
On TorXakis Correctness as an ioco Implementation:
An Empirical Model-Based Evaluation

by

Reza Ghasemi

A thesis submitted to the
Department of Computer Science

in conformity with the requirements for
the degree of Master of Science

Bishop’s University
Canada

May 2025

Copyright © Reza Ghasemi, 2025
released under a CC BY-SA 4.0 License

https://creativecommons.org/licenses/by-sa/4.0/

Abstract

The ultimate goal of this thesis is to work toward the use of model-based testing
techniques to evaluate whether TorXakis is a correct implementation of the input-
output conformance (ioco) testing theory. Rather than pursuing a formal proof
of correctness, we adopt an empirical, model-based testing approach to evaluate
whether TorXakis adheres to the expected semantics defined by ioco. A wide range
of custom test models were designed and executed, each targeting specific system
behaviors such as concurrency, synchronization, fault tolerance, and deadlock han-
dling. These models simulate real-world challenges to assess whether TorXakis
produces outputs and traces that align with the theoretical behavior prescribed by
ioco. Through structural, behavioral, and trace-based analysis, we collect evidence
that supports or challenges TorXakis’s conformance to ioco principles. The tests
were conducted under controlled conditions, systematically increasing complexity
to expose potential deviations or inconsistencies. While the study does not offer a
formal verification of TorXakis, it provides a practical and meaningful evaluation
that lays the groundwork for future formal investigations.

i

Acknowledgments

I want to express my heartfelt gratitude to my supervisor, Dr. Bruda, for his invalu-
able guidance, constructive feedback, and continuous encouragement throughout
my research. His expertise and insights have been instrumental in shaping this
thesis. The feedback of the members of my examining committee (Dr. Butler, Dr.
Malik, and Dr. Hedjam) resulted in significant improvements of this manuscript.

I deeply thank my family and friends for their unwavering support and under-
standing during this journey. Their belief in my abilities provided me with the
strength to persevere.

Lastly, I extend my appreciation to the developers and contributors of TorXakis
for creating such a robust tool, which served as the foundation for my work.

ii

Contents

1 Introduction 1
1.1 Toward a Formal Verification of TorXakis 2

2 Previous Work 4
2.1 Formal Models . 4
2.2 Input-Output Conformance (ioco) Theory 6
2.3 Related Work and Current State of Research 8
2.4 Performance Evaluation Tests in TorXakis 9
2.5 Additional Empirical Tests for Evaluating TorXakis’s Conformance

to ioco . 11

3 Performance Testing and System Analysis 12
3.1 Maximum Concurrency Stress Test . 12

3.1.1 Deadlock Injection and Detection Evaluation 14
3.1.2 Real-World Scenario Coverage 16
3.1.3 Test Outcome . 18

3.2 Fault Tolerance Test . 20
3.2.1 Test Outcomes . 22

3.3 Scalability Test . 22
3.3.1 Test Outcomes . 26

3.4 Resource Utilization Test . 28
3.4.1 Test Outcomes . 31

3.5 Model Verification Test . 34
3.5.1 Test Outcomes . 39

3.6 Integration Test . 40
3.6.1 Test Outcomes . 43

4 On Further Expanding the TorXakis Test Suite 48
4.1 Real-time Performance Test . 48

4.1.1 Challenges in Real-Time Testing with TorXakis 49
4.1.2 Implications of TorXakis’s Limitations 49

4.2 User Experience Test . 50

iii

4.2.1 Challenges Identified . 50
4.2.2 Recommendations . 51

4.3 Model Maintainability Test . 51
4.3.1 Challenges Identified . 52
4.3.2 Recommendations . 52

4.4 Security Test . 53
4.4.1 Findings and Challenges . 53
4.4.2 Recommendations . 53

5 Conclusion and Future Work 54
5.1 Some Answers to Our Research Question 56
5.2 Future Work and Practical Recommendations 56

5.2.1 Recommendations for Researchers and Practitioners 57

Bibliography 59

A TorXakis Model Code Listing 62
A.1 Maximum Concurrency Stress Test . 62
A.2 Deadlock Injection and Detection Evaluation 65
A.3 Fault Tolerance Test . 67
A.4 Scalability Test . 69
A.5 Resource Utilization Test . 73
A.6 Model Verification Test . 76
A.7 Integration Test . 81

iv

Chapter 1

Introduction

Software testing is a critical aspect of software development, aimed at identifying
defects, errors, and vulnerabilities in software systems to ensure their quality and
reliability. Fundamental concepts in software testing include test case generation,
test execution, defect detection, and test coverage analysis.

Program verification is the process of ensuring that a software program satisfies
specified requirements or properties. It involves analyzing the program’s source
code or executable to determine whether it behaves as intended and does not exhibit
any undesired behaviors, such as errors, bugs, or security vulnerabilities. Verifi-
cation techniques may include formal methods, static analysis, dynamic analysis,
testing, and theorem proving [6, 29].

Model-based testing is a software testing technique that involves creating ab-
stract models of the system under test (SUT) and generating test cases from these
models. These models capture the behavior, structure, and interactions of the SUT,
allowing testers to systematically derive test cases that cover various scenarios and
functionalities. Model-based testing can improve test coverage, reduce testing time
and effort, and enhance the effectiveness of software validation processes [8, 17].

Model-based testing (MBT) is grounded in the principle that a system’s ex-
pected behavior can be described using a formal model, from which test cases
can be systematically derived and executed. This approach enables exhaustive test
coverage and allows for early defect detection, making it a powerful technique for
validating complex software systems. Several foundational works have contributed
to the development of MBT methodologies, including the seminal work by Utting
[18], which provides a comprehensive overview of MBT techniques, tools, and
applications.

A key aspect of MBT is the formal representation of system behavior using
modeling formalisms such as finite state machines (FSM), labeled transition sys-
tems (LTS), and process algebra. These models serve as a basis for generating test
cases that exercise various paths, transitions, and interactions within the system.
Furthermore, MBT can be classified into offline and online testing approaches. In

1

CHAPTER 1. INTRODUCTION 2

offline MBT, test cases are generated prior to execution and stored for later use,
whereas in online MBT, test cases are generated dynamically during execution
based on the system’s response. The latter approach provides greater adaptability
in testing real-time and adaptive systems [2].

TorXakis in particular is a toolset for model-based testing and verification of
concurrent systems. It provides a formal specification language for describing
system behaviors and properties, as well as a set of tools for model simulation, test
generation, and verification [32]. TorXakis is an implementation of input-output
conformance (ioco) [36], a formal framework used to assess whether the observable
behavior of an implementation conforms to the expected behavior defined by its
specification. TorXakis automates the process of test generation and application,
based on a specification formulated using a process algebra.

1.1 Toward a Formal Verification of TorXakis

Model-based testing (MBT) in general, and TorXakis in particular, have been suc-
cessfully applied to validate real-world software systems such as network protocols,
Web applications, and client-server systems, and even in an academic testing as a
grading tool [1, 12, 37]. According to ioco, this establishes formally the correctness
of the respective applications. However, there is one big elephant in the room.
Indeed, there is no verification of the verification tool itself, and so the formal cor-
rectness argument relies on the unverified hypothesis that TorXakis itself is a correct
implementation of ioco.

The fundamental question that we start addressing in this paper is whether
TorXakis is a correct implementation of ioco. Conceivably we can use another
formal verification tool for this purpose, but the question of the correctness of that
tool appears recursively with no end in sight. Out thesis is therefore that instead of
relying on some third part tool TorXakis can be verified using model-based testing
that is, using TorXakis itself.

It should be noted that TorXakis does come with a testbench. However, that
testbench is limited to six token tests which are more a proof of concept rather than
any guarantee of correctness, and not even near real world scenarios of modern
software testing environments [36, 38]. While TorXakis has been widely adopted
for its effectiveness in validating software systems, the limited scope and simplicity
of its default test suite remain a significant drawback [11, 15].

In this paper we investigate extensions of the TorXakis testbench. We do this
by designing a wide variety of test models that reflect different aspects of ioco
semantics—such as observable actions, non-deterministic behaviors, refusals, qui-
escence, and deadlock scenarios—–and running these models through the TorXakis
testbench. By analyzing the outcomes, we examine whether the tool behaves in a
manner consistent with what ioco would theoretically predict.

CHAPTER 1. INTRODUCTION 3

Our contribution is two-fold. On one hand, we establish a practical and struc-
tured framework for testing TorXakis, offering empirical evidence that demonstrates
the robustness of TorXakis in the context of testing modern, complex software. We
validate TorXakis across a broader spectrum of tests, including concurrency stress,
fault tolerance, and scalability. Testing the tool itself is crucial for ensuring its reli-
ability, accuracy, and effectiveness. Proper validation allows developers to identify
and resolve potential bugs, glitches, or functional limitations before the tool is em-
ployed in real-world software testing [32, 36]. The quality of a testing tool directly
impacts its usability and reliability; if it is not thoroughly tested, it may produce
inaccurate results, overlook critical issues, or fail to handle complex scenarios ef-
fectively. This could lead to unreliable software testing outcomes and potentially
compromise the quality and stability of the tested software [24, 30]. In other words,
rigorous testing of the testbench itself is an essential step in the software devel-
opment process to ensure that it performs as expected and can effectively support
software validation across diverse scenarios [38].

On the other hand, we try to establish a basis for the formal verification of
TorXakis using TorXakis itself. Once all out tests are run, we aim to draw some
however tentative conclusions about the correctness of TorXakis. We also aim to
determine whether TorXakis is powerful enough to handle the more complex testing
scenarios that such a formal self-verification will most likely entail.

Chapter 2

Previous Work

2.1 Formal Models

A Labeled Transition System (LTS) is a foundational formalism used to describe the
behavior of concurrent and reactive systems. It provides a structured mathematical
framework that models the possible execution paths of a system through states and
labeled transitions [16, 36].

Formally, an LTS is defined as a triple (𝑆,Act,→), where 𝑆 is a finite set of states,
Act is a set of observable actions (also known as labels), and →⊆ 𝑆 × Act × 𝑆 is
a transition relation. A transition of the form (𝑠1 , 𝑎, 𝑠2), often written as 𝑠1

𝑎−→ 𝑠2,
denotes that the system, when in state 𝑠1, can perform action 𝑎 and move to state
𝑠2.

A trace is defined as a finite sequence of observable actions that represents a
possible execution path of the system from its initial state. Formally, a trace is a
sequence 𝑡 = 𝑎1 , 𝑎2 , . . . , 𝑎𝑛 , where each action 𝑎𝑖 belongs to the set Act, and there
exists a corresponding sequence of states 𝑠0 , 𝑠1 , . . . , 𝑠𝑛 such that:

𝑠0
𝑎1−→ 𝑠1

𝑎2−→ 𝑠2 . . .
𝑎𝑛−→ 𝑠𝑛

The set of all such traces characterizes the external behavior of the system and
defines what is observable from its execution. To illustrate, consider a simple
vending machine modeled as a Labeled Transition System (LTS). The machine
begins in a state labeled Start, moves to Paid upon receiving a coin through the
action insertCoin, and then transitions to Dispensed when the user presses the
button via the action pressButton.

The corresponding transitions can be written as:

Start
insertCoin−−−−−−−−→ Paid

pressButton−−−−−−−−−→ Dispensed

A valid trace for this system is:

insertCoin, pressButton

4

CHAPTER 2. PREVIOUS WORK 5

This reflects a sequence of observable interactions that leads to successful prod-
uct delivery. This formalism serves as the foundation for analyzing, verifying, and
testing system behavior in model-based testing frameworks such as TorXakis.

LTS are typically described suing a process algebra, which is a mathematical
framework designed to model and reason about the behavior of concurrent systems.
It provides a formal language and set of operators that describe how processes
behave, interact, and evolve over time through observable actions. Each process in
this framework represents an abstract behavior that can engage in communication,
make decisions, perform sequences of actions, or operate in parallel with other
processes. [5]

There are many process algebra such as Calculus of communicating systems
(CCS) [19] and Communicating sequential processes (CSP) [26]. TorXakis uses yet
another process algebraic notation to describe specifications, which we will also use
here for the sake of consistency.

In this formalism, an action prefixing operator defines the fundamental struc-
ture of a process: for instance, the expression a >-> P represents a process that
performs action a and then continues as process P. This enables a natural way to
describe sequential behaviors. Beyond sequentiality, systems often need to exhibit
nondeterministic behavior, where multiple alternatives are possible. The operator
P ## Q expresses a nondeterministic choice between processes P and Q, allowing the
system to proceed along either path based on internal or environmental conditions.

Concurrency is another key aspect modeled in process algebra. The operator
P ||| Q describes two processes executing concurrently without synchronization,
meaning that their actions may interleave freely. When synchronization is required
on specific actions, the operator P |[A]| Q is used. This ensures that both processes
must agree to simultaneously perform any action belonging to the set A, while
other actions remain independent. Such synchronization mechanisms allow the
modeling of tightly coordinated systems, such as protocols or resource-sharing
architectures.

In some scenarios, abstraction is necessary to simplify internal details of a pro-
cess. This is achieved through action hiding, where certain internal actions are
rendered unobservable to external observers. Though TorXakis does not use an ex-
plicit hide keyword in the core syntax, similar effects can be achieved by restricting
or renaming channels during process composition and specification.

Recursive definitions are also integral to process algebra, as they allow the
modeling of behaviors that repeat indefinitely. For example, the TorXakis definition
PROCDEF counter [Tick] () ::= Tick >-> counter [Tick] () ENDDEF models a
process that performs the action Tick repeatedly without termination. This style
of definition is essential for representing loops, timers, or reactive systems that
continuously respond to external stimuli.

Taken together, these operators enable the construction of complex and realistic
models of system behavior. In TorXakis, process algebra serves as the foundation

CHAPTER 2. PREVIOUS WORK 6

for defining formal models that are both analyzable and executable. Its expressive
power allows system designers and testers to describe not only the nominal behav-
ior of systems, but also exceptional scenarios such as deadlocks, race conditions,
and synchronization faults. Throughout this thesis, these constructs are applied
extensively to model, test, and evaluate systems under varying conditions of stress,
fault, and concurrency.

Test generation in model-based testing (MBT) refers to the automated derivation
of test cases from formal models that describe the expected behavior of a system
under test. Rather than writing tests manually, MBT leverages a behavioral specifi-
cation—such as a labeled transition system (LTS) or process algebra—to systemati-
cally produce test cases that are both comprehensive and formally grounded. This
approach ensures that the generated tests are consistent with the model and can
cover a wide range of scenarios, including normal execution paths, edge cases, and
potential faults. MBT enables the automation of test case generation by interpreting
the structure and semantics of the model to drive the construction of test inputs
and expected outputs. This paradigm is especially valuable for complex systems,
where manually designing an adequate set of tests is not only time-consuming but
also error-prone. In this thesis, test generation is carried out using TorXakis, a
model-based testing tool that relies on formal models to produce and execute test
sequences against the system specification [18].

2.2 Input-Output Conformance (ioco) Theory

Input-Output Conformance (ioco) is a formal theory used to assess whether the
observable behavior of an implementation conforms to the expected behavior de-
fined by its specification. It is widely used in model-based testing, particularly
for systems that interact with their environment through inputs and outputs. The
ioco framework is grounded in the use of Labelled Transition Systems (LTS), which
describe the behavior of a system in terms of its states and transitions, with each
transition being labeled as either an input or an output action [36].

Under the ioco framework, a system implementation is said to conform to its
specification if, after any sequence of inputs and outputs allowed by the specifica-
tion, the outputs produced by the implementation are also allowed by the speci-
fication. This includes the concept of quiescence, which represents the absence of
output. Quiescence is treated as an observable behavior in ioco, meaning that the
system’s inaction in certain contexts must also conform to the specification.

The importance of ioco in model-based testing lies in its ability to provide a
systematic and rigorous foundation for conformance checking. Instead of relying
on manually written test cases, ioco enables the automatic generation of test cases
from a formal specification, ensuring thorough coverage of the system’s behavior.
This is particularly effective for reactive systems, where the system continuously
responds to external stimuli [36].

CHAPTER 2. PREVIOUS WORK 7

The Input-Output Conformance (ioco) relation is formally defined based on
labeled transition systems (LTS) with inputs and outputs. Given a specification
spec and an implementation impl, both modeled as input-output labeled transition
systems, the ioco relation is defined as follows:

impl ioco spec ⇐⇒ ∀𝑠 ∈ traces(spec) : out(impl after 𝑠) ⊆ out(spec after 𝑠)

In this context, traces(spec) denotes the set of all observable traces—that is, se-
quences of actions that the specification can perform. The expression out(p after s)
refers to the set of outputs that a process 𝑝 can produce after executing the trace
𝑠, including quiescence, which is typically denoted by the symbol 𝛿. The terms
impl after s and spec after s refer to the reachable states of the implementation and
specification, respectively, after the execution of trace 𝑠.

This definition ensures that the implementation never produces outputs that the
specification does not allow after any valid interaction sequence. In particular, it also
captures situations where the system becomes quiescent (i.e., does not produce any
output), treating such behavior as a significant observable event. IOCO provides a
strong and mathematically grounded foundation for conformance testing in model-
based verification frameworks.

The ioco framework is highly relevant to model-based testing (MBT) because it
provides a rigorous definition of behavioral conformance between a system imple-
mentation and its formal specification. In MBT, test cases are derived from a model
that describes the expected behavior of the system under test. The ioco relation
defines what it means for an implementation to conform to this model, ensuring
that after any sequence of inputs, the implementation does not produce outputs
that are disallowed by the specification. This makes ioco a powerful foundation for
automatic test generation, verdict calculation, and test oracle design in MBT [36].

TorXakis uses labeled transition systems and process algebra to describe system
behavior and generate test cases accordingly. Its ability to simulate and validate
observable outputs after traces mirrors the essence of ioco conformance. Thus, ioco
can be seen as a conceptual backbone that justifies and strengthens the model-based
validation capabilities provided by TorXakis.

TorXakis implements the ioco testing theory through a series of integrated mech-
anisms. First, it models systems as Labeled Transition Systems (LTS), derived from
formal process algebra specifications. It then performs on-the-fly trace exploration
to dynamically analyze system behavior as traces are executed. During this ex-
ploration, TorXakis checks whether the outputs produced by the implementation
after a given trace are included within the outputs allowed by the specification.
Additionally, the tool supports automated test generation under the ioco frame-
work, enabling efficient conformance testing of reactive systems based on formally
defined behavioral models [33].

CHAPTER 2. PREVIOUS WORK 8

2.3 Related Work and Current State of Research

Model-based testing (MBT) as a formal verification technique has a long history
grounded in the definition of various preorder implementation relations [9], which
in turn allow the algorithmic generation of sound and complete tests suites [39].
Modern practical MBT is based on I/O transition systems [7]. Seminal contributions
by Tretmans have shaped the theoretical foundation of MBT, particularly through
the development of the input-output conformance (ioco) testing framework [35,
36]. His work introduces the use of labeled transition systems (LTS) to model
the expected behavior of systems and defines conformance relations that can be
used to verify whether implementations meet their specifications. Later extensions
further established the soundness and exhaustiveness of MBT when applied under
well-defined modeling assumptions.

