, both ARIMA and LSTM exhibit distinct strengths 

and weaknesses. Surprisingly, despite the inherent strengths of ARIMA and LSTM models, 

the financial domain lacks research that delves into their combined application. Although 
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there have been separate investigations into both models in the field of financial prediction, 

the combination of their capacities in this context has not been fully investigated. This 

study gap highlights the necessity to conduct an inquiry into the potential of combining 

ARIMA and LSTM approaches to achieve improved predictive accuracy in financial 

forecasting. 

Interestingly, [7] introduced a hybrid ARIMA-LSTM model, but within a different 

context: the prediction of COVID-19 cases during pandemic. The dataset utilized in this 

study was obtained from confirmed COVID-19 cases in China, retrieved from Hopkins 

University's epidemic website. The data covers the period from 1 January 2021 to 10 

October 2022. This model achieved the following metrics: mean squared error (MSE) of 

4049.913, root mean squared error (RMSE) of 63.639, mean absolute percentage error 

(MAPE) of 0.205, coefficient of determination (R2-score) of 0.837, and mean absolute 

error (MAE) of 44.320. The study found that the ARIMA-LSTM combined regression 

prediction model had superior performance compared to both the ARIMA and LSTM 

models individually as well as the SVR model. To validate the model's effectiveness, the 

analysis was extended to include epidemic data from India. And the results indicated that 

the hybrid ARIMA-LSTM model demonstrated better alignment with actual test sample 

values compared to the SVR prediction model.  

2.2 Fundamentals and Concepts 

2.2.1 ARIMA model and its Components 

In this section, the relevant literature on time series analysis and the key concepts 

necessary for understanding the ARIMA model will be reviewed, including white noise 

and random walk theory, stationarity, unit root and Augmented Dickey Fuller (ADF) test, 

transformation to stationary, Autocorrelation Function and Partial Autocorrelation 

Function analysis. 

 

2.2.1.1 Time Series 

A time series consists of sequential observations recorded at regular intervals. Time 

series data can be broken down into components such as trend, which refers to the long-

term pattern and the upward or downward changes in the data ; seasonality, which is the 

pattern that happens at consistent intervals in a series; cyclical variation, which is the 

repeated fluctuations in a time series and is not related to seasonality; and a non-systematic 

component called irregular variation or remainder, which refers to the random noise in a 

time series. As demonstrated in Figure 2.2 [8] depending on the kind of trend and 

seasonality, time series can be defined as either an additive model or a multiplicative 

model. [9]–[12] 
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Figure 2.2. Additive seasonality versus Multiplicative seasonality. Image from [8] 

2.2.1.2 White Noise and random walk theory 

A time series is said to be "white noise" if its variables are random and uncorrelated, 

with constant mean and variance, where no algorithm could possibly forecast its behavior. 

This will serve as a benchmark against which the predictive power of a model is evaluated. 

Random walk theory has implications for financial markets, including the Bitcoin 

market. It suggests that price movements are random and independent of the previous 

prices, which means that future behavior of the series is unpredictable. This model is also 

a useful benchmark for analyzing the behavior of bitcoin prices. In 2016, authors in [14] 

found evidence against the random walk hypothesis using the ADF test, indicating that 

Bitcoin prices exhibit serial correlation and are not independent of their past prices. 

However, another study found support for the random walk hypothesis using the KPSS 

test, indicating that Bitcoin prices are stationary and follow a random walk model.  

 

2.2.1.3 Unit Root and ADF test 

A time series is said to be stationary if its statistical properties, including mean and 

variance, do not fluctuate over time and the future behavior of the series can be predicted 

based on its past behavior. To determine stationarity, the Augmented Dickey-Fuller (ADF) 

test is commonly used which examines the presence of a unit root by involving null and 

alternative hypotheses in a time series [15]. The Null hypothesis (H0) states the presence 

of a unit root, indicating time series is non-stationary. While the alternative hypothesis (H1) 

suggests that the time series is stationary. The ADF test equation is expressed as follows: 

 

 𝑦𝑡 =  𝑐 +  𝛽𝑡  +  𝛼𝑦𝑡−1  +  𝜙1𝛥𝑌𝑡−1  +  𝜙2𝛥𝑌𝑡−2+. . . + 𝜙𝑝𝛥𝑌𝑡−𝑝  +  𝑒𝑡 
(2.1) 

where, 𝑦𝑡−1 = lag 1 of time series and 𝛥𝑌𝑡−1 = first difference of the series at time (t-1) 

The significance level, typically set at 1%, 5%, or 10% is a threshold or fixed level of 

probability used to evaluate whether the null hypothesis should be rejected. If the calculated 

p-value is less than the significance level, this means that the observed result was 
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significantly different from what would have been expected by chance, then H0 is not true, 

and the time series is said to be stationary. Otherwise, it is non-stationary. [16] 

 

2.2.1.4 Transforming to stationary 

Techniques such as differencing, logarithmic transformation, are commonly applied to 

remove trends, seasonality, stabilize the mean and variance of the series, and finally 

transform a non-stationary time series into a stationary one. Logarithmic transformation 

takes the logarithm of the observations, which helps stabilize the variance and enables 

series with exponential growth or large fluctuations for prediction. In Differencing method, 

the first difference is obtained by subtracting the value at time (t-1) from the value at time 

t. By employing the first-difference method, we can effectively achieve stationarity in the 

Bitcoin price series, enabling us to apply various modeling techniques for accurate 

predictions. [17]–[19] 

 𝑦′𝑡 = 𝑦𝑡 −  𝑦𝑡−1 (2.2) 

In terms of comparing the efficacy of these techniques, researchers in [20] have 

compared the differencing and logarithmic transformation in removing non-stationarity 

from Bitcoin prices and discovered that both techniques can be beneficial. They also 

discovered that first-order differencing is very useful for reducing seasonality and trend. In 

addition, [21] demonstrated that the first difference in the logarithmic returns of Bitcoin 

prices is stationary. In this research, the first-difference method is used for transforming 

the price series into stationary models.  

