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Abstract

Parallel communicating grammar systems (PCGS) were introduced awhile ago purport-
edly to analyze concurrent systems on a language-theoretic level. To our knowledge how-
ever no actual relationship between PCGS and practical computing systems was ever inves-
tigated. We believe that PGCS with context-free components (CF-PCGS) have high practical
potential, especially in the area of formal methods, so we start to bring CF-PCGS to a more
practical level by studying a construct that has proven useful elsewhere: the parse tree. We
can attach a parse forest (and then tree) to any CF-PCGS derivation in a natural way. How-
ever, the other way around (finding a derivation for each parse forest) holds only for one,
very restrictive variant of CF-PCGS. Overall beside providing a convenient tool to be used
in conjunction with CF-PCGS, this work strongly suggests the aforementioned PCGS vari-
ant as the most promising model for practical applications in general and for grammatical
approaches to formal verification of concurrent, recursive systems in particular.

Keywords: parallel communicating grammar systems, context-free grammars, parse trees,
concurrency

1 Introduction

Parallel Communicating Grammar Systems (PCGS) have been introduced as a language-
theoretic treatment of concurrent (or more general, multi-agent) systems [5, 13]. A PCGS con-
sists of several component grammars that work in parallel on separate strings. The components
also communicate with each other: One component grammar may request strings generated
by others, and several components may make queries at the same time. Because of the syn-
chronization and communication facilities, PCGS whose components are of a certain type are
generally more powerful than a single grammar of the same type [4–6, 13, 14].

Our overall research interest is the formal specification and verification of recursive, con-
current systems. We thus focus in particular on PCGS whose components are context-free
grammars (context-free PCGS or just CF-PCGS for short), for indeed context-free grammars
(or equivalently pushdown automata) model naturally the control flow of sequential compu-
tation in typical programming languages with nested, and potentially recursive invocations of
program modules such as procedures and methods. Many non-regular properties are there-
fore required for software verification. We need to specify and verify properties such as “if p

∗This research was supported by the Natural Sciences and Engineering Research Council of Canada. Part of this
research was also supported by Bishop’s University.



(c
) 
De
pa
rt
m
en
t 
of
 C
om
pu
te
r S
ci
en
ce
, B
ish
op
’s
 U
ni
ve
rs
ity

ht
tp
:/
/c
s.
ub
ish
op
s.
ca
/r
es
ea
rc
h

TR 2013-001: Parse Trees and Unique Queries in CF-PCGS S. D. Bruda, M. S. R. Wilkin

holds when a module is invoked, the module must return, and q must hold upon return” [1].
Non-regular properties however generate an infinite state space, which cannot be handled by
finite-state process algebrae or by standard verification techniques such as model checking.
Context-free process algebrae such as basic process algebra or BPA [2] can specify such context-
free properties. Still, most of the software use many parallel components (such as multiple
threads). In addition, many conformance-testing techniques (such as may/must testing [7])
use test cases that run in parallel with the process under test. Concurrency is therefore required
for software verification, but cannot be provided by simple context-free process algebrae since
context-free languages are not closed under intersection [12].

On the automata side the class of multi-stack visibly pushdown languages (MVPL) has been
introduced to address such a need [3,11]; no equivalent mechanism is known on the grammat-
ical (and thus process-algebraic) side. In addition, permitting concurrency in a compositional
manner is done in MVPL using constructs that do not seem to be naturally portable to the
grammatical (or process-algebraic) side.

For all these reasons PCGS with context-free components appear particularly useful as the
basis of process algebrae suitable for specifying recursive, concurrent systems such as complex
application software. Indeed, the context-free components are an excellent model of recursive
subsystems, while the communication between these components (which is done in a “remote
procedure call”-like fashion) seems particularly suitable for putting these subsystems together.

The motivation of PCGS is claimed to be the study of concurrent systems. Relatively re-
cently some (strenuous) links with practice have beet attempted [10], but overall virtually
no work has been performed on actually linking PCGS with any practical field. PCGS with
context-free components in particular (which we believe to have the most practical utility) were
ignored almost completely. Instead, PCGS have been studied relatively extensively (though
not completely) with respect to theoretical properties such as generative power and then their
study has largely stalled.

One of the most important constructs in the realm of context-free languages are the parse
trees. They offer straightforward proofs of important results such as the pumping theorem, and
they are also extremely useful in practice; indeed, they form the basis of compiler functionality,
for compilers spend a huge amount of time constructing and then traversing such trees. We
believe that parse trees can have similar importance for PCGS with context-free components.
We therefore introduce the concept of parse trees for context-free PCGS (Section 3) as a natural
extension of context-free parse trees, showing that any context-free PCGS derivation has an
associated parse tree. We actually start with the introduction of a parse forest rather than a
single tree, but we find out that the whole forest is not more descriptive than a single tree so
we are able to revert to the original concept of parse tree without loss of information.