Building upon these theoretical foundations, recent research has turned toward
enhancing the practical capabilities of MBT tools, particularly their testbenches. An
analysis of existing literature, including the works of Pretschner el. al. and Forgacs,
reveals a significant gap in testbench capabilities for model-based testing tools,
particularly in autonomous operations and extensive test case generation [10, 23].

Pretschner el. al. focus on the development of model-based testing techniques
for complex software systems. They emphasize the importance of automated test
case generation and highlight the limitations of current testbenches in this regard.
Forgacs, on the other hand, explores the role of autonomy in software testing,
advocating for the integration of intelligent algorithms into testbench frameworks
to enable autonomous operations.

Despite their valuable contributions, both Pretschner el. al. and Forgacs identify
the need for further advancements in testbench capabilities to address the evolving
challenges of software validation. Specifically, there is a consensus on the necessity
for testbenches that can autonomously generate diverse and extensive test cases to
ensure comprehensive coverage of software functionalities and behaviors [10, 23].

Alternatives to Model-Based Testing
In the domain of software testing, there are various methods beyond model-based
testing that offer different perspectives and approaches to ensure software quality.
Techniques like static analysis, fuzz testing, and mutation testing provide additional
ways to strengthen software quality assurance efforts [4, 20, 21]. Static analysis
involves carefully examining software code without actually running it, aiming
to uncover any flaws or vulnerabilities. Fuzz testing, on the other hand, involves
bombarding a software system with unconventional or invalid inputs to uncover
hidden bugs or security weaknesses [14]. Mutation testing, meanwhile, introduces
small changes to the source code and then evaluates how well existing test suites
detect these alterations, giving insight into the effectiveness of the testing approach
cite [22, 27].

CHAPTER 2. PREVIOUS WORK 9

While model-based testing remains popular, it’s important to explore other
methods that bring unique benefits and perspectives. Exploratory testing, for
example, encourages testers to spontaneously explore a software application to
uncover defects and assess its usability, relying on their expertise and creativity[31].
Behavior-driven development (BDD) focuses on expressing test scenarios in natural
language to align with stakeholder expectations and promote collaboration between
different parties involved in software development[13]. Each of these alternatives
comes with its own advantages and challenges, emphasizing the need for a broad
understanding of different testing methodologies to ensure comprehensive software
quality assurance.

The current state of research in the field of model-based testing reflects a grow-
ing interest in enhancing testbench capabilities to meet the demands of modern
software development [25]. Recent studies have proposed various approaches to
address the limitations identified by Pretschner el. al. and Forgacs, including the
integration of machine learning algorithms, the development of domain-specific
modeling languages, and the adoption of cloud-based testing platforms [3, 25].

However, despite these efforts, there remains a gap between the theoretical
advancements proposed in the literature and their practical implementation in
existing testbench frameworks [32]. Many of the proposed solutions are still in the
experimental stage and have not been widely adopted by industry practitioners.

2.4 Performance Evaluation Tests in TorXakis

The tests listed in benchtest focused on evaluating the performance characteristics
of different types of processes and constructs in TorXakis. Let’s break down each
test and provide more details [34]:

Test Performance of Sequence
This test evaluates the performance of sequential processes in TorXakis. It involves
measuring the time taken to execute a sequence of actions or the throughput of
sequential processes. Sequential processes are fundamental in modeling systems
where actions occur one after another in a predetermined order. The test involves
scenarios where multiple sequences are executed concurrently or in different con-
figurations to assess performance under various conditions.

Test Performance of Synchronized Processes
This test focuses on evaluating the performance of processes that synchronize on
certain events or conditions. Synchronized processes typically coordinate their
actions based on shared variables, signals, or message passing. The test involves
measuring the latency and overhead associated with synchronization mechanisms

CHAPTER 2. PREVIOUS WORK 10

such as barriers, semaphores, or message queues. Evaluating how efficiently TorX-
akis handles synchronization can be crucial for modeling systems with concurrent
or distributed components.

Test Performance of Parallel Processes
This test aims to assess the performance characteristics of parallel processes in
TorXakis. Parallel processes execute simultaneously and may interact with each
other through shared resources or communication channels. The test involves
measuring factors such as scalability, resource utilization, and potential bottlenecks
in executing parallel processes. It explores scenarios where the number of parallel
processes varies or where workload distribution strategies are employed.

Test Performance of Hidden Processes
Hidden processes are processes that do not directly participate in the main behavior
of a system but play a supporting role, such as performing background tasks
or managing resources. This test evaluates the performance impact of hidden
processes on the overall system behavior. It involves measuring the overhead
introduced by hidden processes, as well as their effectiveness in supporting the
primary functionality of the system. Evaluating hidden processes is important
for understanding their influence on system performance and identifying potential
optimization opportunities.

Nesting
Nesting refers to the composition of processes within other processes, allowing for
hierarchical modeling and abstraction. This test examines the performance impli-
cations of nesting processes to represent complex systems. It involves measuring
the overhead of managing nested processes, as well as assessing the scalability and
maintainability of nested models. Evaluating nesting capabilities helps determine
the suitability of TorXakis for modeling systems with varying levels of complexity
and abstraction.

Test Performance of Enable
The "enable" construct in TorXakis specifies conditions under which certain actions
or processes become enabled or disabled. This test evaluates the performance
of enable conditions in controlling the execution flow of processes. It involves
measuring the responsiveness and efficiency of enable conditions, as well as their
impact on overall system behavior. Evaluating enable conditions helps ensure
that TorXakis effectively captures the dynamic nature of systems where actions are
contingent on specific conditions.

These tests collectively aim to assess the performance characteristics, scalability,
and efficiency of TorXakis in modeling and analyzing concurrent and distributed

CHAPTER 2. PREVIOUS WORK 11

systems. By conducting these tests, users can gain insights into how well TorX-
akis handles various modeling scenarios and identify areas for improvement or
optimization.

2.5 Additional Empirical Tests for Evaluating TorXakis’s
Conformance to ioco

In addition to the existing tests outlined in benchtest, we propose incorporating
further tests to comprehensively evaluate different aspects of TorXakis and to focus
on specific features or scenarios relevant to our use case. These additional tests
aim to provide a strong examination of TorXakis’s capabilities and behavior under
various conditions.

Concurrency stress test involves creating a highly concurrent workload to stress
test TorXakis’s ability to handle a large number of concurrent processes. It involves
scenarios where a significant number of processes are executing simultaneously,
with frequent interactions and synchronization points.

Fault tolerance test evaluates TorXakis’s behavior in the presence of faults or
errors, such as process failures, message loss, or communication disruptions. It in-
volves injecting faults into the system and observing how TorXakis reacts, recovers,
or maintains system integrity.

Scalability test assesses TorXakis’s scalability by increasing the size or complex-
ity of the modeled system and measuring its performance. It involves gradually
increasing the number of processes, channels, or interactions in the model and
observing how TorXakis handles the increased workload.

Resource utilization test measures the resource utilization of TorXakis, such as
CPU usage, memory consumption, and network bandwidth. It involves monitoring
resource metrics while running various test scenarios to identify potential resource
bottlenecks or inefficiencies.

Model verification test focuses on verifying the correctness of models created
with TorXakis by comparing their behavior against expected specifications or prop-
erties. It involves defining formal properties or assertions and using TorXakis to
verify them against the model’s behavior.

Integration test evaluates TorXakis’s integration with other tools, frameworks,
or environments. It involves integrating TorXakis with external systems or tools
and verifying interoperability, data exchange, or compatibility.

Chapter 3

Performance Testing and System
Analysis

The testing phase of this research was designed to evaluate the developed model
comprehensively. A series of tests were performed to ensure the system’s reliability,
scalability, and user experience, under real-world conditions. This chapter outlines
the tests thus conducted.

Our models are constructed under several formal assumptions and behavioral
expectations. We assume non-blocking execution, where all sequences and data
processes emit outputs on their channels continuously, without waiting for inputs
or delays—effectively simulating an open-loop system. Synchronized processes
are expected to engage in a fixed number of interleaved synchronization steps,
assuming all participating processes are available. The test environment is consid-
ered isolated, without external inputs or blocking reads. A fairness assumption is
adopted, wherein all processes are assumed to be scheduled fairly so that none is
indefinitely denied access to required synchronization.

Finally, it is assumed that the system is well-formed, meaning all channel ref-
erences are unique and correctly typed, avoiding naming conflicts or mismatches
across concurrent modules.

3.1 Maximum Concurrency Stress Test

The primary goal of this test is to evaluate how the system handles high levels of
concurrency. This includes measuring response times, throughput, and resource
usage under peak load conditions. By stressing the system, we can also identify
potential bottlenecks or performance degradation points. This test also helps ensure
that the system remains stable and performs correctly under heavy concurrent load
without crashes or unexpected behavior. Finally, the test should detect concurrency
issues including deadlocks, race conditions, and other synchronization issues that

12

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 13

Figure 3.1: Simplified LTS Diagram for the Maximum Concurrency Stress Test

might only manifest under high concurrency.
The concurrency stress test is defined as a parallel composition of multiple

processes, each communicating independently over its own dedicated channel.
Each process repeatedly emits outputs over a distinct communication channel. Let
𝐴𝑖 denote a process that continuously outputs on channel 𝑐ℎ𝑖 , defined as 𝐴𝑖 =

𝑐ℎ𝑖! → 𝐴𝑖 . The operator ∥ indicates parallel composition, and ∥9
𝑖=1𝐴𝑖 represents

the parallel execution of all nine such processes. The overall system model is thus
expressed as follows:

ConcurrencyModel = 𝐴1 ∥ 𝐴2 ∥ 𝐴3 ∥ 𝐴4 ∥ 𝐴5 ∥ 𝐴6 ∥ 𝐴7 ∥ 𝐴8 ∥ 𝐴9

where each process is defined as 𝐴𝑖 = 𝑐ℎ𝑖! → 𝐴𝑖 for 𝑖 = 1, . . . , 9. This formal model
represents an infinite loop of output actions from each channel, running concur-
rently, and constitutes the structural basis for testing the maximum parallelism that
the system can support. In practice, however, the implemented test is significantly
more complex and involves fourteen output channels to support a diverse set of
concurrent communication patterns. These channels include basic output channels
used for executing parallel sequences (Channel1 through Channel9), integer data
channels for transmitting numerical values in parallel (ChannelInt1, ChannelInt2,
and ChannelInt3), and structured data channels that handle sequences involving
composite data types such as tuples or lists (Channel10Ints and Channel10Ints_b).
All channels are unidirectional (output only) and are reused across multiple pro-
cesses to simulate intense synchronization demands and contention for shared
resources. The complete TorXakis code for this test is provided in Appendix A.1.
The semantics of this test is given by the LTS shown in Figure 3.1.

By simulating a high-concurrency environment with synchronized outputs and
interleaved execution sequences, this test expects the system to remain robust and
responsive. Specifically, the system should avoid deadlocks during intense parallel
activity, maintain consistent synchronization across interleaved steps, and support
execution with up to 14 channels without failures or unexpected behavior. Faults
such as starvation or deadlock are only expected to appear under extreme resource
exhaustion or misconfigured synchronization conditions.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 14

The developers of TorXakis have designed the system to handle up to 14 channels
and a limited number of processes (typically 4 or 5) as part of their benchmark tests,
which aim to evaluate scalability under expected usage scenarios. However, these
limitations are not inherent to TorXakis but rather reflect the typical performance
boundaries tested under standard configurations. In our tests we sought to exceed
these predefined constraints by manually increasing the number of channels and
processes.

While TorXakis can theoretically handle a larger number of channels and pro-
cesses, practical constraints, such as computational resources and execution time,
come into play. For example, during simulations with 14 channels our test ma-
chine required approximately 5 hours to complete the test. When we attempted
to scale the system further, testing configurations with 100 channels and 50 pro-
cesses, we encountered performance bottlenecks, particularly with memory usage
and execution time. These resource limitations prevented the successful execution
of simulations with more than 14 channels, highlighting the practical challenges
associated with stress tests on personal computing hardware.

It is important to note that the limitations observed in these tests are primar-
ily determined by the hardware’s computational capacity rather than any strict
constraints within TorXakis itself. Model-based testing tools like TorXakis are in-
herently resource-intensive, as they must explore all possible states and transitions
in a model. When the number of channels and processes increases, the tool faces
the critical challenge of state space explosion: TorXakis explores all possible states
and transitions, and a larger number of channels and processes expands this state
space beyond what typical personal computers can efficiently handle.

3.1.1 Deadlock Injection and Detection Evaluation

The core idea behind the intentional deadlock test in our TorXakis concurrency test is
to create a controlled environment where deadlocks are intentionally introduced. To
define such a scenario, each process waits for communication on a specific channel
and then terminates. We then arrange these processes in a closed synchronization
set, where each one depends on the next to proceed. The overall system creates a
circular wait pattern that leads to a deadlock. We observe whether the system under
test reaches a state with no outgoing transitions, a classical indicator of deadlock in
LTS semantics.

The intentional deadlock model is designed by composing four atomic pro-
cesses, each attempting to send an output on a distinct channel before halting.
Formally, each process 𝐷𝑖 is defined as 𝐷𝑖 = 𝑐ℎ𝑖! → 𝑆𝑇𝑂𝑃, where 𝑖 = 1 . . . 4. These
processes are then composed in parallel and synchronized over a set of shared
channels to induce a circular dependency as follows:

DeadlockModel = (𝐷1 ∥ 𝐷2 ∥ 𝐷3 ∥ 𝐷4) \ {𝑐ℎ1, 𝑐ℎ2, 𝑐ℎ3, 𝑐ℎ4}

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 15

Figure 3.2: Simplified LTS Diagram for the Deadlock Injection

In this model (Figure 3.2), the synchronizations are defined such that 𝐷1 and
𝐷2 share channel 𝑐ℎ1, 𝐷2 and 𝐷3 share channel 𝑐ℎ2, 𝐷3 and 𝐷4 share channel 𝑐ℎ3,
and finally, 𝐷4 and 𝐷1 share channel 𝑐ℎ4. This configuration forms a closed syn-
chronization loop. The LTS illustrates this structure by showing each of the four
processes emitting an output over their respective channel, all leading to a single
deadlocked state. This algebraic model serves as a simplified representation of the
actual test structure and is included here for clarity. In practice, the implemented
test is more complex and aligns with the LTS diagram shown. The communication
infrastructure supporting this model consists of fourteen output-only channels,
each reused across multiple concurrent process definitions. These include basic
deadlock channels such as Channel1 through Channel4 used in the deadlock se-
quences, synchronized interaction channels (e.g., Channel4 to Channel6), nested
synchronization channels, parallel integer dataflow channels, and structured chan-
nels for complex message types. All of these channels are deliberately shared to
simulate synchronization conflicts and circular dependencies. This full version
introduces additional layers of concurrency and synchronization to more closely
simulate real-world scenarios, extending beyond the minimal four-process abstrac-
tion. We thus create a common deadlock scenario called circular deadlock, which
is among the most common deadlock scenarios in real-world concurrent systems.

This allows us to verify how the system handles situations where processes
are unable to proceed due to circular dependencies on resources (channels). By
setting up these intentional deadlocks, we can observe and analyze how TorXakis
detects, reports, and potentially recovers from deadlock conditions. The system
successfully handled the test cases using the code. See Appendix A.2 for full model
code.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 16

This test is representative because it addresses a fundamental cause of dead-
locks—dependency cycles among resources. The standard suite for TorXakis in-
cludes basic deadlock scenarios, typically focused on simple two-process deadlocks
or synchronization based deadlocks. These involve mutual exclusion or a simple
chain of dependencies but may not extend to complex cyclic dependencies among
multiple processes. Our test goes further by involving multiple channels and inter-
process dependencies, creating a more complex circular wait situation. This pushes
TorXakis to detect and handle deadlocks beyond what simple tests in the standard
suite address, simulating a more realistic and complex deadlock scenario.

3.1.2 Real-World Scenario Coverage

Table 3.1 summarizes coverage percentages for various real-world concurrency sce-
narios based on common concurrency testing features and the expected effective-
ness in detecting concurrency faults. The table includes the approximate coverage
for each scenario, the types of concurrency faults it addresses, and the reasoning
behind each coverage percentage.

The comparison presented in Table 3.1 provides a structured overview of how
different concurrency test scenarios map to real-world fault detection capabilities.
Each test type targets specific levels of system complexity, channel usage, and
synchronization characteristics, offering insights into their respective strengths and
limitations.

The Basic Concurrency Test shows limited coverage (20–30%) due to its minimal
setup with only a few channels and sequential process flow. While sufficient for
detecting elementary synchronization faults and deadlocks, it lacks the ability to
model more realistic scenarios involving interaction timing or parallel execution.

The Moderate Concurrency Test improves coverage (50–60%) by introducing paral-
lelism and a modest number of channels. This setup enables detection of basic race
conditions in addition to deadlocks, making it a practical middle-ground for typical
applications. However, it still lacks the scalability and dynamic timing variations
required to fully emulate high-load systems.

As we progress to the High-Concurrency Stress Test, the use of 10–15 channels
and more extensive parallelism increases the coverage to 70–80%. This test effec-
tively reveals issues like resource starvation and complex interleavings but falls
short in accounting for randomness in execution order, which can expose subtler
concurrency bugs.

The two most advanced test types—Dynamic Concurrency with Random Timing
and Dynamic Concurrency with Complex Synchronization—demonstrate the highest
levels of expected coverage (85–90%). These scenarios model real-world environ-
ments more faithfully by incorporating nondeterministic timing and intricate syn-
chronization logic. The former excels at capturing timing-sensitive faults such as
race conditions through randomized execution patterns, while the latter focuses on

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 17

Scenario/Test
Type

Key Features
Included

Expected
Coverage
(%)

Types of
Faults
Detected

Reasoning

Basic
Concurrency
Test

Minimal
channels (2-3),
sequential
processes

20-30% Deadlocks,
basic syn-
chronization

Limited scope, low
concurrency, does
not address com-
plex interactions or
timing issues.

Moderate
Concurrency
Test

Medium
channels (5-7),
parallel
processes

50-60% Deadlocks,
basic race
conditions

Covers typical
concurrency but
lacks complexity
and scalability for
higher loads.

High-
Concurrency
Stress Test

Many
channels
(10-15),
extensive
parallelism

70-80% Deadlocks,
resource
starvation

High concurrency
but lacks inten-
tional variations
and random execu-
tion orders.

Dynamic
Concurrency
with Random
Timing

Randomized
execution
timing, high
channel count

85-90% Deadlocks,
race
conditions

Captures timing-
sensitive faults like
race conditions;
randomization
aids in variability.

Dynamic
Concurrency
with Complex
Sync

High channel
count,
complex syn-
chronization

85-90% Starvation,
complex
deadlocks

Extensive interac-
tion patterns with
complex syncs to
cover resource and
execution chal-
lenges.