 

2.2.1.5 ACF and PACF 

The autocorrelation function (ACF) helps identify the presence of the correlation 

coefficient between a time series and its lagged version at each lag. whereas the partial 

autocorrelation function (PACF) calculates the correlation between two variables after 

eliminating the impact of the intermediate variables. The results obtained from analyzing 

ACF and PACF plots can be used to identify the appropriate lag order of moving average 

(MA) and autoregressive (AR) components, respectively. These lag orders play an 

important role in fitting the ARIMA model accurately. [15], [22] 

 

2.2.1.6 ARIMA Model 

The ARIMA model is widely used since it is simply a linear regression for forecasting 

time series. It is best suited for data with high and consistent correlation, as it does 

regression based on its own past data. ARIMA models are composed of three components: 

autoregression (AR), integration (I), and moving average (MA). The AR component 

forecasts future values of the time series based on past values, the MA component predicts 

future values based on residuals of past observations, and the I component is used to 
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remove seasonality or trends from time series data. The ARIMA (p,d,q) model is defined 

by the following equation: 

 

 𝑦’(𝑡) =  𝑐 +  𝜙1 ∗ 𝑦′(𝑡 − 1) + ⋯ +  𝜙𝑝 ∗ 𝑦′(𝑡 − 𝑝) +  𝜃1 ∗ 𝜀(𝑡 − 1) + 

⋯ +  𝜃𝑞 ∗ 𝜀(𝑡 − 𝑞)  +  𝜀𝑡 

(2.3) 

Here, y’(t) is the value of the differenced time series at time t, c is a constant, ϕ(1) 

through ϕ(p) are the AR coefficients, ε(t) is the error term at time t, θ(1) through θ(q) are 

the MA coefficients, and d is the degree of differencing (I component). The parameters p, 

d, and q correspond to the order of the autoregressive, degree of differencing, and order of 

the moving average components, respectively.  [23], [15] ARIMA is a powerful model that 

can give better results than Deep Learning (DL) models in the stock market. However, 

when it comes to cryptocurrency, where seasonality is extreme, ARIMA cannot handle 

trend and seasonality very well. This may require careful parameter adjustment and an in-

depth understanding of the data. 

Another limitation is that it may not notice the non-linear pattern of the price 

movements, leading to inaccurate predictions. In [24], study showed that DL models 

performed better in terms of accuracy than ARIMA, which had the highest error rates 

among all models, with an MAE of 529.4. On the other hand, [25] compared ARIMA, 

LSTM, and GRU on bitcoin price and found that ARIMA outperformed other models for 

monthly series. However, in terms of RMSE and MAPE metrics, the GRU model 

outperformed both the ARIMA and LSTM models for daily time series. Also [26] have 

combined ARIMA with LSTM and proposed a new model called “LSTM with AR(2)". 

Their results show that this model outperforms other models, including LSTM and 

ARIMA. 

2.3 Deep Learning and Time Series Prediction 

Deep learning, a subset of machine learning, employs a representation like that of the 

human brain with the help of multiple layers of neural networks. In the field of time series 

prediction, recent research suggests that DL models have the potential to outperform 

traditional machine learning (ML) models. In a comparative analysis by Mudassir et al. [3] 

various models including LSTM, SVM, SANN, and ANN were employed to predict future 

bitcoin prices for the daily, weekly, monthly, and 90 days intervals. LSTM was the most 

successful among other models as it can better handle the complex pattern and the high 

volatility of the prices when it comes to bitcoin price prediction. Furthermore, DL models 

outperform Machine Learning models in terms of accuracy for large datasets due to their 

ability to learn features from the data itself without the need for manual feature engineering. 

Figure 2.3 [27] indicates that the accuracy of ML models falls while that of DL models 

improves as data volume increases.  

https://www.zotero.org/google-docs/?xGQYhY
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Figure 2.3: The accuracy of ML approaches compared to the accuracy of DL models with respect to data 

size. Image from [27] 
 

2.3.1 Recurrent Neural Networks (RNN) 

Recurrent neural networks (RNNs) are essentially recurrent "for" loops that use data 

from earlier iterations. After each input is evaluated by a single RNN cell, the cell's output 

is forwarded to the next cell in the network, and so on until the last cell is reached. [28] 

 

 𝑎(𝑡)  =  𝑡𝑎𝑛ℎ (𝑊𝑎𝑥𝑥(𝑡)  + 𝑊𝑎𝑎𝑎(𝑡 − 1)  + 𝑏𝑎) 

𝑦̂(𝑡)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦𝑎𝑎(𝑡)  + 𝑏𝑦) 
(2.4) 

 
Figure 2.4. RNN network 

One main downside of a simple RNN is its inability to effectively capture long-term 

dependencies. As more layers are added to the network, it becomes untrainable, a 

phenomenon known as the "vanishing gradient problem.". [29] This occurs when the 

backpropagation algorithm cycles back through each neuron in a neural network to adjust 

their weights. This shift is calculated using multiplicative mathematics. As a result, the 

gradient computed at the network's depths tend to diminish exponentially as it is propagated 

backwards.  
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Figure 2.5. Vanishing Gradient Problem. Image from [29] 

 𝜕𝑋𝑡

𝜕𝑋𝑘

 =  ∏

𝑡≥𝑖≻𝑘

𝜕𝑋𝑖

𝜕𝑋𝑖−1

 = ∏

𝑡≥𝑖≻𝑘

𝑊𝑟𝑒𝑐
𝑇𝑑𝑖𝑎𝑔(𝜎′(𝑥𝑖−1)) 