Going the other way around and offering a full characterization of context-free PCGS
derivations using parse trees turns out to depend on a particular notion of “interference” (Sec-
tion 4): full characterization is only possible for systems in which such an interference is not
present. Such a property thus only holds for one very restricted context-free PCGS variant (Sec-
tion 5) which will turn out to be called unsynchronized, returning, unique-query context-free
PCGS. Only for such a variant parse trees offer a complete characterization of derivations. One
consequence of the existence of such a characterization is in the realm of generative power,
namely that this variant of context-free PCGS is the weakest of them all (Section 6).

Beside offering a powerful tool for the study of context-free PCGS, our result is also useful
in a more abstract way in our quest toward grammatical approaches to formal verification of
concurrent and recursive systems. Indeed, our result suggests that synchronized context-free
PCGS are unnecessarily powerful for our purpose. It would appear that the unsynchronized
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variant has all the ingredients needed for modelling such systems and at the same time it is less
complex. A less complex formalism implies that the associated algorithms have a lower com-
plexity and all the other constructs (such as automata and temporal logic) are simpler and so
easier to analyze and use. All of these are obvious advantages in the realm of formal methods.
In addition, some sub-family of unsynchronized context-free PCGS can even make full use of
tools (such as the parse trees) that are of reduced utility for the other variants.

2 Preliminaries

For some alphabet (i.e., finite set) V, some word x ∈ V∗, and a set U ⊆ V, |x|U denotes the
number of occurrences of elements of U in x. By abuse of notation we write |x|a instead of
|x|{a} for singleton sets U = {a}. The empty string (and only the empty string) is denoted by ε.

2.1 Context-Free Grammars

A (formal) grammar [12] is a tuple G = (N,Σ, R, S), with N and Σ the set of nonterminals and
terminals, respectively, S∈ N the axiom (or start symbol), and R⊆ ((N ∪Σ)∗N(N∪Σ)∗)× (N∪
Σ)∗ the set of rewriting rules (often just rules for short). A rewriting rule (σ ,σ ′) is customarily
written σ → σ ′. A rewriting step replaces the string w = uσv with w′ = uσ ′v whenever σ →
σ ′ ∈ R (written w ⇒G w′). A grammar G generates the language L(G) of exactly all the strings
that can be derived from the axiom S, i.e., L(G) = {w ∈ Σ∗ : S ⇒∗

G w}, where ⇒∗
G is the reflexive

and transitive closure of ⇒G (we often omit the subscript whenever the grammar is understood
from the context) and is called a derivation. A context-free grammar in particular is a grammar
with R ⊆ N × (N ∪ Σ)∗.

Definition 1. A parse tree for a context-free grammar G = (N,Σ, R, S) is a tree whose nodes are
labelled with symbols from the set N ∪ Σ. It is defined inductively as follows (based on Figure 1(a–d)):
For every a ∈ N ∪ Σ the tree depicted in Figure 1(a) is a parse tree with yield a; for every A → ε ∈ R
the tree from Figure 1(b) is a parse tree with yield ε. Suppose that the n trees from Figure 1(c) are parse
trees with yields y1, y2, . . . , yn and that A → A1 A2 . . . An ∈ R; then the tree shown in Figure 1(d) is a
parse tree with yield y1 y2 . . . yn [12].

Note that the yield of a parse tree is the sequence of leaf labels as obtained by an inorder
traversal of the tree. For every parse tree with root A and yield y there exists a derivation
A ⇒∗ y (and the other way around) in a natural way [12].

2.2 Parallel Communicating Grammar Systems

A PCGS with n components, n ≥ 1 [5] is a (n + 3)-tuple Γ = (N, K,Σ, G1, . . . , Gn) where N is
the set of nonterminals, Σ is the set of terminals, K = {Q1, Q2, . . . , Qn} (the sets N, K and Σ are
mutually disjoint) and Gi = (N ∪ K,Σ, Ri, Si), 1 ≤ i ≤ n, are grammars.

The grammars Gi, 1 ≤ i ≤ n, are the components of the system and the elements of K are
called query symbols; their indices points to G1, . . . , Gn respectively.