Table 3.1: Comparison of Different Concurrency Tests

detecting starvation and deep deadlocks that arise from complex interdependencies
between processes.

Overall, the comparison confirms that increasing model complexity and behav-
ioral diversity through dynamic timing and synchronization significantly enhances
fault coverage. However, this comes with the cost of increased system load, greater
test execution time, and the need for more sophisticated modeling tools—factors
that must be balanced based on the intended application domain and testing goals.

Our test is categorized as a High-Concurrency Stress Test, with an estimated cov-
erage of 80-90%. It is designed to detect deadlocks, resource starvation, and some
race conditions. By incorporating many channels and processes with recursion and
parallel composition, our test achieves significant coverage and effectively simulates
a high-concurrency environment, making it well-suited for identifying deadlocks

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 18

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 64180
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper MaxConcurrencyStressTestWithDeadlocks
TXS >> Stepper started
TXS >> step 20
TXS >>1: Act { { (Channel1, []) } }
TXS >>2: Act { { (Channel2, []) } }
TXS >>3: Act { { (Channel3, []) } }
TXS >>4: Act { { (Channel2, []) } }
TXS >> no state or deadlock
TXS >> FAIL: No Output (Quiescence)

Figure 3.3: The Output For The Maximum Concurrency Stress Test

and resource-related issues. However, due to the lack of randomized timing and
order variations, some race conditions and other timing-sensitive faults may go un-
detected. Additionally, the absence of guarded actions and conditional logic in the
current version slightly limits the ability to introduce interaction variability, which
may impact test coverage to some extent.

3.1.3 Test Outcome

The output for the Maximum Concurrency Stress Test is shown in Figure 3.3.
The ‘MaxConcurrencyStressTest‘ model is designed to stress the system with max-
imum concurrency by utilizing all available channels (14 in total), running multi-
ple sequences and synchronized processes in parallel, and handling complex data
structures and operations.

We also argue that the number of channels and processes is adequate for the
most common uses. The test utilizes 14 channels, which is a significant number to
simulate a high-concurrency environment. These channels cover a variety of data
types and operations, providing a comprehensive stress test. The processes include
various models like parallel sequences, synchronized processes, and handling of
complex data structures. The combination of these processes simulates a real-
world scenario with high concurrency demands. We therefore argue that adding
more channels and processes is not necessary unless one expects the system to
handle even higher levels of concurrency in real-world scenarios. The current

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 19

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 64180
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper MaxConcurrencyStressTestWithDeadlocks
TXS >> Stepper started
TXS >> step 20
TXS >>1: Act { { (Channel1, []) } }
TXS >>2: Act { { (Channel2, []) } }
TXS >>3: Act { { (Channel3, []) } }
TXS >>4: Act { { (Channel2, []) } }
TXS >> no state or deadlock
TXS >> FAIL: No Output (Quiescence)

Figure 3.4: The Output For The Maximum Concurrency Stress Test With Deadlocks

setup should be sufficient for most high-concurrency environments. However, if
even higher loads are anticipated then adding more channels to simulate more
communication paths, introducing more complex synchronization patterns, and
increasing the depth of nested processes should all be considered.

The output for the maximum concurrency stress test with deadlocks is shown in
Figure 3.4. This result shows the system successfully handled the test cases. It shows
that our concurrency test can indeed detect deadlock conditions. The deadlocks we
are experiencing are by design, but they still confirm that TorXakis is identifying
situations where processes cannot proceed due to circular dependencies. Without
specific observations of inconsistent results or indefinitely waiting processes in our
concurrency test, it is challenging to conclude if race conditions or starvation exist.
These issues are more subtle and may require multiple runs with slightly different
configurations to expose.

Just because a concurrency test does not detect deadlocks, race conditions, or
starvation in a single test run, it doesn’t guarantee that these issues don’t exist. Some
faults, particularly race conditions, are non-deterministic and may only occur under
specific execution orders or timing conditions, making them difficult to detect in a
single test. Concurrency issues are notoriously challenging to detect exhaustively,
as the state space grows exponentially with the number of concurrent processes
and channels. Even comprehensive tests might not cover all possible states or
interactions.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 20

This being said, this test is useful for the following reasons:

1. Early Detection of Issues: Even if it doesn’t prove the absence of faults, a con-
currency test is valuable for identifying obvious concurrency-related issues.
For example, detecting deadlocks or performance bottlenecks under certain
configurations can guide improvements.

2. Benchmarking System Limits: By pushing the system with high levels of
concurrency, we can benchmark its performance and stability. This helps
understand the boundaries within which the system can operate reliably,
which is useful for real-world applications.

3. Identifying Bottlenecks: Running a concurrency test allows us to observe how
resource usage and process interactions behave under load, which can help
in identifying bottlenecks or areas where performance degrades.

4. Confidence in System Stability: Regularly passing concurrency tests without
errors can provide a degree of confidence in the stability of the system under
specific conditions, even if it doesn’t prove fault-free operation under all
scenarios.

3.2 Fault Tolerance Test

The fault tolerance test aims to verify the system’s ability to handle faults by us-
ing backup channels and making choices between multiple channels. This kind of
testing ensures that the system can still function correctly even if some components
fail. The fault tolerance test models a system designed to continue functioning
even in the presence of communication faults. This is achieved by introducing
redundancy through the use of backup channels and simulating nondeterministic
decision-making. The model comprises two main components: redundant commu-
nication channels and a nondeterministic selection mechanism. Each process in the
redundant channel component attempts communication over a primary channel
and, if necessary, falls back to a designated backup channel:

𝐹𝑖 = (𝑝𝑖! → 𝐹𝑖) □ (𝑏𝑖! → 𝐹𝑖)

where 𝑝𝑖 denotes the primary channel, 𝑏𝑖 denotes the backup channel, and □ rep-
resents an external nondeterministic choice. This captures a fault-tolerant structure
where either communication path can be used interchangeably to ensure progress.

In addition to redundancy, the model introduces a faulty choice process that
selects nondeterministically between two alternative channels:

𝐶 = (𝑐1! → 𝐶) □ (𝑐2! → 𝐶)

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 21

Figure 3.5: Local LTS Diagram for the Fault Tolerance Model

This process represents unpredictable or unstable communication conditions, sim-
ulating fault injection or dynamic channel failure. Channels 𝑐1 and 𝑐2 may fail
independently, and the system must choose either path without predetermined
logic.The complete fault tolerance model is defined as follows:

𝐹𝑎𝑢𝑙𝑡𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑀𝑜𝑑𝑒𝑙 = (𝐹1 ∥ 𝐹2 ∥ 𝐶)

with the following definitions:

𝐹1 = (𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶ℎ𝑎𝑛𝑛𝑒𝑙1! → 𝐹1)□(𝐵𝑎𝑐𝑘𝑢𝑝𝐶ℎ𝑎𝑛𝑛𝑒𝑙1! → 𝐹1)

𝐹2 = (𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶ℎ𝑎𝑛𝑛𝑒𝑙2! → 𝐹2)□(𝐵𝑎𝑐𝑘𝑢𝑝𝐶ℎ𝑎𝑛𝑛𝑒𝑙2! → 𝐹2)
𝐶 = (𝐶ℎ𝑎𝑛𝑛𝑒𝑙1! → 𝐶)□(𝐶ℎ𝑎𝑛𝑛𝑒𝑙2! → 𝐶)

All three components operate in parallel and simulate redundancy and nonde-
terministic fault handling under concurrent execution. The structure ensures that
failure of a single channel does not prevent the system from continuing execution,
as long as alternative communication paths remain available. This configuration
allows the system to simulate independent subsystems with redundancy and fault
recovery. Each subsystem uses its own pair of primary and backup channels,
and the faulty decision mechanism operates independently as well. The complete
TorXakis code for this test is provided in Appendix A.3.

The corresponding LTS semantics of individual processes is shown in Figure 3.5.
All channels are modeled as unidirectional (output-only), allowing isolated sub-
system behavior and enabling parallelism without interference between the fault
domains. The design ensures the model simulates realistic failover conditions.
Figure 3.6 illustrates the global LTS diagram for the Fault Tolerance Model.

The behavior of this model is governed by several formal assumptions: First,
each faulty sequence assumes that either the primary or backup channel can be used
at any time, reflecting realistic hardware or communication fault conditions. Sec-
ond, the system must remain operational by transitioning to the backup channel if
the primary fails, implementing fault masking. Third, fault handling is performed
internally by the model, requiring no external resolution. Fourth, the nondeter-
ministic nature of the faulty choice component captures environmental uncertainty
in channel availability. Fifth, the fault domains operate independently in parallel,

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 22

Figure 3.6: Global LTS Diagram for the Fault Tolerance Model

allowing for localized or system-wide fault simulation. Sixth, due to its recursive
structure, the model is guaranteed not to deadlock under normal fault scenarios.

In conclusion, this model evaluates whether TorXakis can reliably simulate
and recover from communication faults. It tests for graceful degradation in system
performance and verifies the tool’s ability to continue operation through alternative
communication paths, aligning with ioco principles of observable behavior and
system conformance.

3.2.1 Test Outcomes

The fault tolerance test code produced the output in Figure 3.7. The fault tolerance
test verifies that the system can handle different types of faults: First, we ensure
that the system can switch to a backup channel in case of a primary channel failure.
Secondly, we detect nondeterministic faults, ensuring that the system can handle
decisions where any channel might fail. Finally, we ensure that the system can
handle complex scenarios with multiple failing components.

3.3 Scalability Test

The primary objective of the Scalability Test is to evaluate how well TorXakis per-
forms under increasing system loads by incrementally scaling the number of chan-
nels and processes. This test aims to determine the system’s practical limits for
handling concurrency while maintaining stable performance, identifying potential
bottlenecks, and providing insights into scalability improvements.

The test also seeks to answer key questions, such as:

• What is the maximum number of channels and processes TorXakis can effec-
tively handle under the current hardware and configuration?

• Are the observed limits inherent to TorXakis, or are they dependent on the
computational resources available?

• What specific adjustments or tuning can improve performance under high
loads?

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 23

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 55152
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper SpecCombinedFaultTolerance
TXS >> Stepper started
TXS >> step 10
TXS >>1: Act { { (BackupChannel2, []) } }
TXS >>2: Act { { (PrimaryChannel1, []) } }
TXS >>3: Act { { (BackupChannel1, []) } }
TXS >>4: Act { { (Channel1, []) } }
TXS >>5: Act { { (Channel1, []) } }
TXS >>6: Act { { (BackupChannel2, []) } }
TXS >>7: Act { { (Channel1, []) } }
TXS >>8: Act { { (PrimaryChannel2, []) } }
TXS >>9: Act { { (PrimaryChannel1, []) } }
TXS >>10: Act { { (Channel1, []) } }
TXS >>
TXS >> PASS

Figure 3.7: The Output For The Combined Fault Tolerance Test

To conduct the scalability test, a model was implemented using a combination
of sequential, parallel, and synchronized processes defined over multiple chan-
nels. We use sequences, nondeterministic choices, parallel processes, synchronized
blocks, and modular components, each representing increasing complexity and
resource demand. Formaly, let us define the basic processes as follows:

• Sequence processes:

𝑆𝑖 = 𝑐ℎ𝑖! → 𝑆𝑖 for 𝑖 = 1, 2, 3

• Choice processes:

𝐶𝑖 𝑗 = (𝑐ℎ𝑖! → 𝐶𝑖 𝑗)□(𝑐ℎ 𝑗! → 𝐶𝑖 𝑗) for (𝑖 , 𝑗) = (4, 5), (6, 7), (8, 9)

The parallel and synchronized constructs are defined as follows:

• Parallel processes:

𝑃10 = 𝑐ℎ10! → 𝑃10 , 𝑃11 = 𝑐ℎ11! → 𝑃11

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 24

• Alternating parallel blocks:

𝐴𝑃12,13 = (𝑐ℎ12! → 𝑐ℎ13! → 𝐴𝑃12,13)

𝐴𝑃14,15 = (𝑐ℎ14! → 𝑐ℎ15! → 𝐴𝑃14,15)

• Synchronized processes:

𝑆𝑦𝑛𝑐16 = 𝑐ℎ16! → 𝑆𝑦𝑛𝑐16 , 𝑆𝑦𝑛𝑐17 = 𝑐ℎ17! → 𝑆𝑦𝑛𝑐17

We also define higher-level modules as follows:

• Enable-based: 𝐸24,25

• Hidden/composite: 𝐻26 , 𝐻27–30 , 𝐻31

• Synchronized sequence: 𝑆𝑆32–35

• Combined concurrency: 𝐶𝐶 (channels 𝑐ℎ36–𝑐ℎ44)

• Fault Tolerance block: 𝐹𝑇 (channels 𝑐ℎ45–𝑐ℎ50)

Finally, the overall system is modeled as:

ScalabilityModel =
(𝑆1 ∥ 𝑆2 ∥ 𝑆3 ∥ 𝐶4,5 ∥ 𝐶6,7 ∥ 𝐶8,9 ∥ 𝑃5

10 ∥ 𝑃5
11

∥ 𝐴𝑃5
12,13 ∥ 𝐴𝑃5

14,15 ∥ · · · ∥ 𝐹𝑇)

The numerical superscript (·𝑛) indicates multiple concurrent instances, where each
copy behaves independently but follows the same process definition. Refer to
Appendix A.4 for the full TorXakis model.

The test explores the structural and behavioral boundaries of TorXakis by eval-
uating system performance under increasingly complex workloads. It employs 19
output channels to simulate sequences, nondeterministic branching, parallel and al-
ternating execution, and synchronization. Channels are kept unidirectional (output
only) and distinct to prevent interference, except when specifically reused under
synchronization. To simulate realistic high-load behavior, channels are grouped
based on function. Sequential processes operate on distinct channels to represent
simple pipelines. Choice processes simulate environmental or internal decisions by
randomly selecting between communication paths. Parallel constructs test fixed and
alternating execution patterns across channels. Synchronization channels evaluate
coordinated communication under concurrent stress. Constructs like parallelN
and synchronizedN manage bounded parallelism while exploring increased con-
currency. State-space explosion is implicitly tracked by monitoring system behavior
as process count grows.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 25

Figure 3.8: Simplified LTS Diagram for the Scalability Test

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 26

Alternating parallelism introduces branching complexity, while synchronized
blocks evaluate the tool’s ability to manage coordinated processes. Mixing deter-
ministic and nondeterministic loads tests execution stability and modeling flexibil-
ity. The combined goal is to understand how TorXakis manages concurrency across
diverse constructs and identify its resource limits. Figure 3.8 shows the simplified
LTS for the Scalability Test.

Due to the algebraic model’s considerable complexity and size, the LTS diagram
presented here has been simplified to highlight the key structural behaviors rather
than exhaustively representing all process interactions. This abstraction focuses on
capturing the essential concurrency patterns, synchronization schemes, and process
categories that define the scalability evaluation. Such simplification improves visual
clarity and avoids overwhelming detail, while still communicating the model’s
architectural depth and testing scope.

Successful execution without crashes, deadlocks, or starvation—while main-
taining observable outputs on defined channels—indicates that TorXakis handles
the complexity gracefully. If the model reaches hardware or runtime constraints, it
should either stall via quiescence or report resource-related errors. This behavior
validates the framework’s capacity for scalable testing and highlights architectural
bottlenecks or runtime limits.

3.3.1 Test Outcomes

Based on our findings that TorXakis can handle up to 19 channels effectively, we
can conclude that this is a practical limit for scalability testing within the given
constraints. Here are some key points and conclusions regarding the scalability test
with 19 channels and processes:

TorXakis has a practical limit regarding the number of channels and processes
it can handle efficiently. Testing with 50 channels exceeds this limit, leading to
performance issues or failures. The output of scalability test with 50 channels is
shown in Figure 3.9. Testing with 19 channels ensures that the system remains
within operational limits, providing a realistic and practical scenario for scalability
testing. The output of scalability test with 19 channels is shown in Figure 3.10.

Even with 19 channels, the test can cover a wide range of scenarios including
sequences, choices, parallel processes, and synchronization. This setup also can
simulate a realistic load that the system might face in a production environment,
ensuring that the performance metrics are meaningful.

We argue that the use of 19 channels ensures the system is not overloaded beyond
its capacity, providing meaningful results without causing crashes or undefined
behaviors, and at the same time offers comprehensive testing by covering various
process combinations and interactions, and thus providing a thorough evaluation
of the system’s performance and scalability. This limit of 19 channels appears to be
a practical limit within the specific constraints of our current setup and the version

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 27

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 55372
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper SpecCombinedScalabilityTest

Figure 3.9: The Output For The Combined Scalability Test

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 55462
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper SpecCombinedScalabilityTest
TXS >> Stepper started
TXS >> step 3
TXS >>1: Act { { (Channel14, []) } }
TXS >>2: Act { { (Channel10, []) } }
TXS >>3: Act { { (Channel14, []) } }

Figure 3.10: The Output Of Scalability Test With 19 Channels

of TorXakis we are using (the 2017 version). It’s likely influenced by factors like the
system’s memory capacity, processing power, and how the TorXakis software itself
is architected in that version. TorXakis doesn’t specify a hard limit on the number
of channels or processes it can handle.

TorXakis does not provide direct configuration options for stack size, memory
allocation, or threading limits; however, its performance can be optimized through
several approaches. System resources play a crucial role in TorXakis’s efficiency.
Ensuring sufficient RAM allows the tool to handle complex models more effectively,
and upgrading memory can significantly improve its ability to process larger mod-
els. Additionally, processor performance is a key factor, as a faster CPU enhances
the tool’s execution speed, particularly for intricate models.

Model optimization also influences performance. Reducing model complexity

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 28

decreases computational load, leading to improved efficiency. A modular approach,
in which large models are divided into smaller, more manageable components,
enables TorXakis to process them more effectively, reducing potential performance
bottlenecks.

TorXakis relies on SMT solvers such as Z3 and CVC4 for verification tasks. Prop-
erly configuring these solvers is essential to enhancing performance, particularly
by ensuring support for SMTLIB version 2.5, Algebraic Data Types (ADTs), and
String theory. While TorXakis does not offer explicit threading configurations, run-
ning multiple instances in parallel–if system resources permit–can help simulate
concurrent processes and improve overall execution efficiency.

Another consideration is environment configuration at the operating system
level. Adjusting OS resource allocation, such as increasing the maximum number
of open files or processes, can be beneficial when working with numerous channels.
If TorXakis is built from source, using an appropriate Haskell-based build tool like
Stack is necessary. Stack is a build and dependency management tool for Haskell
projects, ensuring compatibility with the correct compiler version and package
dependencies.

One other bottleneck likely lies in the handling of synchronization and con-
currency mechanisms. Channels requiring frequent synchronized steps or choices
may introduce delays, especially when concurrency levels are high. This sug-
gests that when approaching the limits revealed by the test one should consider
redesigning these synchronized interactions or replacing some of them with less
resource-intensive alternatives (e.g., reducing the number of synchronized steps or
using asynchronous sequences) could alleviate strain. Additionally, where possi-
ble, avoiding "choice" structures that lead to nondeterministic decision-making can
reduce complexity and resource usage.