𝜕𝜀

𝜕𝜃
 =  ∑

1≤𝑡≤𝑇

𝜕𝜀𝑡

𝜕𝜃
 

(2.5) 

2.3.2 Long Short-Term Memory (LSTM) 

LSTM (long short-term memory), a powerful variant of the Simple RNN that was 

created in 1997 by Sepp Hochreiter and Juergen Schmidhuber to overcome the vanishing 

gradient problem. [30] The key characteristic of LSTM models lies in their ability to retain 

and use information over longer time intervals. As demonstrated in Figure 2.6,  the input 

gate determines the importance of incoming information.[31] The memory cell can 

remember its previous state because of the non-linear gating units that regulate the flow of 

new data into the cell, allowing the network to capture long-term dependencies and 

complex patterns in data. The forget gate manages the retention or deletion of existing 

information in memory cells, and the output gate generates the final output based on input 

and the current state of the memory cells. This makes LSTM well-suited for Bitcoin price 

prediction, as it can handle the inherent volatility and non-linear dynamics of 

cryptocurrency markets. 

 

https://www.zotero.org/google-docs/?6ny1YD


11 

 

 𝑎(𝑡)  =  𝛤𝑜
𝑡  ∗  𝑡𝑎𝑛ℎ(𝑐(𝑡)) 

𝛤𝑓
𝑡 = 𝜎(𝑊𝑓[𝑎⟨𝑡 − 1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑓) 

𝛤𝑢
𝑡 = 𝜎(𝑊𝑢[𝑎⟨𝑡 − 1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑢) 

𝑐(𝑡)  = 𝛤𝑓
𝑡  ∗  𝑐(𝑡 − 1)  +  𝛤𝑢

𝑡  ∗ 𝑐∼(𝑡)    

𝛤𝑜
𝑡 = 𝜎(𝑊𝑜[𝑎⟨𝑡 − 1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑜) 

(2.6) 

 

 
Figure 2.6. LSTM network. Image from [31] 

Despite its strengths, LSTM model also comes with challenges. The complexity of 

LSTM networks requires a larger amount of training data and longer training times 

compared to simpler models. The risk of overfitting, which occurs when the model 

becomes too complex and starts to memorize the training data instead of learning patterns. 

Additionally, selecting appropriate hyperparameters and network architectures for LSTM 

models can significantly impact their performance. 

2.4 Hybrid ARIMA-LSTM Model 

In 2022, [7] introduced a hybrid approach, combining the strengths of both ARIMA, 

and LSTM. The study presents two main approaches for effectively combining ARIMA 

and LSTM: the series-based strategy and the parallel strategy. 
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1. In the series-based approach, LSTM predicts ARIMA model residuals and adjusts 

the ARIMA predictions accordingly. 

2. In the parallel approach, specific weights are assigned to the ARIMA and LSTM 

predictions using various methods such as equal weight averaging and weighted 

average based on error variance. The study also introduced a novel method of using 

regression coefficients as model weights, offering an alternative way to achieve 

effective hybrid predictions. 

 
𝑦 =  𝛽0  +  𝛽1𝑥𝐿𝑆𝑇𝑀 +  𝛽2𝑥𝐴𝑅𝐼𝑀𝐴  (2.7) 

Where xLSTM signifies the predicted value from the LSTM model, xARIMA represents the 

predicted value from the ARIMA model. β1 denotes the weight attributed to the LSTM 

model. Similarly, β2 signifies the weight assigned to the ARIMA model. β0 is the constant 

term of the regression model. By adopting this method, the parallel ARIMA-LSTM model 

strives to strike a balance between the predictive contributions of both models, enhancing 

the accuracy of the final prediction. [7] 
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Chapter 3:     Methods and Implementation 

3.1 Dataset 

The historical OHLCV daily data on Bitcoin prices used in  this study was extracted 

from Yahoo Finance's API [32] using the “yfinance library”. [33] The data collection 

process spanned a period of nine years, from September 17, 2014, to the end of the March 

2023. Daily bitcoin price data includes open, high, low, closing prices, trading volume, 

dividends, and stock splits. all denominated in USD.  

 

3.1.1 Data pre-processing 

After the data collection process, the raw data was cleaned and preprocessed for further 

analysis. First, the stock split and dividends columns were removed from the dataset since 

Bitcoin does not have stock splits or dividends. In addition, a thorough check was 

conducted to ensure the dataset was complete and free of any missing or null values. 

Table 3.1 shows the description of the dataset: 

 

Table 3.1. BTC data statistical description 

3.1.2 Exploratory data analysis (EDA) 

The close price movements of bitcoin from the start point of the dataset until March 

2023, ranges from 178 to 67,566 USD. The price fluctuations during the earlier years 

(2014-2016) were relatively stable, ranging between 200-500 USD. Given the limited 

variability of prices during this period, it was considered insignificant and removed from 

further analysis. Consequently, the remaining dataset from 2016 onward was used for 

training the data in this study as demonstrated in Figure 3.1.The daily close price of bitcoin 

and its mean on a weekly, monthly, yearly, and seasonal basis were plotted in Figure 3.2 

to gain a better understanding of the price movement. The candlestick view of the bitcoin 

prices is also provided in Figure 3.3. 