The derivation in a PCGS is defined as follows: Given a PCGS Γ = (N, K,Σ, G1, . . . , Gn),
(x1, x2, . . . , xn) ⇒Γ (y1, y2, . . . , yn), xi, yi ∈ (N ∪ K ∪ Σ)∗, 1 ≤ i ≤ n, iff one of the following cases
holds:

1. |xi|K = 0, 1 ≤ i ≤ n, and for all 1 ≤ i ≤ n, we have xi ⇒Gi
yi, or [xi ∈ Σ∗ and] xi = yi.

3
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2. |xi|K > 0 for some 1 ≤ i ≤ n; for each such i let xi = z1Qi1
z2Qi2

. . . ztQit
zt+1, with t ≥ 1,

z j ∈ (N ∪ K ∪ Σ)∗, and
∣

∣z j

∣

∣

K
= 0. Then yi = z1xi1

z2xi2
. . . ztxit

zt+1 [and yi j
= Si j

, 1 ≤ j ≤ t]

whenever
∣

∣

∣

xi j

∣

∣

∣

K
= 0, 1 ≤ j ≤ t. If on the other hand

∣

∣

∣

xi j

∣

∣

∣

K
6= 0 for some 1 ≤ j ≤ t, then

yi = xi. For all i, 1 ≤ i ≤ n, for which yi was not specified above we have yi = xi.

The first case is called a component-wise derivation step and the second a communica-
tion step. Note that communication has priority over component-wise derivation. The query
symbol to which a string has been communicated is called satisfied. A tuple (x1, x2, . . . , xn) ∈
((N ∪ K ∪ Σ)∗)n as above is called a configuration of the system. We call xi a component of the
configuration or only a component if the reference to the configuration is understood from the
context. Rules Q j →α are never used so we can assume that no such rules are present.

The derivation in a PCGS is blocked if no component-wise derivation can be applied to a
nonterminal symbol in some component, or circular queries appear. The latter happens when
Gi1

introduces Qi2
, Gi2

introduces Qi3
, . . . , Gik−1

introduces Qik
and Gik

introduces Qi1
; in such a

case no rewriting step is possible (as communication has priority), but no communication steps
are possible either.

With ⇒∗
Γ denoting as usual the reflexive and transitive closure of ⇒Γ , the language gener-

ated by a PCGS Γ is L(Γ) = {w ∈ Σ∗ : (S1, S2, . . . , Sn) ⇒∗
Γ (w,σ2, . . . ,σn),σi ∈ (N ∪ K ∪ Σ)∗, 2 ≤

i ≤ n} (again as usual we omit the subscript Γ whenever no ambiguity is introduced by such an
omission). The derivation starts from the tuple of axioms (S1, S2, . . . , Sn). A number of rewrit-
ing and/or communication steps are performed until G1 produces a terminal string (we do not
restrict the form of, or indeed care about the rest of the components of the final configuration).

Several variants of PCGS can be defined. If a component-wise derivation requires that any
component containing non-terminals be rewritten (i.e., the bracketed phrase “[xi ∈ Σ∗ and]” is
present in the first case above) then the system is synchronized (note however that any compo-
nent that is already a string of terminals will not be rewritten under any circumstance). Other-
wise we have an unsynchronized system, that allows components to either perform derivations
or stay put. A PCGS is called returning (to the axiom) if, after communication, a component
which has communicated a string resumes the work from its axiom as described by the phrase
“[and yi j

= Si j
, 1 ≤ j ≤ t]” in the second case above. A PCGS is called non-returning if com-

ponents continue working using the current string after a query (i.e., the bracketed sentence
above is erased from the definition).

3 PCGS Parse Trees (and Meta-Trees)

The notion of parse trees can be naturally extended to PCGS with context-free components
(just PCGS henceforth, with the understanding that all grammars from now on are context-free
unless otherwise stated). In fact we use almost the same construction as in Definition 1, though
we also need to account for communication between components. We also need to keep track
of which portion of which tree has been generated by which component gramar.

Definition 2. PCGS PARSE TREES: Let Γ = (N, K,Σ, G1, . . . , Gn) be a PCGS with context-free com-
ponents.

A parse tree for some component Gi = (N ∪ K,Σ, Ri, Si), 1 ≤ i ≤ n, of Γ is defined inductively as
follows: For every a ∈ N ∪ K ∪ Σ the tree depicted in Figure 1(a) is a parse tree with yield a; for every
A → ε ∈ Ri the tree depicted in Figure 1(b) is a parse tree with yield ε. Suppose that the n trees from
Figure 1(c) are parse trees with yields y1, y2, . . . , yn and that A → A1A2 . . . An ∈ Ri; then the tree

4
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a
n1 A2 ...T1 T2 Tn

AA S j

T

(a) (c) (e)

A
ε

A

1 A2 ...T1 T2 Tn

AnA

j

S

T

Q

j

(b) (d) ( f )

Figure 1: Parse trees for context-free grammars as well as PCGS (a, b, c, d); supplementary parse
trees for context-free PCGS (e, f ).

shown in Figure 1(d) is a right parse tree with yield y1 y2 . . . yn. If the tree depicted in Figure 1(e) is a
parse tree of G j, then the tree from Figure 1( f ) is a parse tree for Gi, 1 ≤ i, j ≤ n, i 6= j.