3.4 Resource Utilization Test

The Resource Utilization Test was designed to evaluate the system’s performance
under resource-intensive scenarios by simulating sequences, parallel processes,
and synchronized tasks across multiple channels. This test aims to analyze how the
system manages CPU, memory, and other resources under heavy loads while iden-
tifying potential bottlenecks and ensuring performance stability. The test focuses
on the following:

1. Evaluating Resource Usage: Monitoring CPU, memory, and disk utilization
under various concurrency scenarios.

2. Identifying Bottlenecks: Detecting processes or operations that lead to re-
source exhaustion or performance degradation.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 29

3. Ensuring Stability: Verifying the system’s ability to handle complex opera-
tions without deadlocks or failures.

We define the test formally as follows: For 𝑖 ∈ {1, . . . , 9}, let

𝑆𝑖 = 𝑐ℎ𝑖! → 𝑆𝑖

which represents an infinite loop of simple outputs on channel 𝑐ℎ𝑖 . We then define
the synchronized resource-intensive processes

𝑅𝑖(𝑛) =
{

STOP, 𝑛 = 0
𝑐ℎ𝑖! → 𝑅𝑖(𝑛 − 1), 𝑛 > 0

and then let 𝑅𝑖 = 𝑅𝑖(5) for 𝑖 ∈ {1, . . . , 9}. Parallel data-handling processes are
defined for each 𝑗 ∈ {1, 2, 3} as follows:

𝑃𝑗(𝑚) =
{

STOP, 𝑚 = 0
𝑐ℎ𝐼𝑛𝑡 𝑗! → 𝑃𝑗(𝑚 − 1), 𝑚 > 0

and then let 𝑃𝑗 = 𝑃𝑗(10). We also define two complex data sequence processes:

𝐶1 = 𝑐ℎ10𝐼𝑛𝑡𝑠 ! → 𝑐ℎ10𝐼𝑛𝑡𝑠 ! → · · · → STOP

𝐶2 = 𝑐ℎ10𝐼𝑛𝑡𝑠_𝑏! → 𝑐ℎ10𝐼𝑛𝑡𝑠_𝑏! → · · · → STOP

Finally, we define the following nested synchronization sequences:

𝑁𝑖 = 𝑐ℎ𝑖! → 𝑁𝑖

for 𝑖 ∈ {1, . . . , 9}.
All the processed defined above run in parallel and synchronize with each other

as follows:

ResourceUtilizationModel = (𝑆1 ∥ 𝑆2 ∥ · · · ∥ 𝑆9)
∥{𝑐ℎ1 ,...,𝑐ℎ9} (𝑅1 ∥ 𝑅2 ∥ · · · ∥ 𝑅9)
∥{𝑐ℎ𝐼𝑛𝑡1 ,𝑐ℎ𝐼𝑛𝑡2 ,𝑐ℎ𝐼𝑛𝑡3} (𝑃1 ∥ 𝑃2 ∥ 𝑃3)
∥{𝑐ℎ10𝐼𝑛𝑡𝑠 ,𝑐ℎ10𝐼𝑛𝑡𝑠_𝑏} (𝐶1 ∥ 𝐶2)
∥{𝑐ℎ1 ,...,𝑐ℎ9 ,𝑐ℎ𝐼𝑛𝑡1 ,...,𝑐ℎ10𝐼𝑛𝑡𝑠_𝑏} (𝑁1 ∥ · · · ∥ 𝑁9)

where ∥𝑋 denotes parallel composition synchronized over the set of channels 𝑋.
The model launches nine sequence processes, nine synchronized “heavy” pro-

cesses, three parallel data-processing tasks, two complex structured-data sequences,
and nine nested synchronized processes simultaneously. The number of channels
and processes is more or less arbitrary and aims to provide a sufficiently complex

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 30

Figure 3.11: Local LTS of the Resource Utilization Test

test without making the model unwieldy. The complete TorXakis code for this test
is provided in Appendix A.5.

To further illustrate the structure and behavior of the Resource Utilization Test,
we provide two LTS diagrams. The first diagram (Figure 3.11) presents the local LTS,
which models the execution logic of a single process under resource constraints,
highlighting local sequencing, synchronization, and channel communication. The
second diagram (Figure 3.12) depicts the global LTS, which models the overall sys-
tem behavior when multiple resource-intensive processes execute concurrently and
interact through shared channels. This global view exposes potential points of
contention, synchronization bottlenecks, and parallel workload dynamics under
high-load conditions.

The Resource Utilization Test is designed to simulate sequential, synchronized,
parallel, and data-heavy operations across fifteen output-only channels. These
channels are categorized into three types: basic sequential channels (Channel1
through Channel9), which are employed by independent sequence and synchro-
nized processes to emulate task-level operations; integer data channels (Chan-
nelInt1, ChannelInt2, and ChannelInt3), which handle parallel numeric data
streams to test memory and computation throughput; and complex structured
channels (Channel10Ints and Channel10Ints_b), which support composite or nested
data formats such as arrays or records. All channels are reused throughout various
process layers, including sequence execution, nested tasks, and synchronization
stages. This reuse increases contention and mimics a high-load system environ-
ment with realistic constraints. The model operates within a closed system, with no

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 31

Figure 3.12: Global LTS of the Resource Utilization Test

external feedback or inputs, ensuring that all data generation and synchronization
occur internally. While the test does not explicitly measure CPU or memory usage,
system performance is inferred through observable metrics such as CPU, RAM, and
execution time.

3.4.1 Test Outcomes

We executed the test in stages. For an initial load testing, we started with a small
number of channels and gradually increased to test scalability. We ended up in
high load scenarios, where we scaled up to maximum channels and processes to
push resource limits. System metrics were tracked using macOS Activity Monitor,
including CPU, memory, and disk usage, to analyze performance and identify
bottlenecks. This test configuration enables one to evaluate how the system scales
as the number of processes and channels increases. It’s a meaningful size to show
whether the system handles increasing loads without breaking or slowing down.
Testing simple and complex data structures separately gives you insights into how
the system performs when handling more computationally intensive tasks.

The output of the resource utilization test is shown in the Figure 3.13. To
monitor the resource utilization, we typically run these models in our TorXakis
environment and use system monitoring tools to observe CPU, memory, and other
resource usage. Tools like ‘top‘, ‘htop‘, ‘vmstat‘, or system-specific monitoring tools
(e.g., Task Manager on Windows, Activity Monitor on macOS) can be used to track
the resource consumption.

As the number of active channels and concurrent processes increased, particu-
larly beyond 19 channels, the behavior of the model became increasingly unstable.
In multiple test runs, certain processes failed to execute as expected or halted

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 32

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 55690
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper ResourceUtilizationTest
TXS >> Stepper started
TXS >> step 10
TXS >>1: Act { { (Channel5, []) } }
TXS >>2: Act { { (Channel6, []) } }
TXS >>3: Act { { (Channel4, []) } }
TXS >>4: Act { { (Channel1, []) } }
TXS >>5: Act { { (Channel6, []) } }
TXS >>6: Act { { (Channel2, []) } }
TXS >>7: Act { { (Channel7, []) } }
TXS >>8: Act { { (Channel8, []) } }
TXS >>9: Act { { (Channel7, []) } }
TXS >>10: Act { { (Channel5, []) } }
TXS >>
TXS >> PASS

Figure 3.13: The Output Of The Resource Utilization Test

midway without completing their defined sequences. In extreme cases, the system
entered a STUCK state, where no further transitions were possible, effectively freez-
ing the simulation. This behavior indicates that the underlying model is not able
to sustain proper execution paths once concurrency surpasses a certain threshold,
likely due to resource exhaustion or process contention.

From a qualitative perspective, several structural weaknesses were identified
within the model. One of the most notable issues was the instability introduced
by nested parallelism combined with shared channel usage. When several parallel
processes attempted to access or synchronize over the same set of channels, the sim-
ulation exhibited unpredictable outcomes, ranging from delays in communication
to complete deadlocks. This suggests that the current design struggles to manage
high concurrency when shared communication resources are involved. Addition-
ally, synchronization bottlenecks were observed when too many concurrent tasks
were activated simultaneously. These bottlenecks resulted in significant slowdowns
and, in some cases, process starvation, where certain tasks could no longer proceed

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 33

Number of Channels CPU Usage (%) Memory Usage (MB)
1 0.9 11
3 0.9 11.1
5 1 10.2
7 1.5 10.6
9 1.8 11
11 377 337.3
13 383.6 355.1
15 358.6 750.3
17 383 2830
19 392.1 7010

Table 3.2: CPU and Memory Usage by Number of Channels

due to the unavailability of their required synchronization partners.
Together, these insights highlight the fragility of the system under high con-

currency scenarios and provide a strong case for either redesigning the process
structure to reduce shared dependencies or enhancing the tool.

As shown in Table 3.2, Figure 3.14, and Figure 3.15 both CPU and memory usage
gradually increase as the number of channels rises during the combined scalability
and resource utilization test. While CPU usage remains relatively low for smaller
models (1 to 9 channels), a noticeable increase starts beyond 9 channels, reaching
377% at 11 channels. It indicates that approximately 3.7 processor cores were simul-
taneously active. This high utilization confirms the heavy computational demand
of the model, particularly due to its parallel and synchronized processes. Such
results reflect the system’s ability to exploit multi-core environments efficiently.

As shown in Table 3.2 this trend becomes significantly more pronounced when
the model is scaled to 11 or more channels. The increase in memory requirements
appears exponential. Probably the same holds for CPU utilization, but that does
not show because of CPU saturation. While memory usage initially increases in
small, linear steps between 10.2 MB and 11.1 MB, the rise becomes exponential once
the system approaches its concurrency limit. At 11 channels, memory usage not
only increases in raw allocation but also triggers secondary memory management
mechanisms such as memory compression and swap usage. These mechanisms
indicate that the physical RAM is no longer sufficient to accommodate the active
and inactive memory blocks required by the model, especially when nested parallel
and synchronized processes are active. This suggests that the TorXakis execution
engine faces a combinatorial explosion of state-space management and inter-process
synchronization tracking. This growth pattern, combined with CPU saturation
ultimately leads to failure to execute simulations beyond 19 channels caused by
hardware and runtime limitations.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 34

Figure 3.14: CPU Usage vs. Number of Channels

3.5 Model Verification Test

The Model Verification Test aims to ensure the correctness, reliability, and robust-
ness of the system by verifying critical properties and behaviors within the model.
This test evaluates the following key aspects:

1. Liveness: Ensures that processes continue to make progress and do not get
stuck in an idle state.

2. Deadlock Freedom: Verifies that the system does not encounter situations
where progress halts due to circular dependencies.

3. Correct Synchronization: Confirms that processes synchronize accurately on
shared channels.

4. Data Integrity: Validates that data transmitted through channels complies
with specified integrity constraints.

5. Choice Handling: Ensures that the system correctly handles decision-making
and alternative actions.

6. Concurrency: Tests whether concurrent processes operate without interfer-
ence.

7. Extended and Nested Synchronization: Validates synchronization among
multiple or nested processes for complex workflows.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 35

Figure 3.15: Memory Usage vs. Number of Channels

By expanding the scope of verification, this test ensures that critical functional and
behavioral aspects of the system are thoroughly assessed, providing confidence in
its correctness and ability to handle complex scenarios.

To formally verify the behavioral properties of the system, eight distinct veri-
fication scenarios were modeled as independent processes and then composed in
parallel to form a comprehensive verification suite. Each scenario targets a specific
property, and together they cover both correctness and robustness under various
conditions.

The liveness property ensures that the process interacting through channel 𝑐ℎ1
never stalls, expressed by the recursive process 𝐿 = 𝑐ℎ1! → 𝐿. Deadlock freedom
is verified using two independent processes that terminate after a single action,
avoiding circular waiting, as defined by 𝑁𝐷 = (𝑐ℎ1! → 𝑆𝑇𝑂𝑃) ∥ (𝑐ℎ2! → 𝑆𝑇𝑂𝑃).

Pairwise synchronization is tested by ensuring that two processes synchronize
correctly over channels 𝑐ℎ1 and 𝑐ℎ2, modeled as 𝑆𝑌 = (𝑐ℎ1! → 𝑐ℎ2! → 𝑆𝑌) ∥[𝑐ℎ1 ,𝑐ℎ2]
(𝑐ℎ2! → 𝑐ℎ1! → 𝑆𝑌). Data integrity is validated through channel input 𝑐ℎInt1,
where each received integer respects the defined constraints, expressed as 𝐷𝐼 =

𝑐ℎInt1?𝑥 → 𝐷𝐼.
To test non-deterministic behavior, a choice-handling scenario is implemented

where the process can choose between two sending actions, modeled as 𝐶𝐻 =

(𝑐ℎ1! → 𝐶𝐻)□(𝑐ℎ2! → 𝐶𝐻). Concurrency is evaluated by verifying that two
processes can execute in parallel without interference, modeled by 𝐶𝑂 = (𝑐ℎ1! →
𝑆𝑇𝑂𝑃) ∥ (𝑐ℎ2! → 𝑆𝑇𝑂𝑃).

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 36

In more complex verification, multi-process synchronization is addressed by a
process that sequentially synchronizes over three channels, represented by 𝑀𝑆 =

(𝑐ℎ1! → 𝑐ℎ2! → 𝑐ℎ3! → 𝑆𝑇𝑂𝑃) ∥[𝑐ℎ1 ,𝑐ℎ2 ,𝑐ℎ3] (𝑐ℎ2! → 𝑐ℎ3! → 𝑐ℎ1! → 𝑆𝑇𝑂𝑃).
Nested synchronization behavior is tested using embedded synchronization scopes,
as seen in 𝑁𝑆 = (𝑐ℎ1! → 𝑆𝑇𝑂𝑃) ∥[𝑐ℎ1] (𝑐ℎ2! → 𝑆𝑇𝑂𝑃), ensuring proper nesting
behavior.

To verify the system’s ability to detect deadlocks, an intentional deadlock model
is constructed based on circular synchronization dependencies. The test introduces
two processes that attempt to synchronize over two shared channels but in reversed
order, thereby forming a classic circular wait pattern. Formally, the model is defined
as:

𝐼𝐷 = (𝑐ℎ1! → 𝑐ℎ2! → 𝑆𝑇𝑂𝑃) ∥{𝑐ℎ1 ,𝑐ℎ2} (𝑐ℎ2! → 𝑐ℎ1! → 𝑆𝑇𝑂𝑃)
In this configuration, the first process attempts to synchronize on channel 𝑐ℎ1,
followed by 𝑐ℎ2, while the second process initiates communication on 𝑐ℎ2 and then
proceeds to 𝑐ℎ1. Due to the synchronization set {𝑐ℎ1 , 𝑐ℎ2}, both communications
require cooperation between the processes. However, because each process is
waiting for the other to synchronize on a channel that it has not yet reached, a
circular dependency is created. As a result, neither process can proceed, and
the system enters a deadlocked state. This setup effectively simulates one of the
most common deadlock scenarios in concurrent systems and allows us to evaluate
whether the system under test can detect and report the absence of further progress
as a deadlock.

The complete verification suite combines all these individual processes into a
parallel composition:

𝑉𝑒𝑟𝑖 𝑓 𝑦𝐴𝑙𝑙 = 𝐿 ∥ 𝑁𝐷 ∥ 𝑆𝑌 ∥ 𝐷𝐼 ∥ 𝐶𝐻 ∥ 𝐶𝑂 ∥ 𝑀𝑆 ∥ 𝑁𝑆 ∥ 𝐼𝐷

The Model Verification Test utilizes a variety of output channels to verify es-
sential behavioral properties of reactive systems. These channels are designed to
assess distinct aspects of system behavior under controlled conditions. Channel1
plays a central role in validating liveness and sequencing by ensuring the system
can make continual progress without stalling. Channels such as Channel2 and
Channel3 are employed in deadlock and concurrency-related models to test for
inter-process blocking, synchronization failures, and race conditions. ChannelInt1
is used specifically to validate data integrity by transmitting typed integer inputs,
ensuring they conform to the expected constraints. Additionally, Channel1 through
Channel3 are reused in multi-process synchronization scenarios to verify coordina-
tion across multiple actors and shared communication resources. Figures 3.16 and
3.17 illustrate these concepts in detail.

All channels are output-oriented and reused across multiple test models. Their
reuse is intentional, enabling the system to be tested under varied combinations
of interactions to uncover hidden issues. This controlled reuse ensures that each

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 37

Figure 3.16: Local LTS of the Model Verification Test

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 38

Figure 3.17: Global LTS of the Model Verification Test

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 39

property is verified in isolation while still accounting for potential conflicts during
shared execution.

Each verification subtest is grounded in a specific formal assumption that cor-
responds to the property being tested. For liveness verification, the model assumes
that repeated activation of a channel (e.g., Channel1) implies indefinite progress,
modeling a system that never halts unexpectedly. The deadlock-freedom verifi-
cation ensures that models such as verifyNoDeadlock and induceDeadlock either
terminate normally or demonstrate intentional blocking without circular depen-
dencies. Synchronization semantics are tested by ensuring the correct ordering
and shared commitment to actions across channels, particularly in pairwise, multi-
process, and nested synchronization scenarios.

The verification of nondeterministic branching assumes that environmental un-
certainty is properly modeled. For instance, the choice-handling process uses the
operator to explore all possible paths in a behaviorally sound way. Data validity
is tested by confirming that received inputs comply with range, type, or format
constraints, even under random input values.

Concurrency and race condition testing focuses on simulating parallel execution
across processes. It verifies that simultaneous actions on different channels do
not lead to interference or unintended interactions. Reuse of shared channels
like Channel1 is handled with caution: each submodel is executed in isolation
to maintain behavioral determinism and ensure that property-specific validation
is not compromised. Moreover, each test is designed to assess a single formal
property, supporting modular test execution, easier debugging, and accurate fault
localization.

The complete TorXakis code for this test is provided in Appendix A.6.

3.5.1 Test Outcomes

The output of the Model Verification Test is shown in Figure 3.18 . The output of
the Deadlock Inducing Test is shown in Figure 3.19.