 

 open high low close volume 

count 3248.000000 3248.000000 3248.000000 3248.000000 3248 

mean 13761.799017 14094.033270 13398.411521 13769.294013 19,436,270,000 

std 16016.188302 16413.201606 15563.214615 16013.610699 19,436,270,000 

min 176.897003 211.731003 171.509995 178.102997 5,914,570 

max 67549.734375 68789.625000 66382.062500 67566.828125 350967900000 
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Figure 3.1. BTC close prices from 2016-2023 

 
Figure 3.2. BTC close prices on weekly, monthly, seasonal, and yearly basis

 

Figure 3.3. BTC close price candlestick view 

As demonstrated, after a prolonged period of stability from 2014 to 2017, bitcoin rose 

in the middle of 2017. The sharp drop that followed the peak in the middle of 2018 

continued the upward trend into 2020. Then, during the first wave of the COVID-19 

epidemic, it fell from almost $8,000 to $5,000 in a single day in March 2020. Yet by 

November of 2020, it had risen to about $20,000. After reaching a high of about $64,000 

in the middle of April 2021, Bitcoin quickly lost over half its value due to regulatory 
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pressure from China's crackdown on the industry. For a while it hovered around $40,000, 

then in the middle of 2022 it dropped to about $16,000 before rebounding in early 2023. 

 

3.1.3 Feature Engineering 

A range of technical indicators has been mathematically derived from the historical 

price data to develop the quality of the data and provide insights into potential market trends 

and price movements. These selected technical indicators, as outlined in Table 3.2, play a 

crucial role in enhancing the predictive power of the models. Simple Moving Average 

(SMA), Exponential Moving Average (EMA), Moving Average Convergence Divergence 

(MACD), Relative Strength Index (RSI), Upper Bollinger band and Lower Bollinger band 

are the indicators which are used as additional features to train the system. 

Correlation heatmap in Figure 3.5 has been created to illustrate the relationships among 

these technical indicators. The heatmap visually presents how strongly these indicators are 

correlated with each other. This allows us to identify potential patterns and dependencies 

between the indicators. 

 
Feature Description 

Open The opening price of BTC at the beginning of the 

trading period. 

High The highest price reached by BTC during the 

trading period. 

Low The lowest price reached by BTC during the trading 

period. 

Close The closing price of BTC at the end of the trading 

period. 

Volume The total number of units of BTC traded during the 

trading period. 

Return The return of BTC, calculated as the percentage 

change in its price from the previous trading period. 

SMA220 Simple Moving Average over 220 days 

SMA48 Simple Moving Average over 48 days 

SMA26 Simple Moving Average over 26 days 

SMA20 Simple Moving Average over 20 days 

SMA12 Simple Moving Average over 12 days 

EMA12 Exponential Moving Average with a 12-day 

smoothing factor 

EMA26 Exponential Moving Average with a 26-day 

smoothing factor 

EMA48 Exponential Moving Average with a 48-day 

smoothing factor 

EMA220 Exponential Moving Average with a 220-day 

smoothing factor 

Bollinger_Upper A volatility-based indicator calculated from the 

standard deviation of the price. 

Bollinger_Lower represents potential oversold conditions when prices 

move below this band. 

RSI Relative Strength Index, a momentum oscillator that 

measures the speed and change of price movements. 
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MACD Moving Average Convergence Divergence, shows 

the relationship between two moving averages of 

the price, helping to identify potential changes in 

trend direction. 

Table 3.2. Technical Indicators Description 

 

 
Figure 3.4. BTC price chart with Technical Indicators 

 
Figure 3.5. Correlation Heatmap of Technical Indicators with BTC price 
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3.2 Statistical Tests and Data Transformation 

Before implementing ARIMA model, the ADF test was performed on the data to 

confirm that the input data is stationary. [34] The calculated p-value of 0.456 indicates that 

we cannot reject the null hypothesis, and therefore, the dataset is non-stationary. The first 

order differencing method was used for transforming data to stationery. An ADF test with 

a p-value of 9.933399758673523e-14 was also performed to confirm the stationarity of the 

data at a confidence level of 0.05. The Ljung-Box statistic test was also run to test for white 

noise.[35] For lags greater than 9, the results showed a p-value less than the threshold for 

statistical significance (0.000034< 0.05). Thus, the series is not a white-noise process. 

3.3 Dataset Partitioning 

To gain insights into how models perform under different market conditions, the dataset 

was divided into three unique time intervals: 

Period 1: Spanning from '2016-01-01' to '2019-08-31'. 

Period 2: containing the timeline from '2019-09-01' to '2023-03-31'. 

Period 3: Spanning the entire dataset from '2016-01-01' to '2023-03-31'. 

The selection of these periods was intentional to show different market behaviors. The 

first period represents a phase of stable market conditions with lower volatility, while the 

second period indicates a phase characterized by high market volatility. In addition, the 

third phase allows for an examination of the performance of the models throughout the 

entire study timeframe. 

 
Figure 3.6. Partitioned dataset 

3.4 ARIMA Model Implementation 

The input data for the ARIMA model has been divided into three sets: an 80% training 

set, a 10% validation set, and a 10% test set. This approach is also utilized throughout the 

study to ensure robust model evaluation.  
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Figure 3.7. Training, Validation and Test dataset for Period1

 

Figure 3.8. Training, Validation and Test dataset for Period2

 

Figure 3.9. Training, Validation and Test dataset for Period3 

Autocorrelation was computed at various lags to examine the potential presence of 

temporal patterns within the data. Among these lags, the highest correlation was observed 

at lags 7, 8, and 9, indicating a potential weekly pattern within the data. The autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plots in Figure 3.10 and Figure 

3.11 visually illustrate that these lags could be good candidates for the optimal p and q 

values. 
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Figure 3.10. First difference and ACF plot 

 