The test we provided involves multiple channels and processes, covering a
wide range of system behaviors. We argue that this setup is sufficient for model
verification, as follows: The test uses a sufficient variety of channels (‘Channel1‘,
‘Channel2‘, ‘ChannelInt1‘, ‘ChannelInt2‘, etc.) to verify synchronization, choice
handling, and data integrity. Each channel is designed to test different aspects
of the system, from transmitting data to handling multiple inputs. Having this
variety allows you to test various forms of communication, synchronization, and
process interaction. The test involves multiple processes interacting in different
ways (sequential, parallel, synchronized, etc.). This covers a wide range of possible
system states and ensures that the model can handle the complexities of real-world
systems, where processes often run concurrently and need to synchronize with each
other. Finally, the key behaviors of synchronization, data flow, parallelism, and

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 40

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 54191
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper SpecVerifyDataIntegrity
TXS >> Stepper started
TXS >> step 5
TXS >>1: Act { { (ChannelInt1, [-29]) } }
TXS >>2: Act { { (ChannelInt1, [77]) } }
TXS >>3: Act { { (ChannelInt1, [17]) } }
TXS >>4: Act { { (ChannelInt1, [-27]) } }
TXS >>5: Act { { (ChannelInt1, [67]) } }
TXS >>
TXS >> PASS

Figure 3.18: The Output Of The Model Verification Test

choice handling are all covered by the current number of processes and channels.
These are critical aspects of most distributed or concurrent systems, and testing
these core behaviors ensures the system is robust.

The model verification test demonstrates that the system progresses as expected
without stalling (liveness). No deadlocks are present, and all processes can proceed
without being blocked by waiting on each other (deadlock freedom). Processes syn-
chronize correctly, meaning that channels with shared behavior properly wait for
and react to each other’s events (synchronization). Only valid data is transmitted
and processed by the system, ensuring data integrity. The system can handle mul-
tiple possible inputs and make choices based on those inputs (choice handling).
Multiple processes can run in parallel without interfering with each other (con-
currency and parallelism). Complex synchronization involving nested or multiple
processes behaves as expected (extended synchronization).

3.6 Integration Test

The Integration Test aims to evaluate how different components of the system in-
teract with one another to ensure correct and predictable behavior. This includes
verifying the system’s ability to handle key integration challenges such as dead-
locks, race conditions, incorrect message passing, and branching errors. The test

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 41

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 52176
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew.txs"]
TXS >> stepper SpecInduceDeadlock
TXS >> Stepper started
TXS >> step 10
TXS >>1: Act { { (Channel2, []) } }
TXS >>2: Act { { (Channel1, []) } }
TXS >>3: Act { { (Channel1, []) } }
TXS >> no state or deadlock
TXS >> FAIL: No Output (Quiescence)

Figure 3.19: The Output Of The Deadlock Inducing Test

focuses on identifying faults that emerge from the interaction of multiple processes,
channels, and constructs, ensuring system robustness and correctness in integrated
scenarios. Specific objectives include:

1. Deadlock detection: To ensure the system does not get stuck due to unresolv-
able synchronization or waiting issues.

2. Race condition identification: To detect non-deterministic behaviors resulting
from parallel processes interacting without proper synchronization.

3. Incorrect message passing: To verify that processes handle mismatched or
unexpected data types correctly and report errors when violations occur.

4. Branching errors: To confirm that decision-making processes (e.g., choice
operations) transition to appropriate branches based on input values and
reject invalid inputs.

Formally, we first define the core component processes involved in this model.
The first process, a simple sequence over Channel1, is given by

𝑆𝑒𝑞1 = 𝑐ℎ1! → 𝑆𝑒𝑞1

The second component introduces nondeterminism via a choice construct operating
over Channel2 and Channel3:

𝐶ℎ𝑜𝑖𝑐𝑒2,3 = (𝑐ℎ2! → 𝐶ℎ𝑜𝑖𝑐𝑒2,3)□ (𝑐ℎ3! → 𝐶ℎ𝑜𝑖𝑐𝑒2,3)

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 42

A third component models a synchronized three-step sequence, also over Channel1:

𝑆𝑦𝑛𝑐1 = 𝑐ℎ1! → 𝑐ℎ1! → 𝑐ℎ1! → 𝑆𝑦𝑛𝑐1

In addition, we introduce a parallel process executed twice over Channel4, which
models concurrent subsystem behavior:

𝑃𝑎𝑟4 = 𝑐ℎ4! → 𝑐ℎ4! → 𝑃𝑎𝑟4

These processes are composed using both interleaving and synchronized paral-
lel composition. The complete model is therefore defined as follows:

𝐼𝑛𝑡𝑒 𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑎𝑑𝑙𝑜𝑐𝑘 =
(
(𝑆𝑒𝑞1 ∥ 𝐶ℎ𝑜𝑖𝑐𝑒2,3 ∥ 𝑆𝑦𝑛𝑐1) ∥{𝑐ℎ1 ,𝑐ℎ2 ,𝑐ℎ3} 𝑆𝑒𝑞1

)
∥{𝑐ℎ1 ,𝑐ℎ4 ,𝑐ℎ5} 𝑃𝑎𝑟4

Recall that ∥𝑋 denotes a parallel composition synchronized over the set of channels
𝑋.

To evaluate the system behavior under race conditions, we also define a stress
test using five independent infinite-loop processes. Each emits on a unique channel:
𝐴 = 𝑐ℎ1! → 𝐴, 𝐵 = 𝑐ℎ2! → 𝐵, 𝐶 = 𝑐ℎ3! → 𝐶, 𝐷 = 𝑐ℎ4! → 𝐷, and 𝐸 = 𝑐ℎ5! → 𝐸.
These processes are composed in parallel to form:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑅𝑎𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝐴 ∥ 𝐵 ∥ 𝐶 ∥ 𝐷 ∥ 𝐸

Figure 3.20 shows the corresponding Labeled Transition System (LTS) for both
IntegrationDeadlock and ComplexRaceCondition scenarios.

This integration model uses five input channels to simulate scenarios that involve
synchronization mismatch, race conditions, and deadlock potential. Channel1 is
reused across a simple sequence, a synchronized block, and another sequence to
increase contention. Channels 2 and 3 form a nondeterministic choice branch, sim-
ulating environmental variability. Channels 4 and 5 are used in parallel executions
to test concurrency effects.

This model is designed to assess TorXakis’ capability to detect faults that emerge
from combined interaction patterns. In particular, it introduces partial synchroniza-
tion semantics by mismatching the expected number of synchronizations on Chan-
nel1. The composition includes a mixture of sequence, choice, and synchronized
behaviors, resembling integration of misaligned subsystems. The test assumes
no external intervention, meaning any deadlock or failure must arise internally.
Furthermore, the model stresses the system using asymmetric channel usage and
deliberate omission of full synchronization in certain branches.

For the deadlock scenario, the model tests whether the composed system cor-
rectly synchronizes on shared channels. If one or more synchronization expecta-
tions are not met, the result is a detectable deadlock, validating TorXakis’ ability to
handle improper coordination.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 43

Figure 3.20: LTS model of the IntegrationDeadlock and ComplexRaceCondition pro-
cesses.

In the race condition test, the model ensures that all five processes run con-
currently without interference. If one process dominates or prevents others from
proceeding, the tool should detect it as a fault. Otherwise, the system must allow
fair execution of all parallel actions across independent channels.

The complete TorXakis code for this test is provided in Appendix A.7.

3.6.1 Test Outcomes

The Integration Test produced the following key findings:
The system correctly identified and reported a deadlock when one of the syn-

chronizing processes was disabled. This validates the model’s ability to detect
unresolved synchronization issues. The output of deadlocks in the integration test
is shown in the figure 3.21.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 44

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 65054
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew2.txs"]
TXS >> stepper IntegrationTestDeadlockScenario
TXS >> Stepper started
TXS >> step 10
TXS >> no state or deadlock
TXS >> FAIL: No Output (Quiescence)

Figure 3.21: The Output of Deadlocks in the Integration Test

During the execution of concurrent components in the integration test, nonde-
terministic behavior was observed. The order of actions on Channel2 and Channel3
varied across runs. This variation is expected and reflects the inherent nondeter-
minism of concurrent models, not necessarily a race condition. The output of this
behavior in the integration test is shown in Figure 3.22. This output demonstrates
a sequence of actions on different channels without a predictable order.

In nondeterministic scenarios, the order of execution can vary between runs
because no strict synchronization is imposed between processes. Here, we can see
actions on ‘Channel1‘, ‘Channel2‘, ‘Channel3‘, and ‘Channel4‘ in a non-sequential,
interleaved order (e.g., ‘Channel4‘, ‘Channel2‘, ‘Channel3‘, etc.). Each channel ac-
tion ‘Act { { (ChannelX, []) } }‘ occurs as processes execute independently,
and this order may differ in each run of the test due to the concurrent nature of the
system. We also repeated this test with the same setup (‘step 10‘), and we saw a
different sequence of channel activations each time, even though no specific order
is imposed.

The model successfully detected type mismatches on Channel4 and Channel5,
reporting errors when incorrect data types were sent. This demonstrates the ro-
bustness of the system in enforcing data integrity. The output of incorrect message
passing in the integration test is shown in Figure 3.23.

Our BranchingErrorTest code is well-suited for testing branching errors because
it is designed to verify how the process (‘choiceProcess‘) handles different inputs
from multiple channels and ensures it transitions to the correct branches (‘success-
Branch‘ or ‘errorBranch‘) based on the input values. The output of branching errors
in the integration test is shown in Figure 3.24. Valid inputs (5 on Channel2, 10 on

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 45

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 58396
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["benchmarknew2.txs"]
TXS >> stepper ComplexRaceConditionTest
TXS >> Stepper started
TXS >> step 10
TXS >>1: Act { { (Channel11, []) } }
TXS >>2: Act { { (Channel4, []) } }
TXS >>3: Act { { (Channel3, []) } }
TXS >>4: Act { { (Channel5, []) } }
TXS >>5: Act { { (Channel4, []) } }
TXS >>6: Act { { (Channel3, []) } }
TXS >>7: Act { { (Channel5, []) } }
TXS >>8: Act { { (Channel12, []) } }
TXS >>9: Act { { (Channel3, []) } }
TXS >>10: Act { { (Channel3, []) } }
TXS >>
TXS >> PASS
TXS >>
TXS >> step 10
TXS >>1: Act { { (Channel5, []) } }
TXS >>2: Act { { (Channel13, []) } }
TXS >>3: Act { { (Channel5, []) } }
TXS >>4: Act { { (Channel4, []) } }
TXS >>5: Act { { (Channel4, []) } }
TXS >>6: Act { { (Channel5, []) } }
TXS >>7: Act { { (Channel12, []) } }
TXS >>8: Act { { (Channel5, []) } }
TXS >>9: Act { { (Channel4, []) } }
TXS >>10: Act { { (Channel2, []) } }
TXS >>
TXS >> PASS

Figure 3.22: The Output of Nondeterministic Behavior in the Integration Test

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 46

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 59503
TXS >> Undefined Process at <no location>: [TypeMismatch at line 1422
and column 5: Mismatch in defined (0) and actual (1) channel parameters.
, TypeMismatch at line 1427 and column 5: Mismatch in defined (0) and
actual (1) channel parameters., TypeMismatch at line 1432 and column 5:
Mismatch in defined (0) and actual (1) channel parameters.,TypeMismatch
at line 1437 and column 5: Mismatch in defined (0) and actual (1)
channel parameters.]
TXS >>
TXS >> CallStack (from HasCallStack):
TXS >> error, called at src/TorXakis/Compiler.hs:175:25 in
TXS >> txs-compiler-0.1.0.0-NeT1WHE4z77rZeP6s63kU:TorXakis.Compiler
TXS >>

Figure 3.23: The Output of Incorrect Message Passing in the Integration Test

Channel3) transitioned to successBranch as expected, while invalid inputs transi-
tioned to errorBranch. The results confirm that the model handles branching logic
correctly and rejects invalid inputs.

The ‘choiceProcess‘ listens for inputs on two channels: ‘Channel2‘ and ‘Chan-
nel3‘. Based on the values received, it transitions to either ‘successBranch‘ or
‘errorBranch‘. If ‘Channel2‘ receives ‘5‘, the process transitions to ‘successBranch‘.
If ‘Channel3‘ receives ‘10‘, the process transitions to ‘successBranch‘. On the other
hand, for any other value on ‘Channel2‘ or ‘Channel3‘ (invalid input), the process
transitions to ‘errorBranch‘.

A branching error occurs when the process does not transition correctly based
on the input. Our model tests for such errors by sending valid values (‘5‘ or
‘10‘) to test whether ‘choiceProcess‘ correctly transitions to ‘successBranch‘, and
sending invalid values (such as ‘99‘) to test whether ‘choiceProcess‘ transitions to
‘errorBranch‘.

The model runs ‘choiceProcess‘ in parallel with two processes namely, sendEx-
pectedValueChannel2 (which sends valid values (‘5‘) on Channel2) and sendUn-
expectedValueChannel3 (which sends invalid values (‘99‘) on Channel3). This
parallelism creates a realistic test environment where valid and invalid inputs are
interleaved, allowing us to observe how the process handles concurrent inputs.
Note that all processes in the BEHAVIOUR section start concurrently and so there
is no guaranteed order for which process acts first.

CHAPTER 3. PERFORMANCE TESTING AND SYSTEM ANALYSIS 47

TXS >> TorXakis :: Model-Based Testing
TXS >> txsserver starting: "localhost" : 53582
TXS >> Solver "z3" initialized : Z3 [4.8.7]
TXS >> TxsCore initialized
TXS >> LPEOps version 2019.07.05.02
TXS >> input files parsed:
TXS >> ["BranchingError.txs"]
TXS >> stepper BranchingErrorTest
TXS >> Stepper started
TXS >> step 20
TXS >>1: Act { { (Channel3, [10]) } }
TXS >>2: Act { { (Channel13, [99]) } }
TXS >>3: Act { { (Channel2, [5]) } }
TXS >>4: Act { { (Channel3, [99]) } }
TXS >>5: Act { { (Channel3, [99]) } }
TXS >>6: Act { { (Channel3, [99]) } }
TXS >>7: Act { { (Channel2, [5]) } }
TXS >>8: Act { { (Channel3, [99]) } }
TXS >>9: Act { { (Channel3, [99]) } }
TXS >>10: Act { { (Channel1, [1]) } }
TXS >>11: Act { { (Channel2, [5]) } }
TXS >>12: Act { { (Channel2, [-90]) } }
TXS >>13: Act { { (Channel2, [5]) } }
TXS >>14: Act { { (Channel1, [99]) } }
TXS >>15: Act { { (Channel3, [99]) } }
TXS >>16: Act { { (Channel2, [5]) } }
TXS >>17: Act { { (Channel1, [99]) } }
TXS >>18: Act { { (Channel1, [99]) } }
TXS >>19: Act { { (Channel1, [99]) } }
TXS >>20: Act { { (Channel1, [99]) } }
TXS >>
TXS >> PASS

Figure 3.24: The Output of Branching Errors in the Integration Test

Chapter 4

On Further Expanding the
TorXakis Test Suite

In the previous chapters, various performance evaluation tests were conducted
on TorXakis, focusing on aspects such as concurrency, fault tolerance, scalability,
resource utilization, model verification, and integration. However, certain tests
could not be fully implemented due to intrinsic limitations in TorXakis. This chapter
presents a conceptual expansion of these four tests: Real-time Performance Test,
User Experience Test, Model Maintainability Test, Security Test.

Unlike the tests in Chapter 4, which were executed and analyzed within the
TorXakis environment, the tests in this chapter are theoretical and explore the lim-
itations, challenges, and potential solutions for conducting such evaluations. The
goal of this expansion is to propose alternative approaches and lay the groundwork
for future research where these tests can be implemented using alternative model-
based testing tools or hybrid frameworks. By structuring the discussion in this way,
this chapter provides a systematic analysis of the missing test scenarios, offering
insights into how they could be realized in future work.

4.1 Real-time Performance Test

Real-time performance testing evaluates how a system behaves under time-
constrained scenarios, ensuring that tasks are executed within specific timeframes.
However, TorXakis does not support real-time testing or hybrid systems, as con-
firmed in its official documentation. The documentation explicitly states: "TorXakis
supports state & data but no probabilities, real-time, or hybrid systems." ([38], un-
der "Model-based testing tools"). This limitation makes it impossible to perform
real-time performance tests directly within the TorXakis framework.

48

CHAPTER 4. ON FURTHER EXPANDING THE TORXAKIS TEST SUITE 49

4.1.1 Challenges in Real-Time Testing with TorXakis

The removal of the TIMEOUT function in TorXakis highlights a lack of native
support for handling time-sensitive scenarios. This poses several challenges:

1. Inability to Simulate Time-Dependent Behaviors. Real-time systems often
require processes to execute within strict time constraints. Without built-in
time-handling capabilities, it becomes infeasible to simulate these behaviors
in TorXakis.

2. No Support for Real-Time or Hybrid Systems. Hybrid systems, which com-
bine discrete and continuous behaviors (e.g., processes dependent on both
state transitions and time constraints), cannot be modeled or tested in TorX-
akis.

3. Limitations for Performance Verification Performance testing often involves
measuring the system’s response times or ensuring that tasks complete before
a specified deadline. The lack of time-based constructs prevents TorXakis from
verifying these properties.

Given TorXakis’s limitations, exploring alternative tools specialized for real-
time system verification is essential when working on real-time applications. One
such tool is UPPAAL, a widely used model checker designed for real-time and
hybrid systems. UPPAAL provides robust support for time constraints, verification
of real-time properties, and simulating real-time behaviors. However, employing
UPPAAL or similar tools falls outside the scope of this thesis, as it focuses on
the capabilities and self-testing of TorXakis. Exploring these tools would require
a separate evaluation and integration effort, making it more suitable for projects
dedicated to real-time system analysis.

4.1.2 Implications of TorXakis’s Limitations

While the absence of real-time testing capabilities in TorXakis may seem like a
drawback, it reflects the tool’s focus on model-based testing for state and data-
driven systems. TorXakis is well-suited for applications where timing is not a
critical factor, such as testing state transitions or validating data interactions. That
is, TorXakis targets non-real-time applications. By excluding real-time features,
TorXakis simplifies its scope, making it easier to apply in scenarios where time
constraints are not required. Its focus is on simplicity and general use cases. While
TorXakis alone cannot handle real-time systems, combining it with complementary
tools like UPPAAL could enable a broader range of testing capabilities.

In conclusion, the lack of real-time support in TorXakis is a known limitation
that restricts its application in time-sensitive scenarios. The removal of the TIME-
OUT function and the absence of hybrid system support further emphasize this
constraint. While tools like UPPAAL can address these gaps, they fall outside the

CHAPTER 4. ON FURTHER EXPANDING THE TORXAKIS TEST SUITE 50

scope of this thesis, which is focused on TorXakis. Nonetheless, this limitation
highlights the importance of selecting the appropriate tools for specific testing re-
quirements and paves the way for future explorations into hybrid or integrated
testing solutions.

4.2 User Experience Test

The User Experience Test (UX Test) evaluates how intuitive, accessible, and efficient
the TorXakis system is for its end-users. The primary focus is to assess how users
interact with the TorXakis environment, including its commands, error messages,
and overall usability. This test aims to identify barriers that hinder productivity
and recommend improvements for a more seamless user experience.

Ease of use examines how straightforward it is for users to navigate and utilize
the TorXakis interface.Key questions include: Is the command structure logical and
user-friendly? Can users easily perform essential tasks such as creating, testing,
and debugging models without requiring extensive training or documentation?