 
Figure 3.11. First difference and PACF plot 

For each period, the ARIMA model was built using the first-order differencing (d=1) to 

achieve stationarity. An exploration of the model was conducted by testing a range of p 

and q values from 0 to 10. The objective was to identify a model configuration that would 

result in a lower Akaike Information Criterion (AIC) score. The AIC score helps balance 

how well the model fits the data with its complexity, helping us choose the best model. The 

evaluation results for the best performing ARIMA model within each period are presented 

below: 

 
Time Frame Top 3 Model Parameters AIC  

Period 1 

(9,1,7) 15268.992 

(9,1,8) 15271.964 

(7,1,9) 15272.409 

Period 2 

(9, 1, 6) 17909.306 

(9, 1, 7) 17910.008 

(7, 1, 9) 17910.700 

Period 3 

(8,1,8) 34100.544 

(8,1,7) 34103.528 

(7,1,8) 34103.844 

Table 3.3. Top three fitted models for each period 
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Time 

Frame 

Best 

Model  

Log 

Likelihood 

AIC BIC Ljung-Box 

(L1) (Q) 

Jarque-Bera 

(JB) 

Period 1 (9, 1, 7) -7617.496 15268.992 15353.542 0.00 19250.29 

Period 2 (9, 1, 6) -8938.653 17909.306 17988.535 0.18 948.02 

Period 3 (8, 1, 8) -17033.272 34100.544 34196.710 0.01 26871.21 

Table 3.4. Diagnostic tests for each period 

In addition to model configuration and AIC score, the analysis of residuals provides 

valuable insights into the model's performance. Residuals are the differences between the 

observed values and the predictions made by the ARIMA model. A thorough examination 

of residuals including residual plots and diagnostics, will be discussed in the next chapter 

alongside the predictions obtained from the ARIMA model. 

3.5 LSTM Model Implementation 

The implementation strategy was guided by the observed autocorrelation plots, which 

indicated a recurring weekly pattern within the data. Therefore, all aspects of model 

implementation and evaluations were aligned with a 7-day lag and one-step prediction 

approach. 

 

3.5.1 Architecture and Hyperparameters 

When building LSTM models, three individual model types tested as follows: 

Model 

Type 

Hidden 

Layers 

Drop-Out 

layer 

Activation 

Function 

Kernel 

Regulizer 

Optimizer Learning 

Rate 

Loss 

Function 

Batch 

size 

Simple 

LSTM 
0 None None None Adam 0.001 MSE 32 

Stacked 

LSTM 1 
1 P=0.2 ReLU L2(0.001) Adam 0.001 MSE 32 

Stacked 

LSTM 2 
2 P=0.2 ReLU L2(0.001) Adam 0.001 MSE 32 

Table 3.5. LSTM models Architecture and Hyperparameters 

Another crucial hyperparameter is the number of epochs which represents the number 

of passes required to learn the training data. Larger epoch values often result in more 

accurate predictions. However, excessively high epoch values can lead to overfitting issues, 

where the model fits noise in the training data rather than the underlying patterns. 

Therefore, the number of epochs was individually adjusted for each model type and each 

period, taking into consideration the loss function results and the potential for overfitting. 

 

3.5.2 Univariate and Multivariate Forecasting  

All three variations of LSTM models were implemented and trained for both univariate 

(using close price) and multivariate forecasting. This was achieved by using the calculated 
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features to capture diverse market behaviors. This approach was applied iteratively for each 

of the time periods. The following sets of features were used for multivariate forecasting: 

 

1. Close, Returns 

2. Close, Exponential Moving Averages (EMA12, EMA26, EMA48, EMA220) 

3. Close, Simple Moving Averages (SMA12, SMA26, SMA20, SMA48, SMA220) 

4. Close, Relative Strength Index (RSI), Moving Average Convergence Divergence 

(MACD) 

5. Close, Bollinger Bands (Upper and Lower) 

6. Close, Exponential Moving Averages (EMA12, EMA26, EMA48, EMA220), 

Simple Moving Averages (SMA12, SMA26, SMA20, SMA48, SMA220), 

Bollinger Bands (Upper and Lower) 

7. Close, Exponential Moving Averages (EMA12, EMA26, EMA48, EMA220), 

Simple Moving Averages (SMA12, SMA26, SMA20, SMA48, SMA220), 

Bollinger Bands (Upper and Lower), RSI, MACD 

3.6 Hybrid ARIMA-LSTM Implementation 

The parallel approach was chosen due to its ability to generate more accurate predictions 

for bitcoin prices. For each period, LSTM models were implemented for both univariate 

and multivariate forecasting. The best-performing model was selected for each step and 

combined with the ARIMA results to determine the values of intercept, coefficient for 

LSTM forecasts and coefficient for ARIMA forecasts. This process aimed to enhance the 

final prediction results through a passive integration of the chosen models. 

3.7 Evaluation Metrics 

To assess the performance of the implemented models, several evaluation metrics were 

employed with the equations defined as follows: 

 

Root Mean Squared Error (RMSE): quantifies the average magnitude of the 

prediction errors. It measures the square root of the average of squared differences between 

predicted values and actual values. 

 

 
RMSE = √

1

𝑁
∑ (𝑌𝑖 − 𝑌𝑖̂ )

2𝑁
𝑖=1  

(3.1) 

Mean Squared Error (MSE): MSE computes the average of squared differences 

between predicted values and actual values, providing a measure of the overall prediction 

error. 
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 MSE = 
1

𝑁
∑ (𝑌𝑖 − 𝑌𝑖̂ )

2𝑁
𝑖=1  

(3.2) 

Mean Absolute Error (MAE): MAE calculates the average absolute differences 

between predicted values and actual values: 

 

 MAE = 
1

𝑁
∑ | 𝑌𝑖 − 𝑌𝑖̂|

𝑁
𝑖=1  

(3.3) 

Mean Absolute Percentage Error (MAPE): MAPE computes the average percentage 

difference between predicted values and actual values: 

 

 MAPE = 
100

𝑁
∑ |

 𝑌𝑖−𝑌𝑖̂

 𝑌𝑖
|𝑁

𝑖=1  (3.4) 

Coefficient of Determination (R2 score): It measures the proportion of the variance 

in the dependent variable that is explained by the independent variables. It indicates the 

goodness of fit of the model to the data: 

 R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

(3.5) 

Where 𝑌𝑖 is the actual value, 𝑌𝑖̂ is the predicted value, RSS is the sum of squares of 

residuals and TSS is the total sum of squares. 

  

https://www.google.com/search?sca_esv=555979541&rlz=1C1GCEB_enCA1025CA1026&sxsrf=AB5stBj028nGPMZFXT2e_fy04KiN6EDr-g:1691782399585&q=Residual+sum+of+squares&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDWzKMhQAjPN0zMMsrW0spOt9FNTSpMTSzLz8_TT8otyS3MSraC0QmZuYnqqQmJecXlq0SNGE26Blz_uCUtpT1pz8hqjKhdXcEZ-uWteSWZJpZA4FxuUxSvFzYWwgWcRq3hQanFmSmlijkJxaa5CfppCcWFpYlFqMQAHYgQYlQAAAA&sa=X&ved=2ahUKEwjGpdvHrNWAAxVYATQIHapyDU4Q24YFegQIIBAC
https://www.google.com/search?sca_esv=555979541&rlz=1C1GCEB_enCA1025CA1026&sxsrf=AB5stBj028nGPMZFXT2e_fy04KiN6EDr-g:1691782399585&q=Residual+sum+of+squares&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDWzKMhQAjPN0zMMsrW0spOt9FNTSpMTSzLz8_TT8otyS3MSraC0QmZuYnqqQmJecXlq0SNGE26Blz_uCUtpT1pz8hqjKhdXcEZ-uWteSWZJpZA4FxuUxSvFzYWwgWcRq3hQanFmSmlijkJxaa5CfppCcWFpYlFqMQAHYgQYlQAAAA&sa=X&ved=2ahUKEwjGpdvHrNWAAxVYATQIHapyDU4Q24YFegQIIBAC
https://www.google.com/search?sca_esv=555979541&rlz=1C1GCEB_enCA1025CA1026&sxsrf=AB5stBj028nGPMZFXT2e_fy04KiN6EDr-g:1691782399585&q=Total+sum+of+squares&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDWzKMhQAjPN0zOS07S0spOt9FNTSpMTSzLz8_TT8otyS3MSraC0QmZuYnqqQmJecXlq0SNGE26Blz_uCUtpT1pz8hqjKhdXcEZ-uWteSWZJpZA4FxuUxSvFzYWwgWcRq0hIfklijkJxaa5CfppCcWFpYlFqMQChCD1kkgAAAA&sa=X&ved=2ahUKEwjGpdvHrNWAAxVYATQIHapyDU4Q24YFegQIIBAD
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Chapter 4:     Experimental Results 

4.1 ARIMA Results 

In this section, the results of the ARIMA models are presented and analyzed. The focus 

is on examining the residuals, diagnostic tests, predictions, and evaluation metrics for each 

period. 

 

4.1.1 Residual Analysis 

In Figure 4.1. Diagnostics of Residuals in Period1, it is evident that the residuals 

demonstrate no correlation and lack evident seasonal patterns. Furthermore, the residuals 

exhibit a normal distribution centered around zero mean. The QQ-plot illustrates that the 

sequence of residuals aligns closely with the linear trend of samples extracted from a 

standard normal distribution (N(0, 1)). This alignment provides strong evidence supporting 

the hypothesis that the residuals adhere to a normal distribution. The same observations 

and conclusions hold true for the residuals of periods 2 and 3, as illustrated in Figure 4.2. 

The Ljung-Box test was employed to assess autocorrelation within the residuals. The p-

value of 0.980402 substantiates the lack of significant evidence to reject the null hypothesis 

(residuals are distributed independently), thus confirming that the residuals are white noise. 

The same confirmation holds true for periods 2 and 3 as well. 

 

 
Figure 4.1. Diagnostics of Residuals in Period1 
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Figure 4.2. Diagnostics of Residuals in Period2 

 
Figure 4.3. Diagnostics of Residuals in Period3 

4.1.2 ARIMA Predictions and Evaluations 

The ARIMA model's predictions are presented through both in-sample and out-of-

sample forecasts for each period. The model's performance is assessed on both the 

validation and test datasets to provide a comprehensive evaluation of its accuracy. 
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4.1.2.7 In-Sample forecast results: 

The following plots illustrate predictions within validation data for each period: 

 

 
Figure 4.4. ARIMA I.S predictions for Period 1(top), Period2 (middle) and Period 3 (bottom) 

4.1.2.8 Out-of-Sample forecast results: 

The following plots in Figure 4.5 showcase each model’s ability to capture the 

underlying trends within test data for each period. 
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Figure 4.5. ARIMA O.S predictions for Period 1(top), Period2 (middle) and Period 3 (bottom) 

The performance of the ARIMA model's predictions across all the time frames is 

summarized in the table below: 
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Table 4.1. Evaluation metrics for each period 

4.2 LSTM Model Results 

Table 4.2. presents a comprehensive analysis of the LSTM models' performance across 

different feature combinations and time periods. Its noteworthy to mention that significant 

differences in MAPE observed among models in Period 3 highlights the difficulty of 

accurately predicting bitcoin prices due to heightened volatility during this phase. 