The test assesses whether the workflow facilitates smooth transitions between
various stages of model-based testing. Effective error messages are vital for user
productivity.This test evaluates whether the system provides informative and ac-
tionable feedback when errors occur. Criteria include specificity (are the error
messages clear enough to guide users toward resolving issues) and usability (are
the messages too technical or generic to be useful for non-expert users).

The learning curve refers to the time and effort required for new users to be-
come proficient with TorXakis. A steep learning curve can deter users from fully
utilizing the system’s capabilities. This test identifies how accessible TorXakis is
for beginners and whether there are sufficient resources (e.g., documentation, tu-
torials) to support them. Customization allows users to tailor the environment
to their specific needs, improving efficiency and satisfaction. The test evaluates:
The flexibility of debugging and testing options. Whether users can adapt model
definitions for diverse use cases. Consistency ensures that commands and features
behave predictably, reducing frustration. This evaluation identifies inconsistencies
in the system’s behavior that might confuse users.

4.2.1 Challenges Identified

Many users report that TorXakis error messages are overly technical, making it
challenging for non-expert users to diagnose and resolve issues. This complexity
can lead to delays and reduce productivity during the model development process.

For users new to model-based testing or formal methods, the TorXakis interface
and workflows can be intimidating. While the system offers powerful functionality,
it often requires significant effort to master, particularly due to limited interactive
support or tutorials.

CHAPTER 4. ON FURTHER EXPANDING THE TORXAKIS TEST SUITE 51

4.2.2 Recommendations

Enhance error messages with detailed explanations of issues. Suggestions for re-
solving common errors. Contextual guidance for beginners to reduce confusion.
Introduce step-by-step tutorials or an interactive mode that walks users through
common tasks, such as creating a model, debugging errors, or performing tests.
These tutorials could include examples, visual aids, and real-time guidance. Sim-
plify workflows to reduce friction for beginners. Provide shortcuts or templates
for common tasks to make the system more accessible. Standardize the behav-
ior of commands and features to eliminate irregularities that might frustrate users.
Ensure uniformity in the design and output of error messages, logs, and commands.

To conclude, the User Experience Test highlights areas where TorXakis can im-
prove its accessibility and ease of use, particularly for new users. Key challenges
include overly complex error messages and a steep learning curve, which may deter
non-expert users. However, with improvements in error messaging, the addition
of interactive tutorials, and a focus on consistency, TorXakis can significantly en-
hance its user experience. These recommendations aim to make the system more
approachable, efficient, and satisfying for both beginners and advanced users. By
prioritizing usability alongside functionality, TorXakis can strengthen its position
as a powerful yet user-friendly tool for model-based testing.

4.3 Model Maintainability Test

The Model Maintainability Test evaluates how easily models in TorXakis can be
maintained, modified, and extended over time. Maintainability is a critical as-
pect of long-term system development, ensuring that models remain adaptable as
requirements evolve and systems grow. This test assesses the key factors influenc-
ing the manageability of models, aiming to identify challenges and recommend
improvements.

Modularity refers to the design of models as smaller, reusable components.
This test evaluates whether models are modular enough to allow individual com-
ponents to be updated or replaced without impacting the overall system. Modular
design promotes maintainability by isolating changes to specific parts of the model,
reducing the risk of introducing errors.

Readability ensures that models are easy to understand, not only for the original
developer but also for others who may work on them in the future. This test
examines whether the code is well-structured and whether sufficient comments
and explanations are included to convey the purpose and functionality of each part
of the model.

As systems grow, models must accommodate new features, processes, or chan-
nels without requiring significant restructuring. This test evaluates whether the
model’s design supports scalability, ensuring that expansions can be made with

CHAPTER 4. ON FURTHER EXPANDING THE TORXAKIS TEST SUITE 52

minimal technical debt.
Over time, models may need to evolve due to new requirements or corrections.

This test assesses how easily models can be modified or extended while preserving
existing functionality and minimizing disruptions. Consistency in design patterns
ensures predictability and simplifies troubleshooting. This test evaluates whether
models follow uniform logical flows and patterns, reducing the cognitive load for
developers working on the system.

4.3.1 Challenges Identified

In some cases, models in TorXakis lack uniformity in structure. Developers may
use varied styles or approaches, leading to inconsistencies that complicate mainte-
nance. As models become more complex, synchronizing multiple processes across
channels can result in increased complexity. This can make it harder to expand
or modify models effectively. Many TorXakis models lack detailed comments or
explanations. Without sufficient documentation, revisiting older models requires
developers to re-learn the system, slowing down the process of making updates or
fixes.

4.3.2 Recommendations

Break down models into smaller, self-contained processes that can be reused and
tested independently. Modular models are easier to maintain and scale, allowing
developers to make updates without affecting unrelated parts of the system. Adopt
consistent design patterns across all models to improve predictability and reduce
errors. This practice ensures that new features can be added seamlessly, maintaining
uniformity throughout the system. Include detailed comments in every model,
explaining its structure, purpose, and logic. Well-documented models enhance
maintainability by reducing the time required for future developers to understand
and modify them.

In conclusion, the Model Maintainability Test emphasizes the importance of
creating models that remain adaptable and manageable as the system evolves. The
evaluation highlights areas where TorXakis could improve, such as adopting a
more modular design, enforcing consistent patterns, and enhancing documenta-
tion. By addressing these challenges, TorXakis can ensure that its models remain
scalable, predictable, and easy to update, supporting long-term system growth and
sustainability. These improvements would not only streamline the development
process but also make the system more accessible to new developers, ensuring the
continued success of TorXakis in diverse applications.

CHAPTER 4. ON FURTHER EXPANDING THE TORXAKIS TEST SUITE 53

4.4 Security Test

The Security and Reliability Test for TorXakis assesses the system’s ability to main-
tain data integrity, robustness, and stability under various conditions. While TorX-
akis is not a public-facing tool, ensuring consistent data exchange, controlled access,
and reliable error handling is essential, particularly in collaborative environments
where multiple users modify models and test configurations.

Since TorXakis lacks built-in security features, this conceptual evaluation fo-
cuses on data consistency, input validation, channel synchronization, and traceabil-
ity. The study explores how system behavior might be affected by unexpected input
values, high-load stress conditions, and logging mechanisms. Theoretical scenar-
ios were developed to analyze how TorXakis would handle data inconsistencies,
malformed inputs, and desynchronization under stress.

4.4.1 Findings and Challenges

Conceptual analysis indicates that desynchronization may occur under high-load
conditions, affecting channel communication stability. While TorXakis flags mal-
formed inputs, the error messages may be too technical, limiting their usefulness for
diagnosing failures. The lack of structured access control mechanisms poses risks in
multi-user settings, potentially allowing unintended modifications. Logging mech-
anisms, while functional, may not capture sufficient detail for effective debugging
and traceability, particularly in analyzing failures under stress conditions.

4.4.2 Recommendations

Strengthening synchronization protocols could improve system stability under high
loads. Refining error messages to provide clearer diagnostics would enhance us-
ability. Implementing user roles and permissions would prevent unintended mod-
ifications in collaborative environments, and improving logging mechanisms could
facilitate more effective debugging and system traceability.

Ensuring robust security and reliability in TorXakis is essential for maintaining
test accuracy and system integrity. Addressing potential synchronization issues,
improving input validation, and refining logging mechanisms would enhance us-
ability and maintainability. While these security aspects may not be critical for
single-user implementations, they become increasingly important in large-scale,
collaborative testing environments.

Chapter 5

Conclusion and Future Work

This thesis set out to evaluate the central research question of whether TorXakis is a
correct implementation of the ioco testing theory. To answer this, a comprehensive
set of empirical tests was designed and conducted, each targeting key behavioral
aspects of model-based systems, including concurrency, fault tolerance, scalability,
resource utilization, semantic correctness, and integration performance. Through
these tests, we examined whether TorXakis’s observable behavior and output re-
sponses aligned with the semantic expectations defined by the ioco theory.

The concurrency and deadlock tests demonstrated TorXakis’s ability to simu-
late high-load parallel systems while maintaining consistency in trace outputs and
avoiding system-level deadlocks. These tests confirmed that TorXakis can suc-
cessfully manage up to 19 concurrent processes, preserving synchronization and
progress, which are essential elements of ioco conformance. Deadlock scenarios
were accurately detected using intentional circular dependencies between chan-
nels, further validating the tool’s ability to reflect liveness and progress properties.
While the detection of non-deterministic issues such as race conditions was not con-
clusive, the test still revealed valuable insights about the tool’s handling of realistic
concurrency challenges.

The fault tolerance test shifted focus from validating systems to evaluating TorX-
akis itself as a fault-resilient testing tool. When subjected to simulated failures such
as channel disruptions, nondeterministic decisions, and recovery sequences, the
tool exhibited stable behavior and consistent outputs. TorXakis managed to handle
injected faults without crashing, producing meaningful results and maintaining
operational stability. These outcomes suggest that the tool is not only capable of
simulating fault-tolerant systems but is also structurally robust against faults within
its own test environments.

The scalability and resource utilization tests provided further insight into the
tool’s limitations and strengths under growing model complexity. While TorXakis
performed well up to a defined threshold of 19 channels, pushing beyond this

54

CHAPTER 5. CONCLUSION AND FUTURE WORK 55

point revealed exponential increases in CPU and memory usage. These perfor-
mance constraints stemmed from solver inefficiencies and the lack of optimization
in managing nested parallelism and synchronized processes. Nonetheless, within
its operational boundaries, the system maintained trace integrity and did not pro-
duce faulty outputs, supporting partial conformance to ioco expectations in scalable
environments.

Model verification tests played a crucial role in evaluating TorXakis’s semantic
accuracy. Various correctness properties such as liveness, deadlock-freedom, syn-
chronization, data integrity, choice handling, and concurrent behavior were system-
atically validated. The tool effectively captured faults like infinite waiting, dead-
locks, incorrect synchronization, invalid data propagation, and decision-making
inconsistencies. These tests confirmed that TorXakis is capable of accurately mod-
eling and verifying behaviors in accordance with the theoretical properties defined
by ioco, reinforcing its credibility as a conformance testing tool. This test is a good
basis for the development of a larger test suite that would establish the correctness
of TorXakis.

Integration tests further extended the assessment by simulating complex real-
world scenarios not typically covered by standard functional tests. These included
edge cases such as partial synchronization failures, race conditions, incorrect mes-
sage passing, and branching logic errors. TorXakis successfully detected and re-
ported such faults, demonstrating its capability to handle system-level interactions
and deviations that are critical for robust model validation. These integration
scenarios added practical depth to the test suite, enhancing its coverage and appli-
cability for production-grade systems.

In conclusion, this thesis has demonstrated that TorXakis exhibits a strong and
meaningful alignment with the ioco testing theory across a variety of model-based
scenarios. While formal verification was beyond the scope of this study, the em-
pirical evidence supports the claim that TorXakis implements the core principles
of ioco correctly. The tool’s strengths in trace observation, fault handling, and be-
havioral verification show that it can be relied upon for systematic testing tasks
that reflect theoretical conformance expectations. TorXakis accurately simulates
expected observable behaviors, handles refusals and quiescence conditions, and
responds predictably to faults and concurrency challenges. Although certain archi-
tectural limitations—such as limited scalability, lack of native real-time capabilities,
and usability barriers—affect its applicability in highly complex or time-sensitive
environments, these constraints do not undermine its foundational conformance.
Rather, they highlight the need for future research to extend the tool’s temporal
expressiveness, optimize its performance for larger and more dynamic models, and
pursue formal verification of its internal mechanisms against ioco semantics. Over-
all, TorXakis emerges from this evaluation as a practically ioco-compliant tool, ca-
pable of supporting model-based testing with meaningful accuracy and robustness,
and positioned as a solid foundation for continued development and formalization.

CHAPTER 5. CONCLUSION AND FUTURE WORK 56

5.1 Some Answers to Our Research Question

Our results provide a few answers to the question of TorXakis correctness. By
executing a diverse suite of custom-designed test models—–including those sim-
ulating concurrency, deadlocks, nondeterministic behavior, fault tolerance, and
integration–—we observed how TorXakis responds under controlled and theoreti-
cally meaningful conditions. The outputs consistently showed behavioral patterns
that match the ioco semantics in many core areas, particularly in how traces are
handled, how synchronization is performed, and how faults are tolerated within
structured models. We thus argue that for practical purposes TorXakis is a good
implementation of ioco.

The analysis also highlighted limitations in certain domains, such as real-time
responsiveness and scalability under high process/channel loads. These observa-
tions expose areas that warrant further improvement or formal verification. By
documenting these strengths and gaps, this research fulfills its intended goal of
providing a structured framework for assessing conformance in model-based test-
ing tools. The outcomes thus validate both the relevance of the research question
and the effectiveness of the empirical methodology used to address it.

Recall now that our ultimate thesis was that TorXakis can be formally verified
using TorXakis itself. The empirical evidence gathered throughout this paper is
mixed. On one hand, we walked TorXakis through a reasonably comprehensive
test suite and did not observe any anomalies. We can conclude tentatively that the
tool works as expected. On the other hand, one can reasonably expect that the test
scenarios that will be eventually developed for a full formal verification will be quite
complex. Our empirical evidence shows that it may not be possible to run those tests.
Indeed, we have noted an exponential increase in resource requirements, which for
the time being makes the possibility of running very complex tests doubtful. Further
investigations are definitely needed.

5.2 Future Work and Practical Recommendations

To further investigate the central research question (whether TorXakis a correct
implementation of ioco), future work should focus on addressing the limitations
identified in this study and in particular improving the tool’s scalability.

Based on the insights gained from empirical testing, we can propose several im-
provements to enhance the practical performance of TorXakis and also work toward
establishing conformance to ioco semantics. The biggest such an improvement is
in scalability. The system’s capacity to handle concurrent processes and channels
is notably limited, with failure occurring beyond 19 channels due to architectural
and resource limitations. Refactoring the system architecture to support dynamic
scaling, potentially through distributed processing or parallel execution techniques
should be a priority. This would allow TorXakis to handle more complex ioco

CHAPTER 5. CONCLUSION AND FUTURE WORK 57

models involving multiple interacting components, enhancing its applicability for
large-scale testing. At the same time, a deeper investigation into the complexity of
the ioco algorithms should take place, with the goal of determining to what degree
implementation changes can improve performance.

The absence of constructs like TIMEOUT limits the tool’s ability to model time-
constrained systems. One should consider the reintroduction of real-time con-
structs, eventually implementing timed ioco. This would enable the evaluation
of systems like embedded controllers and real-time protocols that rely on timing
constraints as part of their conformance behavior.

On a very practical note we found that the tool’s error messages are overly
technical and often lack actionable guidance, making it difficult for users to debug or
interpret unexpected behavior. Enhancing diagnostic feedback by providing user-
friendly error descriptions and contextual recommendations is worth considering.
Clearer insights would support better trace analysis, helping users validate whether
the system behavior conforms to ioco semantics. Additionally, the current logging
mechanism does not provide detailed traces for in-depth behavioral analysis. A
robust audit logging system to capture observable actions, errors, and process
synchronization outcomes would aid in evaluating whether execution traces align
with the expected ioco-compliant behavior.

Finally, we noted that a steep learning curve and insufficient documentation
create barriers for new users and researchers. We would like to see comprehensive
tutorials and interactive examples covering model creation, testing strategies, and
ioco-specific interpretations. Better onboarding resources will broaden the user
base and make the tool more accessible to non-experts.

5.2.1 Recommendations for Researchers and Practitioners

Future researchers and practitioners can build upon this work to both improve
TorXakis and develop more reliable model-based testing frameworks aligned with
formal semantics. The following directions are suggested:

• Investigate distributed and cloud-based infrastructures to overcome hardware
limitations and enable large-scale testing of high-concurrency ioco models.

• Explore the integration of TorXakis with formal tools such as UPPAAL to
support hybrid specifications.

• Extend the modeling scope to real-time behavior, thus implementing timed
ioco.

• Develop optimization strategies for handling parallel test execution, dynamic
prioritization of channels, and runtime resource allocation to improve perfor-
mance and responsiveness.

CHAPTER 5. CONCLUSION AND FUTURE WORK 58

Last but not least, the possible specifications that establish TorXakis as a for-
mally correct implementation of ioco should definitely be pursued. As noted above
however, this might not be possible. In the event that TorXakis proves unable to
run such a testing scenario on itself (as our research seems to suggest), a reasonable
substitute may be the use of AI-based techniques to provide a reasonable guarantee
of correctness instead. Recent advancements in MBT have led to the integration of
artificial intelligence and machine learning techniques to enhance test case genera-
tion and selection. AI-driven MBT approaches aim to optimize testing by predicting
critical system behaviors, reducing redundant test cases, and improving fault de-
tection rates. Future research in this area is expected to explore the combination
of MBT with AI-based adaptive testing frameworks, enabling more efficient and
intelligent test execution strategies [28]. Applying such techniques on TorXakis
itself may prove to be a practical substitute of a proof of correctness should such a
proof turn out not to be possible.

Bibliography

[1] M. Abdolahi, Grading with TorXakis, M.Sc. thesis, Dept. of Computer Science,
Bishop’s University, Sherbrooke, QC, Canada, Aug. 2023.

[2] D. Ahman and M. Kääramees Constraint-Based Heuristic On-line Test Generation
from Non-deterministic I/O EFSMs, arXiv:1202.6126 , 2012.

[3] B.K. Aichernig, W. Mostowski, M.R. Mousavi, M. Tappler, and M. Taromirad,
Model Learning and Model-Based Testing, in A. Bennaceur, R. Hähnle, K. Meinke
(eds) Machine Learning for Dynamic Software Analysis: Potentials and Limits,
Springer LNCS 11026.

[4] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed., Cambridge
University Press, 2008.

[5] J.C.M. Baeten, T. Basten, and M.A. Reniers, Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, 2010.

[6] O. Balci, Verification, Validation, and Testing Techniques, ACM SIGSIM, 2016.

[7] M. van der Bĳl, and F. Peureux, I/O-automata Based Testing, in Model-Based
Testing of Reactive Systems: Advanced Lectures, M. Broy, B. Jonsson, J.P.
Katoen, M. Leucker, and A. Pretschner, Eds., Springer LNCS 3472, 2005, pp.
173–200.

[8] BrowserStack, What is Model-Based Testing in Software Testing, BrowserStack
Guide, Oct 2023.

[9] S.D. Bruda, Preorder Relations, in Model-Based Testing of Reactive Systems:
Advanced Lectures, M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, and A.
Pretschner, Eds., Springer LNCS 3472, 2005, pp. 117–150.

[10] I. Forgács and A. Kovács, Modern Software Testing Techniques: A Practical Guide
for Developers and Testers. Springer, 2024.

[11] M.-C. Gaudel Formal Methods for Software Testing, HAL Archives, 2017.

59

https://part.bruda.ca/_media/part/abdolahi20230823.pdf
https://sigsim.acm.org/mskr/Courseware/Balci/Slides/BalciSlides-21-VVTechniques.pdf
https://www.browserstack.com/guide/model-based-testing
https://hal.science/hal-01683611/document

BIBLIOGRAPHY 60

[12] V. Garous, A.B. Keleş, Y. Balaman, Z.Ö. Güler, and A. Arcuri, Model-based
testing in practice: An experience report from the web applications domain, Journal
of Systems and Software, vol. 180, 2021.

[13] GeeksforGeeks, Behavior Driven Testing, May 2022.

[14] GeeksforGeeks, Fuzz Testing, 2023.

[15] M. Gleirscher, J. van de Pol, and J. Woodcock, A Manifesto for Applicable Formal
Methods, Software and Systems Modeling, vol. 22, 2023, pp. 1737–1749.

[16] J.P. Katoen, Labelled Transition Systems, in Model-Based Testing of Reactive
Systems: Advanced Lectures, M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, and
A. Pretschner, Eds., Springer LNCS 3472, pp. 615–616.

[17] LambdaTest, What is Model-Based Testing: An Overview, LambdaTest Learning
Hub, Feb. 2023.

[18] Mark Utting and Bruno Legeard, Practical Model-Based Testing: A Tools Approach,
1st ed., Morgan Kaufmann, 2006.

[19] R. Milner, A Calculus of Communicating Systems, Springer LNCS vol. 92, 1980.

[20] S. Misra, Software Testing Techniques," in Proceedings of the Canadian Confer-
ence on Electrical and Computer Engineering, 2003, pp. 1873–1877.

[21] T. Ostrand, White-Box Testing," in Encyclopedia of Software Engineering, vol.
2, J. Marciniak, Ed., Wiley, 2002, pp. 1256–1262.

[22] G. Petrovic, G. Fraser, M. Ivanković, and R. Just, Practical Mutation Testing at
Scale: A View from Google, IEEE Transactions on Software Engineering, vol. 47,
2021, pp. 2802–2817.

[23] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B.
Sostawa, R. Zölch, and T. Stauner (2005), One evaluation of model-based test-
ing and its automation, in Proceedings of the 27th International Conference on
Software Engineering (ICSE ’05), 2005, pp. 392–401.

[24] S. Polzin, Understanding Model-Based Testing: Benefits, Challenges, and Use Cases,
Qt Blog, 2023.

[25] S. Rädler, L. Berardinelli, K. Winter, A. Rahimi, and S. Rinderle-Ma, Bridging
MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven
Practices in AI Software Systems Engineering, Software and Systems Modeling,
vol. 23, 2024, pp. 1024–1045.

[26] A. W. Roscoe, The Theory and Practice of Concurrency. Prentice Hall, 1997.

https://www.geeksforgeeks.org/agile-testing-methods-behavior-driven-testing/
https://www.geeksforgeeks.org/software-testing-fuzz-testing/
https://www.lambdatest.com/learning-hub/model-based-testing
https://www.qt.io/blog/quality-assurance/understanding-model-based-testing

BIBLIOGRAPHY 61

[27] A. Sanchez, P. Delgado-Perez, I. Medina-Bulo, and S. Segura, Mutation Testing
in the Wild: Findings from GitHub, Empirical Software Engineering, vol. 27, no.
3, 2022.

[28] H. Sartaj, A. Muqeet, M.Z. Iqbal, and M.U. Khan, Automated System-level Testing
of Unmanned Aerial Systems, arXiv:2403.15857, 2024.

[29] C. Meadows, Program Verification and Security, in H.C.A van Tilborg, S. Jajodia
(eds), Encyclopedia of Cryptography and Security, Springer, 2011.

[30] G. Sypolt, The Challenges and Benefits of Model-Based Testing, Sauce Labs, 2017.

[31] A. Talreja, What is Exploratory Testing? Learn with a Real World Example, Master
Software Testing, Apr. 2024.

[32] TorXakis: A Tool for Model-Based Testing, retrieved Apr. 2025.

[33] TorXakis: Model-Based Testing Tool, GitHub repository.

[34] TorXakis: TestBench, retrieved Apr. 2025.

[35] J. Tretmans, Conformance Testing with Labelled Transition Systems: Implementation
Relations and Test Generation, Computer Networks and ISDN Systems, vol. 29,
no. 1, 1996, pp. 49—79.

[36] J. Tretmans, Model-Based Testing with Labelled Transition Systems, in Formal
Methods and Testing, R. M. Hierons, J. P. Bowen, and M. Harman, Eds.,
Springer LNCS 4949, 2008, pp. 1–38.

[37] J. Tretmans and P. van der Laar, Model-Based Testing with TorXakis: The Mysteries
of Dropbox Revisited, in Proc. 30th CECIIS, Varaždin, Croatia, Oct. 2019.

[38] J. Tretmans, TorXakis: A Model-Based Testing Tool, TorXakis Documentation,
2020.

[39] V. Tschaen, Test Generation Algorithms Based on Preorder Relations, in Model-
Based Testing of Reactive Systems: Advanced Lectures, M. Broy, B. Jonsson,
J.-P. Katoen, M. Leucker, and A. Pretschner, Eds., Springer LNCS 3472, 2005,
pp. 151–172.

https://saucelabs.com/resources/blog/the-challenges-and-benefits-of-model-based-testing
https://mastersoftwaretesting.com/testing-fundamentals/testing-techniques/exploratory-testing
https://torxakis.org/
https://github.com/TorXakis/TorXakis
https://github.com/TorXakis/TorXakis/blob/develop/test/benchmark/benchmark.txs
https://torxakis.org/userdocs/stable/torxakis_mbt.html

Appendix A

TorXakis Model Code Listing

A.1 Maximum Concurrency Stress Test

CHAN IN
CHAN OUT Channel1, Channel2, Channel3, Channel4, Channel5,
Channel6, Channel7, Channel8, Channel9, ChannelInt1, ChannelInt2,
ChannelInt3, Channel10Ints, Channel10Ints_b
BEHAVIOUR

(
-- Parallel sequences with all channels
sequence [Channel1] ()

|||
sequence [Channel2] ()

|||
sequence [Channel3] ()

|||
sequence [Channel4] ()

|||
sequence [Channel5] ()

|||
sequence [Channel6] ()

|||
sequence [Channel7] ()

|||
sequence [Channel8] ()

|||
sequence [Channel9] ()

)
|[Channel1, Channel2, Channel3, Channel4, Channel5, Channel6,
Channel7, Channel8, Channel9]|

62

APPENDIX A. TORXAKIS MODEL CODE LISTING 63

(
-- Synchronized sequences with interleaving steps
synchronizedN [Channel1] (5)

|||
synchronizedN [Channel2] (5)

|||
synchronizedN [Channel3] (5)

|||
synchronizedN [Channel4] (5)

|||
synchronizedN [Channel5] (5)

|||
synchronizedN [Channel6] (5)

|||
synchronizedN [Channel7] (5)

|||
synchronizedN [Channel8] (5)

|||
synchronizedN [Channel9] (5)

)
|[ChannelInt1, ChannelInt2, ChannelInt3]|

(
-- Parallel data sequences with integer channels
parallelDataN [ChannelInt1] (10)

|||
parallelDataN [ChannelInt2] (10)

|||
parallelDataN [ChannelInt3] (10)

)
|[Channel10Ints, Channel10Ints_b]|

(
-- Sequences handling complex data structures
sequence10Ints [Channel10Ints] ()

|||
sequence10Ints_b [Channel10Ints_b] ()

)
|[Channel1, Channel2, Channel3, Channel4, Channel5, Channel6,
Channel7, Channel8, Channel9, ChannelInt1, ChannelInt2, ChannelInt3,
Channel10Ints, Channel10Ints_b]|

(
-- Nested and interleaved parallel and synchronized processes

synchronizedSequences [Channel1] ()

APPENDIX A. TORXAKIS MODEL CODE LISTING 64

|||
synchronizedSequences [Channel2] ()

|||
synchronizedSequences [Channel3] ()

|||
synchronizedSequences [Channel4] ()

|||
synchronizedSequences [Channel5] ()

|||
synchronizedSequences [Channel6] ()

|||
synchronizedSequences [Channel7] ()

|||
synchronizedSequences [Channel8] ()

|||
synchronizedSequences [Channel9] ()

)
ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 65

A.2 Deadlock Injection and Detection Evaluation

The implementation involves defining a process called ‘deadlockSequence‘, where
each instance of this process attempts to communicate on a specific channel and
then stops (‘STOP‘). For example, process ‘A‘ might wait on ‘Channel1‘ while ‘B‘
waits on ‘Channel2‘, with ‘B‘ requiring ‘A‘ to finish before it can proceed. How-
ever, ‘A‘ also waits on another channel, creating a dependency cycle. By organizing
these ‘deadlockSequence‘ instances in a synchronized composition set, they col-
lectively enter a state where no process can continue because each is waiting on
the next. Multiple ‘deadlockSequence‘ processes are started in parallel and are
synchronized on specific channels. This synchronization enforces the dependency
between processes and prevents any one process from executing without the others.
The cyclic dependency formed by synchronizing ‘deadlockSequence‘ processes on
interconnected channels is what generates the deadlock.

Here is the complete model definition:

PROCDEF deadlockSequence [Channel1, Channel2] () ::=
Channel1 >-> STOP -- Deadlock after Channel1

##
Channel2 >-> STOP -- Deadlock after Channel2

ENDDEF

MODELDEF MaxConcurrencyStressTestWithDeadlocks ::=
CHAN IN
CHAN OUT Channel1, Channel2, Channel3, Channel4, Channel5,
Channel6, Channel7, Channel8, Channel9, ChannelInt1, ChannelInt2,
ChannelInt3, Channel10Ints, Channel10Ints_b
BEHAVIOUR

(
-- Parallel sequences
sequence [Channel1] ()

|||
sequence [Channel2] ()

|||
sequence [Channel3] ()

)
|[Channel4, Channel5, Channel6]|

(
-- Synchronized sequences with interleaving steps
synchronizedN [Channel4] (5)

|||
synchronizedN [Channel5] (5)

|||

APPENDIX A. TORXAKIS MODEL CODE LISTING 66

synchronizedN [Channel6] (5)
)

|[ChannelInt1, ChannelInt2, ChannelInt3]|
(

-- Parallel data sequences with integer channels
parallelDataN [ChannelInt1] (10)

|||
parallelDataN [ChannelInt2] (10)

|||
parallelDataN [ChannelInt3] (10)

)
|[Channel10Ints, Channel10Ints_b]|

(
-- Sequences handling complex data structures
sequence10Ints [Channel10Ints] ()

|||
sequence10Ints_b [Channel10Ints_b] ()

)
|[Channel7, Channel8, Channel9]|

(
-- Nested and interleaved parallel and synchronized processes

synchronizedSequences [Channel7] ()
|||

synchronizedSequences [Channel8] ()
|||

synchronizedSequences [Channel9] ()
)

|[Channel1, Channel2, Channel3, Channel4]|
(

-- Intentional deadlock sequences
deadlockSequence [Channel1, Channel2] ()

|||
deadlockSequence [Channel2, Channel3] ()

|||
deadlockSequence [Channel3, Channel4] ()

|||
deadlockSequence [Channel4, Channel1] ()

)
ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 67

A.3 Fault Tolerance Test

PROCDEF faultySequence [PrimaryChannel, BackupChannel] () ::=
PrimaryChannel >-> faultySequence [PrimaryChannel, BackupChannel]()
##
BackupChannel >-> faultySequence [PrimaryChannel, BackupChannel]()
ENDDEF

###############################
MODELDEF SpecFaultySequence ::=
CHAN IN
CHAN OUT PrimaryChannel, BackupChannel
BEHAVIOUR
faultySequence [PrimaryChannel, BackupChannel] ()
ENDDEF

PROCDEF faultyChoice [Channel1, Channel2] () ::=
Channel1 >-> faultyChoice [Channel1, Channel2] ()
##
Channel2 >-> faultyChoice [Channel1, Channel2] ()
ENDDEF

#################################
MODELDEF SpecFaultyChoice ::=
CHAN IN
CHAN OUT
BEHAVIOUR
faultyChoice [Channel1, Channel2] ()
ENDDEF

PROCDEF combinedFaultTolerance [PrimaryChannel1, BackupChannel1,
PrimaryChannel2, BackupChannel2, Channel1, Channel2] () ::=
faultySequence [PrimaryChannel1, BackupChannel1] ()
|||
faultySequence [PrimaryChannel2, BackupChannel2] ()
|||
faultyChoice [Channel1, Channel2] ()
ENDDEF

####################################
MODELDEF SpecCombinedFaultTolerance ::=
CHAN IN
CHAN OUT PrimaryChannel1, BackupChannel1, PrimaryChannel2,

APPENDIX A. TORXAKIS MODEL CODE LISTING 68

BackupChannel2, Channel1, Channel2
BEHAVIOUR
combinedFaultTolerance [PrimaryChannel1, BackupChannel1,
PrimaryChannel2, BackupChannel2, Channel1, Channel2] ()
ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 69

A.4 Scalability Test

The test utilized the following core constructs: First, we define a couple of processes.

• CombinedConcurrent: This process combines multiple sequences and choice
operations over nine channels to simulate a highly concurrent but structured
communication environment.

• CombinedScalabilityTest: This process scales up the number of channels to
50, integrating various concurrency patterns such as parallel, synchronized,
and fault-tolerant operations.

We then implemented the following concurrency patterns:

• Sequential Operations: Basic sequences were defined for processes to handle
ordered communication on individual channels.

• Choice Operations: Processes were designed to make non-deterministic deci-
sions based on input from multiple channels.

• Parallel Operations: Processes such as parallelN and parallelAlternateN were
used to simulate concurrent execution across multiple instances.

• Synchronized Operations: Processes like synchronizedN and synchro-
nizedAlternateN ensured proper coordination and synchronization between
different channels.

• Fault-Tolerant Processes: Additional processes tested fault tolerance under
high concurrency by combining fault-handling mechanisms with communi-
cation.

Finally, we define a model to specify the system’s input and output channels
and bind them to the combined ScalabilityTest process. This ensured a cohesive
and scalable structure for testing.

Here is the complete model definition:

PROCDEF combinedConcurrent [
Channel1, Channel2, Channel3, Channel4, Channel5, Channel6,
Channel7, Channel8, Channel9

] () ::=
sequence [Channel1] ()
|||
sequence [Channel2] ()
|||
sequence [Channel3] ()
|||

APPENDIX A. TORXAKIS MODEL CODE LISTING 70

choice [Channel4, Channel5] ()
|||
choice [Channel6, Channel7] ()
|||
choice [Channel8, Channel9] ()

ENDDEF

-- Define the process for combined scalability test
PROCDEF combinedScalabilityTest [
Channel1, Channel2, Channel3, Channel4, Channel5, Channel6, Channel7,
Channel8, Channel9, Channel10,Channel11, Channel12, Channel13,
Channel14,Channel15,Channel16, Channel17, Channel18, Channel19,
Channel20,Channel21, Channel22, Channel23, Channel24, Channel25,
Channel26, Channel27, Channel28, Channel29, Channel30,Channel31,
Channel32, Channel33, Channel34, Channel35, Channel36, Channel37,
Channel38, Channel39, Channel40, Channel41, Channel42, Channel43,
Channel44, Channel45, Channel46, Channel47, Channel48, Channel49,
Channel50
] () ::=
(

sequence [Channel1] ()
|||

sequence [Channel2] ()
|||

sequence [Channel3] ()
|||

choice [Channel4, Channel5] ()
|||

choice [Channel6, Channel7] ()
|||

choice [Channel8, Channel9] ()
|||

parallelN [Channel10] (5)
|||

parallelN [Channel11] (5)
|||

parallelAlternateN [Channel12, Channel13] (5)
|||

parallelAlternateN [Channel14, Channel15] (5)
|||

synchronizedN [Channel16] (5)

APPENDIX A. TORXAKIS MODEL CODE LISTING 71

|||
synchronizedN [Channel17] (5)

|||
synchronizedAlternateN [Channel18, Channel19] (5)

|||
synchronizedAlternateN [Channel20, Channel21] (5)

|||
synchronizedIStepN [Channel22] (5)

|||
synchronizedIStepN [Channel23] (5)

|||
sequenceEnable [Channel24] ()

|||
sequenceEnable [Channel25] ()

|||
hideC_synchC_Par_Alternate_C_X [Channel26] (5)

|||
hideC_synchC_Par_Alternate_C_Xi [Channel27, Channel28, Channel29,
Channel30] ()

|||
hideC_synchX_Par_Alternate_C_X [Channel31] (5)

|||
synchronizedSequences [Channel32] ()

|||
synchronizedSequences [Channel33] ()

|||
synchronizedSequences [Channel34] ()

|||
synchronizedSequences [Channel35] ()

|||
combinedConcurrent [Channel36, Channel37,
Channel38, Channel39, Channel40, Channel41,
Channel42, Channel43, Channel44] ()

|||
combinedFaultTolerance [Channel45, Channel46,
Channel47, Channel48, Channel49, Channel50] ()

)
ENDDEF

MODELDEF SpecCombinedScalabilityTest ::=
CHAN IN

APPENDIX A. TORXAKIS MODEL CODE LISTING 72

CHAN OUT
Channel1, Channel2, Channel3, Channel4, Channel5, Channel6, Channel7,
Channel8, Channel9, Channel10, Channel11, Channel12, Channel13,
Channel14,Channel15, Channel16, Channel17, Channel18, Channel19,
Channel20,Channel21, Channel22, Channel23, Channel24, Channel25,
Channel26, Channel27, Channel28, Channel29, Channel30,Channel31,
Channel32, Channel33, Channel34, Channel35,Channel36, Channel37,
Channel38, Channel39, Channel40,Channel41, Channel42, Channel43,
Channel44, Channel45,Channel46, Channel47, Channel48, Channel49,
Channel50
BEHAVIOUR

combinedScalabilityTest [
Channel1, Channel2, Channel3, Channel4, Channel5, Channel6,
Channel7, Channel8, Channel9, Channel10,Channel11, Channel12,
Channel13, Channel14, Channel15, Channel16, Channel17, Channel18,
Channel19, Channel20, Channel21, Channel22, Channel23, Channel24,
Channel25, Channel26, Channel27, Channel28, Channel29, Channel30,
Channel31, Channel32, Channel33, Channel34,Channel35, Channel36,
Channel37, Channel38,Channel39, Channel40,Channel41, Channel42,
Channel43, Channel44, Channel45, Channel46, Channel47, Channel48,
Channel49, Channel50
] ()

ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 73

A.5 Resource Utilization Test

MODELDEF ResourceUtilizationTest ::=
CHAN IN
CHAN OUT Channel1, Channel2, Channel3, Channel4, Channel5,
Channel6, Channel7, Channel8, Channel9,ChannelInt1,
ChannelInt2, ChannelInt3, Channel10Ints,Channel10Ints_b
BEHAVIOUR

(
-- Testing simple sequence performance across multiple channels

sequence [Channel1] ()
|||

sequence [Channel2] ()
|||

sequence [Channel3] ()
|||

sequence [Channel4] ()
|||

sequence [Channel5] ()
|||

sequence [Channel6] ()
|||

sequence [Channel7] ()
|||

sequence [Channel8] ()
|||

sequence [Channel9] ()
)

|[Channel1, Channel2, Channel3, Channel4, Channel5, Channel6,
Channel7, Channel8, Channel9]|

(
-- Synchronized processes for resource-intensive tasks
synchronizedN [Channel1] (5)

|||
synchronizedN [Channel2] (5)

|||
synchronizedN [Channel3] (5)

|||
synchronizedN [Channel4] (5)

|||
synchronizedN [Channel5] (5)

|||

APPENDIX A. TORXAKIS MODEL CODE LISTING 74

synchronizedN [Channel6] (5)
|||

synchronizedN [Channel7] (5)
|||

synchronizedN [Channel8] (5)
|||

synchronizedN [Channel9] (5)
)

|[ChannelInt1, ChannelInt2, ChannelInt3]|
(

-- Testing parallel data handling
parallelDataN [ChannelInt1] (10)

|||
parallelDataN [ChannelInt2] (10)

|||
parallelDataN [ChannelInt3] (10)

)
|[Channel10Ints, Channel10Ints_b]|

(
-- Complex data handling tests
sequence10Ints [Channel10Ints] ()

|||
sequence10Ints_b [Channel10Ints_b] ()

)
|[Channel1, Channel2, Channel3, Channel4, Channel5, Channel6,
Channel7, Channel8, Channel9, ChannelInt1, ChannelInt2,
ChannelInt3, Channel10Ints, Channel10Ints_b]|

(
-- Combined nested, parallel, and synchronized tasks
for maximum resource utilization

synchronizedSequences [Channel1] ()
|||

synchronizedSequences [Channel2] ()
|||

synchronizedSequences [Channel3] ()
|||

synchronizedSequences [Channel4] ()
|||

synchronizedSequences [Channel5] ()
|||

synchronizedSequences [Channel6] ()
|||

APPENDIX A. TORXAKIS MODEL CODE LISTING 75

synchronizedSequences [Channel7] ()
|||

synchronizedSequences [Channel8] ()
|||

synchronizedSequences [Channel9] ()
)

ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 76

A.6 Model Verification Test

-- ---
-- 1. Liveness Verification: Ensure that the system progresses
without stalling.
-- ---
-- This test verifies that the sequence continues without getting
stuck.
PROCDEF verifyLiveness [Channel] () ::=

Channel >-> verifyLiveness [Channel] ()
-- Ensure the sequence keeps progressing.