 
Features Period Model RMSE MSE MAE MAPE R2 

Close 1 Vanilla  486.71 236882.64 348.60 3.60% 0.94 

2 Vanilla 599.68 359613.40 410.13 1.85% 0.98 

3 Stacked 1 669.66 448448.03 468.61 2.23% 0.95 

Close, 

Returns 

1 Vanilla 311.86 97259.64 168.18 4.71% 0.24 

2 Vanilla  422.57 178568.53 222.36 1.22% 0.36 

3 Stacked 1 476.69 227240.08 255.75 5.77% 0.41 

Close, EMA12, 

EMA26, EMA48, 

EMA220 

1 Vanilla 544.90 296917.83 390.80 4.96% 0.85 

2 Vanilla  1646.76 2711828.28 1329.48 6.31% -0.45 

3 Vanilla 2281.26 5204161.95 1838.70 8.84 % 0.29 

Close, SMA12, 

SMA26, SMA20, 

SMA48, SMA220 

1 Stacked 1 543.39 295272.43 410.08 4.93% 0.88 

2 Stacked 1 961.48 924458.53 702.048 3.48% 0.51 

3 Vanilla 2706.58 7325567.71 2284.35 11.04 % -0.16 

Close, 

RSI, 

MACD 

1 Vanilla  380.75 144968.09 169.78 38.48% 0.54 

2 Vanilla 386.77 149589.06 206.21 73.75% 0.12 

3 Vanilla 557.15 310418.95 310.14 103.40

% 

-0.12 

Close, Upper 

Bollinger Band, 

Lower Bollinger 

Band 

1 Vanilla  410.59 168584.89 282.95 3.01% 0.96 

2 Vanilla  442.81 196079.93 289.67 1.37% 0.99 

3 Stacked 2 591.57 349961.04 439.79 2.13% 0.96 

Close, EMA12, 

EMA26, EMA48, 

EMA220, SMA12, 

SMA26, SMA20, 

SMA48, SMA220, 

Upper and Lower 

Bands 

1 Stacked 1 603.60 364341.09 467.20 5.98% 0.84 

2 Vanilla  1961.86 3848892.27 1236.54 6.04% -2.08 

3 Stacked 1 2111.59 4458837.60 1622.53 7.29% 0.46 

Metric Period In-Sample  Out-of-Sample  

MSE 

Period 1 842136.13 39790958.50 

Period 2 5368029.55 17159955.54 

Period 3 802058479.20 2217567316.88 

RMSE 

Period 1 917.68 6308.01 

Period 2 2316.90 4142.46 

Period 3 28320.64 47091.05 

MAE 

Period 1 766.36 5962.51 

Period 2 1735.80 3615.06 

Period 3 25389.94 46993.73 

MAPE 

Period 1 18.28 63.02% 

Period 2 8.11 16.53% 

Period 3 77.26 233.61% 
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Close, EMA12, 

EMA26, EMA48, 

EMA220, SMA12, 

SMA26, SMA20, 

SMA48, SMA220, 

Upper Bollinger 

Band, Lower 

Bollinger Band, RSI, 

MACD 

1 Stacked 1 762.22 580991.33 552.129 90.15% -19.38 

2 Stacked 1 1858.12 3452617.50 1419.33 50.88% -2.03 

3 Stacked 1 2078.96 4322099.06 1618.80 152.7% -24.43 

Table 4.2. Performance of LSTM models in each Time frame 

4.2.1 Best-Performed model analysis 

Overall, the feature combination of Close, Upper Bollinger Band, and Lower Bollinger 

Band consistently showed the most favorable outcomes across the evaluated features. 

Following this, the Close price itself and the feature combinations of Close, Return, and 

Close, RSI, MACD also exhibited good performance. However, after careful consideration, 

Close, Upper Bollinger Band, and Lower Bollinger Band selected as the optimal feature 

selection for the LSTM model across all timeframes. 

For Period 1, Figure 4.6 indicates the comparison of MAE and loss values and between 

Validation and Training data during the training process, showing that the model perfectly 

fitted the training data. In addition, Bitcoin's Close Price Prediction in all periods are plotted 

in Figure 4.7, Figure 4.8 and Figure 4.9 respectively: 

 

 

 
Figure 4.6. MAE comparison (Top) and Loss comparison (Bottom) between Validation and Train Data in Period1 
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Figure 4.7. Bitcoin Close price prediction Versus Test data in Period1 

 
Figure 4.8. Bitcoin Close price prediction Versus Test data using Vanilla LSTM model for Period2. 

 
Figure 4.9. Bitcoin Close price prediction Versus Test data using Stacked LSTM (2 hidden layer) for Period3 
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4.3 LSTM on Differenced Data 

For a comprehensive comparison of LSTM model performance, experiments were also 

tested on differenced data instead of original close price data on all time periods.  

 

 

 
Figure 4.10. Predicted values and their reverse transformations into original prices in Period1 
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Figure 4.11. Predicted values and their reverse transformations into original prices in Period2 
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Figure 4.12. Predicted values and their reverse transformations into original prices in Period3 

Period RMSE MSE MAE MAPE R2 

1  620.95 385579.18 382.75 198.20% -0.84 

2  602.06 362479.77 410.27 236.70% -0.09 

3  625.44 391173.09 425.13 165.64% -0.03 

Table 4.3. First differenced data prediction evaluations 

Results and figures clearly demonstrate that LSTM struggled to make accurate 

predictions when applied to differenced data. This can be attributed to several factors.  

LSTM models are sensitive to the characteristics of the data they are trained on, and 

predicting close prices directly allows the model to learn the patterns and dependencies in 
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the original price series. However, when differencing the data, some of these patterns are 

removed, making the prediction more challenging for the model. Differencing also 

transforms the data into a stationary format with different statistical properties, impacting 

the model's ability to capture meaningful patterns. 

4.4 LSTM on Random Walk Data 

To explore the predictive power of the LSTM model more thoroughly, another 

experiment was carried out. This time on a generated random walk data. In contrast to 

Bitcoin price data, true random walks are characterized by unpredictable behavior, thus 

providing a unique challenge for predictive modeling. Figure 4.13 demonstrates the 

generated random walk. The prediction values of the random walk vs the test data are 

shown in Figure 4.14. 

 

 
Figure 4.13. Generated Random walk data 
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Figure 4.14. Random walk prediction with LSTM 

The evaluation metrics for this experiment are as follows: 

 
RMSE MSE MAE MAPE R2 

5.23 27.33 4.86 52.18% -1.82 

Table 4.4. Evaluation metrics of Random walk prediction with LSTM 

The difference in LSTM's performance comes down to its expertise in spotting patterns 

in data. In bitcoin dataset with complex time-based relationships, LSTM does exceptionally 

well. However, when faced with pure randomness, it struggles to predict the data that lacks 

structure, leading to less accurate predictions. 

4.5 Hybrid Model Results 

The hybrid model's performance is captured in the following plots and metrics: 

For the Close, Upper Bollinger Band, and Lower Bollinger Band features, the hybrid 

model generally performs slightly worse than the Vanilla LSTM in terms of RMSE, MSE, 

MAE, and MAPE across all three periods. 

 
Period Model RMSE MSE MAE MAPE R2 

1 
Vanilla  410.59 168584.89 282.95 3.01% 0.96 

Hybrid 550.99 303590.29 391.04 4.08% 0.93 

2 
Vanilla  442.81 196079.93 289.67 1.37% 0.99 

Hybrid 661.86 438062.10 462.81 2.13% 0.97 

3 
Stacked 2 591.57 349961.04 439.79 2.13% 0.96 

Hybrid 644.84 415814.54 420.89 2.00% 0.95 

Table 4.5. Hybrid model results with Close, Upper Bollinger Band, and Lower Bollinger Band features 
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In the case of Close, Returns, the hybrid model exhibits better MAPE values compared 

to LSTM models. R2 scores remain promising, indicating its ability to explain the variance 

in the target variable, albeit slightly less accurately in terms of RMSE than the LSTM. 

 

Period Model RMSE MSE MAE MAPE R2 

1 
Vanilla 311.86 97259.64 168.18 4.71% 0.24 

Hybrid 435.11 189318.94 311.81 3.29% 0.95 

2 
Vanilla  422.57 178568.53 222.36 1.22% 0.36 

Hybrid 592.24 350746.10 413.30 1.89% 0.98 

3 
Stacked 1 476.69 227240.08 255.75 5.77% 0.41 

Hybrid 626.88 392981.91 417.34 1.98% 0.96 

Table 4.6. Hybrid model results with Close and Returns features. 

For Close alone, the hybrid model's performance is slightly better than LSTM. It 

maintains competitive RMSE, MSE, MAE, and MAPE values while showing strong R2 

scores. 

 
Period Model RMSE MSE MAE MAPE R2 

1 
Vanilla  486.71 236882.64 348.60 3.60% 0.94 

Hybrid 466.03 217182.07 334.10 3.47% 0.95 

2 
Vanilla 599.68 359613.40 410.13 1.85% 0.98 

Hybrid 594.76 353737.09 417.89 1.91% 0.98 

3 
Stacked 1 669.66 448448.03 468.61 2.23% 0.95 

Hybrid 617.79 381663.86 411.25 1.95% 0.96 

Table 4.7. Hybrid model results with Close feature 
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Chapter 5:     Conclusion and Future Work 

In this study, we provided a comprehensive exploration of Bitcoin price prediction using 

different models, feature combinations, and timeframes. Our investigation aimed to 

uncover the strengths and limitations of ARIMA, LSTM, and Hybrid ARIMA-LSTM 

models. Throughout our study, we incorporated an array of technical indicators. This 

strategic selection of features aimed to capture the behavior of Bitcoin price movements. 

We evaluated each feature's impact on the model's performance. We also observed that the 

performance of models varied across different time periods, reflecting the changing nature 

of the Bitcoin market.  

The results obtained from our ARIMA models exhibited better predictive capabilities, 

for the period with lower volatility. The LSTM models, on the other hand showcased their 

ability in capturing complex patterns within the data. Their predictive accuracy was 

evident, especially in timeframes with higher volatility. We identified specific feature 

combinations that yielded optimal results for each period, underscoring the importance of 

feature engineering in adapting models to changing market conditions. As a pinnacle of our 

exploration, the Hybrid ARIMA-LSTM model emerged as a fusion of the strengths of both 

ARIMA and LSTM. This approach offered a novel approach of combining time series 

analysis and deep learning, using their abilities to enhance accuracy. The results obtained 

from the hybrid model indicated its potential as a powerful tool for forecasting 

cryptocurrency prices, bridging the gap between traditional and modern prediction 

methodologies. 

Additionally, we assessed LSTM model on differenced data and true random walks. 

This comparison highlighted how their performance varies with data characteristics. LSTM 

performed well in Bitcoin price series analysis due to identifiable patterns. Yet, It struggled 

when dealing with pure randomness, emphasizing the significance of data characteristics 

in predictive modeling. 

For the future research, there are new paths to explore such as the combination of 

sentiment analysis with social media data. This approach could give us a better 

understanding of how people's feelings affect price changes. Furthermore, adding external 

factors, like economic indicators, also holds a lot of promise for making predictions more 

accurate. Lastly, we might explore forecasting trends over longer periods. This isn't just 

about helping us make smart investments—it's about understanding how different factors 

play out over time in the market. 
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