ENDDEF

MODELDEF SpecVerifyLiveness ::=
CHAN IN
CHAN OUT Channel1
BEHAVIOUR

verifyLiveness [Channel1] ()
ENDDEF

-- ---
-- 2. Deadlock Freedom: Ensure that the system does not deadlock.
-- ---
-- This test verifies that the system cannot get stuck
in a deadlock situation.
PROCDEF verifyNoDeadlock [Channel1, Channel2] () ::=

(Channel1 >-> EXIT) -- Simple behavior for Channel1
|||
(Channel2 >-> EXIT) -- Simple behavior for Channel2

ENDDEF

MODELDEF SpecVerifyNoDeadlock ::=
CHAN IN
CHAN OUT Channel1, Channel2
BEHAVIOUR

verifyNoDeadlock [Channel1, Channel2] ()
-- Ensure no deadlock occurs.

ENDDEF

-- ---
-- 3. Synchronization Verification: Ensure processes synchronize
correctly.

APPENDIX A. TORXAKIS MODEL CODE LISTING 77

-- ---
-- This test ensures that two processes synchronize correctly on
shared channels.
PROCDEF verifySynchronization [Channel1, Channel2] () ::=

Channel1 >-> (Channel2 >-> verifySynchronization [Channel1,
Channel2] ())
|[Channel1, Channel2]|
(Channel2 >-> Channel1 >-> verifySynchronization [Channel1,
Channel2] ())

ENDDEF

MODELDEF SpecVerifySynchronization ::=
CHAN IN
CHAN OUT Channel1, Channel2
BEHAVIOUR

verifySynchronization [Channel1, Channel2] ()
-- Verify synchronization between two channels.

ENDDEF

-- ---
-- 4. Data Integrity Verification: Ensure valid data flows through
channels.
-- ---
-- This test verifies that data sent through channels follows the
specified rules.
PROCDEF verifyDataIntegrity [Channel :: Int] () ::=

Channel ? x >-> verifyDataIntegrity [Channel] ()
-- Ensure that the data follows the integrity constraints.

ENDDEF

MODELDEF SpecVerifyDataIntegrity ::=
CHAN IN
CHAN OUT ChannelInt1
BEHAVIOUR

verifyDataIntegrity [ChannelInt1] ()
-- Verify that data follows the integrity rules.

ENDDEF

-- ---
-- 5. Correct Handling of Choices: Verify choice behavior.

APPENDIX A. TORXAKIS MODEL CODE LISTING 78

-- ---
-- This test ensures that the model correctly handles multiple choices.
PROCDEF verifyChoiceHandling [Channel1, Channel2] () ::=

Channel1 >-> verifyChoiceHandling [Channel1, Channel2] ()
##
Channel2 >-> verifyChoiceHandling [Channel1, Channel2] ()

ENDDEF

MODELDEF SpecVerifyChoiceHandling ::=
CHAN IN
CHAN OUT Channel1, Channel2
BEHAVIOUR

verifyChoiceHandling [Channel1, Channel2] ()
-- Verify that choices are handled correctly.

ENDDEF

-- ---
-- 6. Concurrency Verification: Ensure concurrent processes operate
correctly.
-- ---
-- This test verifies that multiple processes can run concurrently
without interference.
PROCDEF verifyConcurrency [Channel1, Channel2] () ::=

Channel1 >-> EXIT
|||
Channel2 >-> EXIT

ENDDEF

MODELDEF SpecVerifyConcurrency ::=
CHAN IN
CHAN OUT Channel1, Channel2
BEHAVIOUR

verifyConcurrency [Channel1, Channel2] ()
-- Verify correct operation of concurrent processes.

ENDDEF

-- ---
-- 7. Extended Synchronization Test: Verifies synchronization of
multiple processes.
-- ---
-- This test ensures that multiple processes can synchronize
on shared channels.

APPENDIX A. TORXAKIS MODEL CODE LISTING 79

PROCDEF verifyMultiProcessSync [Channel1, Channel2, Channel3] () ::=
Channel1 >-> (Channel2 >-> Channel3 >-> EXIT)
|[Channel1, Channel2, Channel3]|
Channel2 >-> (Channel3 >-> Channel1 >-> EXIT)

ENDDEF

MODELDEF SpecVerifyMultiProcessSync ::=
CHAN IN
CHAN OUT Channel1, Channel2, Channel3
BEHAVIOUR

verifyMultiProcessSync [Channel1, Channel2, Channel3] () -
- Verify multi-process synchronization.

ENDDEF

-- ---
-- 8. Nested Synchronization Verification: Ensure correct nested
synchronization.
-- ---
-- This test ensures that nested synchronized processes behave as
expected.
PROCDEF verifyNestedSync [Channel1, Channel2] () ::=

(Channel1 >-> EXIT)
|[Channel1]|
(Channel2 >-> EXIT)

ENDDEF

MODELDEF SpecVerifyNestedSync ::=
CHAN IN
CHAN OUT Channel1, Channel2
BEHAVIOUR

verifyNestedSync [Channel1, Channel2] ()
-- Verify nested synchronization between two channels.

ENDDEF

-- ---
-- Deadlock Inducing Test
-- ---

PROCDEF induceDeadlock [Channel1, Channel2] () ::=
-- Channel1 waits for an event but will never receive it,
as Channel2 is blocked

(Channel1 >-> EXIT)

APPENDIX A. TORXAKIS MODEL CODE LISTING 80

|||
-- Channel2 waits for an event but will never receive it,
as Channel1 is blocked
(Channel2 >-> Channel1 >-> EXIT)

ENDDEF

MODELDEF SpecInduceDeadlock ::=
CHAN IN
CHAN OUT Channel1, Channel2
BEHAVIOUR

induceDeadlock [Channel1, Channel2] ()
-- This will induce a deadlock.

ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 81

A.7 Integration Test

The Integration Test uses several custom MODELDEF and PROCDEF constructs to
simulate real-world scenarios where components interact in potentially error-prone
ways. Each aspect of the test is designed to address specific integration challenges.

Deadlock Scenario: A synchronized process (synchronizedN) expects three sig-
nals to synchronize but is intentionally provided with only one active process. This
creates a potential deadlock due to unfulfilled synchronization requirements. If
a process waits indefinitely for a message on ‘Channel1‘, but that message never
arrives due to a synchronization issue with ‘synchronizedN‘. For example, if ‘syn-
chronizedN‘ expects three processes to synchronize, but only two are active, it
could cause the system to deadlock, as it waits for a third signal that will never
come. During execution one synchronizing process is disabled to observe whether
the system deadlocks as it waits indefinitely for missing signals.

Race Condition Scenario: Suppose both ‘Channel2‘ and ‘Channel3‘ are used in
a ‘choice‘ process, where the path depends on which channel receives data first.
If multiple instances of ‘parallelN‘ interact with these channels without enforced
order, it could lead to unpredictable outcomes, especially if ‘parallelN‘ executes
more quickly than anticipated.

During execution we increase the number of parallel processes and observe
interleaving of actions on shared channels to identify non-deterministic outcomes
For example, we can increase the number of parallel processes interacting with
‘Channel2‘ and ‘Channel3‘ in a way that would create contention and observe if
outcomes vary across test runs, indicating non-deterministic behavior.

Incorrect Message Passing: Setup: If ‘Channel4‘ and ‘Channel5‘ expect specific
data types but receive different ones due to mismatched message formats between
processes, the test could detect this fault. For example, if ‘sequence‘ on ‘Channel1‘
expects integers but ‘choice‘ on ‘Channel2‘ sends strings, the process will not be
able to proceed.

‘Channel4‘ is defined to expect integers (‘Int‘) while ‘Channel5‘ is defined to ex-
pect booleans (‘Bool‘). ‘processF‘ sends an integer on ‘Channel4‘, matching the ex-
pected type. ‘processG‘ sends a boolean on ‘Channel5‘, also matching the expected
type. In the meantime ‘incorrectProcess‘ tries to send a string (‘"incorrectmessage"‘)
on ‘Channel4‘, which expects an integer. This deliberate mismatch should trigger a
type error. Similarly, ‘incorrectProcess2‘ tries to send an integer (‘0‘) on ‘Channel5‘,
which expects a boolean. This is another deliberate mismatch. We then deliber-
ately configure one process to send an incompatible data type through ‘Channel4‘
or ‘Channel5‘ to see if the test identifies the mismatch.

APPENDIX A. TORXAKIS MODEL CODE LISTING 82

To simulate an Incorrect Message Passing scenario, we can deliberately set up
mismatched data types for ‘Channel4‘ and ‘Channel5‘. In this example, we’ll con-
figure ‘Channel4‘ to expect integers, but one of the processes will attempt to send
a string on this channel, creating a data type mismatch. Similarly, for ‘Channel5‘,
we’ll set up an expected data type and introduce a mismatch.

Branching Errors: A choice process responds to inputs on Channel2 and Chan-
nel3. Valid inputs transition to successBranch, while invalid inputs transition to
errorBranch. If the ‘choice‘ process does not respond correctly to inputs from
‘Channel2‘ or ‘Channel3‘, it might take the wrong path or fail to respond, leading
to a branching error. For example, if ‘choice‘ is meant to respond only to certain
signals but incorrectly takes an alternative path, it would indicate a fault.

During execution we set up test cases where ‘choice‘ receives inputs that should
lead to each possible branch, verifying that it responds correctly each time. In-
troducing unexpected inputs can also reveal if the process mishandles such cases.
We then send valid and invalid inputs on Channel2 and Channel3 in parallel and
observe transitions to successBranch or errorBranch.

Here is the complete model definition:

MODELDEF IntegrationTestDeadlockScenario ::=
CHAN IN Channel1, Channel2, Channel3
CHAN OUT Channel4, Channel5
BEHAVIOUR

(
-- Test the integration of sequence with choice
sequence [Channel1] ()

|||
choice [Channel2, Channel3] ()

|||
-- Synchronized process expecting three signals but now only one
process will participate in synchronization

synchronizedN [Channel1] (3)
)
|[Channel1, Channel2, Channel3]|
(

sequence [Channel1] ()
)
|[Channel1, Channel4, Channel5]|
(

-- Only one process is now synchronizing on Channel1, instead of
the expected three

parallelN [Channel4] (2)

APPENDIX A. TORXAKIS MODEL CODE LISTING 83

)
ENDDEF

MODELDEF ComplexRaceConditionTest ::=
CHAN IN Channel1, Channel2, Channel3, Channel4, Channel5
CHAN OUT
BEHAVIOUR

(
processA [Channel1] ()

|||
processB [Channel2] ()

|||
processC [Channel3] ()

|||
processD [Channel4] ()

|||
processE [Channel5] ()

)
ENDDEF

-- Process A: Continuously activates Channel1
PROCDEF processA [Channel1] () ::=

Channel1 >-> processA [Channel1] ()
ENDDEF

-- Process B: Continuously activates Channel2
PROCDEF processB [Channel2] () ::=

Channel2 >-> processB [Channel2] ()
ENDDEF

-- Process C: Continuously activates Channel3
PROCDEF processC [Channel3] () ::=

Channel3 >-> processC [Channel3] ()
ENDDEF

-- Process D: Continuously activates Channel4
PROCDEF processD [Channel4] () ::=

Channel4 >-> processD [Channel4] ()
ENDDEF

-- Process E: Continuously activates Channel5
PROCDEF processE [Channel5] () ::=

Channel5 >-> processE [Channel5] ()

APPENDIX A. TORXAKIS MODEL CODE LISTING 84

ENDDEF

CHANDEF Channels ::=
Channel1 :: Int;
Channel2 :: Int;
Channel3 :: Int;
Channel4 :: Int;
Channel5 :: Bool;

ENDDEF

MODELDEF IncorrectMessagePassingTest ::=
CHAN IN Channel1, Channel2, Channel3, Channel4, Channel5
CHAN OUT
BEHAVIOUR

(
-- Process A sending an integer on Channel4 as expected
processF [Channel4] ()

|||
-- Process B trying to send a string on Channel4,
causing a type mismatch
incorrectProcess [Channel4] ()

|||
-- Process C sending a boolean on Channel5 as expected
processG [Channel5] ()

|||
-- Process D trying to send an integer on Channel5,
causing a type mismatch
incorrectProcess2 [Channel5] ()

)
ENDDEF

-- Process F: Correctly sends an integer on Channel4
PROCDEF processF [Channel4] () ::=

Channel4 ! (1) >-> processF [Channel4] ()
ENDDEF

-- Incorrect Process B: Tries to send a string on Channel4,
causing a type mismatch
PROCDEF incorrectProcess [Channel4] () ::=

Channel4 ! ("incorrect_message") >-> incorrectProcess [Channel4]()
ENDDEF

-- Process G: Correctly sends a boolean on Channel5

APPENDIX A. TORXAKIS MODEL CODE LISTING 85

PROCDEF processG [Channel5] () ::=
Channel5 ! (True) >-> processG [Channel5] ()

ENDDEF

-- Incorrect Process D: Tries to send an integer on Channel5,
causing a type mismatch
PROCDEF incorrectProcess2 [Channel5] () ::=

Channel5 ! (0) >-> incorrectProcess2 [Channel5] ()
ENDDEF

CHANDEF Channels ::=
Channel1 :: Int; -- Output channel
Channel2 :: Int; -- Input channel
Channel3 :: Int; -- Input channel

ENDDEF

MODELDEF BranchingErrorTest ::=
CHAN IN Channel2, Channel3
CHAN OUT Channel1
BEHAVIOUR

(
choiceProcess [Channel1, Channel2, Channel3] ()

|||
sendExpectedValueChannel2 [Channel2] ()

|||
sendUnexpectedValueChannel3 [Channel3] ()

)
ENDDEF

PROCDEF choiceProcess [Channel1, Channel2, Channel3 :: Int]()::=
(

Channel2 ? x [[x == 5]] >-> successBranch [Channel1, Channel2,
Channel3] ()

##
Channel3 ? y [[y == 10]] >-> successBranch [Channel1, Channel2,
Channel3] ()

##
Channel2 ? x >-> errorBranch [Channel1] ()

##
Channel3 ? y >-> errorBranch [Channel1] ()

)
ENDDEF

APPENDIX A. TORXAKIS MODEL CODE LISTING 86

PROCDEF successBranch [Channel1, Channel2, Channel3 :: Int]()::=
Channel1 ! (1) >-> choiceProcess [Channel1, Channel2,
Channel3] ()

ENDDEF

PROCDEF errorBranch [Channel1 :: Int] () ::=
Channel1 ! (99) >-> errorBranch [Channel1] ()

ENDDEF

PROCDEF sendExpectedValueChannel2 [Channel2 :: Int] () ::=
Channel2 ! (5) >-> sendExpectedValueChannel2 [Channel2] ()

ENDDEF

PROCDEF sendUnexpectedValueChannel3 [Channel3 :: Int] () ::=
Channel3 ! (99) >-> sendUnexpectedValueChannel3 [Channel3] ()

ENDDEF

	Introduction
	Toward a Formal Verification of TorXakis

	Previous Work
	Formal Models
	Input-Output Conformance (ioco) Theory
	Related Work and Current State of Research
	Performance Evaluation Tests in TorXakis
	Additional Empirical Tests for Evaluating TorXakis's Conformance to ioco

	Performance Testing and System Analysis
	Maximum Concurrency Stress Test
	Deadlock Injection and Detection Evaluation
	Real-World Scenario Coverage
	Test Outcome

	Fault Tolerance Test
	Test Outcomes

	Scalability Test
	Test Outcomes

	Resource Utilization Test
	Test Outcomes

	Model Verification Test
	Test Outcomes

	Integration Test
	Test Outcomes

	On Further Expanding the TorXakis Test Suite
	Real-time Performance Test
	Challenges in Real-Time Testing with TorXakis
	Implications of TorXakis's Limitations

	User Experience Test
	Challenges Identified
	Recommendations

	Model Maintainability Test
	Challenges Identified
	Recommendations

	Security Test
	Findings and Challenges
	Recommendations

	Conclusion and Future Work
	Some Answers to Our Research Question
	Future Work and Practical Recommendations
	Recommendations for Researchers and Practitioners

	Bibliography
	TorXakis Model Code Listing
	Maximum Concurrency Stress Test
	Deadlock Injection and Detection Evaluation
	Fault Tolerance Test
	Scalability Test
	Resource Utilization Test
	Model Verification Test
	Integration Test