The yield of a parse tree continues to be the sequence of leaf labels as obtained by an inorder traversal
of that parse tree.

Note that parse trees are identified as belonging to a specific component Gi in the PCGS.
They are therefore constructed using only rewriting rules from that component, until a query
node Q j is generated. When this happens, the sub-tree rooted at the subsequent S j is only
allowed to use rewriting rules from G j, and so on.

Similar with the context-free case, we can create parse trees that correspond to derivations in
a PCGS. However now we have n components so logically we should construct simultaneously
n parse trees; the n parse trees are collectively referred to as a parse forest.

Definition 3. PCGS PARSE FOREST: A parse forest for Γ is an n-tuple T = (T1, T2, . . . , Tn), with Ti

a parse tree for Gi as in Definition 2, ≤ i ≤ n. The first component T1 of a parse forest T is called the
master parse tree (of T ).

As it turns out Definition 3 will only have a temporary role, as we will eventually show that
the master parse tree alone is enough to characterize a PCGS derivation. For the time being the
following establishes the usefulness of parse forests.

Lemma 1. Every derivation resulting in a configuration (x1, x2, . . . , xn) in a PCGS with context-free
components has an equivalent parse forest; the yields of the parse trees in that forest are x1, x2, . . . , xn,
respectively

Proof. Let Γ= (N, K,Σ, G1, . . . , Gn) be a context-free PCGS with Gi = (N ∪ K,Σ, Ri, Si), 1 ≤ i ≤ n.
We construct the trees in the parse forest simultaneously in a natural way as follows:

1. All the n trees are initialized as single nodes labelled Si, 1 ≤ i ≤ n, respectively.

2. If no leaf node labelled with a query symbol exists in any of the n parse trees, then each
component i chooses a leaf labelled with a nonterminal A such that A → w1w2 . . . wk ∈ Ri,
w j ∈ N ∪ K ∪ Σ. The respective (former) leaf gains k children labelled w1, w2, . . . , wk (or
just one child labelled ε whenever k = 0).

If Γ is synchronized then every component must perform such an expansion as long as a
nonterminal leaf is present in its parse tree; otherwise, a component can either perform

5
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the expansion or leave its parse tree unchanged. In all cases, if there is no leaf labelled by
a nonterminal in the parse tree for some component, then that component does not alter
its parse tree.

3. If at least one component has a leaf node labelled with a query symbol, then the following
process takes place for as long as such leaf nodes are present: A leaf labelled with a
query symbol (say, Q j) in some component (say, i) is chosen, such that the parse tree for
component j has no leafs labelled with query symbols. The leaf labelled with Q j gains
one child labelled S j which is the root of a copy of the current parse tree of component j.

If Γ is returning, then the parse tree for component j is reset to a single node labelled S j;
otherwise the parse tree for component j remains unchanged.

Showing that given a derivation such a construction exists proceeds as follows: We consider
the component strings xi, 1 ≤ i ≤ n, as they are rewritten, together with the corresponding parse
trees Ti, 1 ≤ i ≤ n, in the forest as they are constructed during the same derivation. We proceed
by induction over the number m of derivation steps performed.

For m = 0 the component strings are all initialized with the respective axioms, while the
parse trees have all one (root) node labelled with the axiom; their yields are obviously identical
with the component strings.

The component strings at step m are then rewritten to obtain the component strings at step
m + 1 as follows:

Suppose that no component string contains query symbols, so we have a component-wise
derivation step. By inductive assumption it follows that there is no leaf labelled with a query
symbol in any of the corresponding parse trees. The rewriting that takes place in xi picks a
nonterminal A (such that xi = x′i Ax′′i ) to be rewritten using a rule A → α1α2 . . .αk ∈ Ri, with
αi ∈ N ∪ Σ ∪ K, 1 ≤ i ≤ k. Then A is replaced in the string by α1α2 . . .αk (such that xi becomes
x′iα1α2 . . .αkx′′i ). By definition the corresponding node A in Ti gains k children labelled α1, α2,
. . . , αk. The yield of Ti was x′i Ax′′i (by inductive assumption) and is changed as follows: it
contains x′i (since nothing changes to the left of the node labelled A), followed byα1α2 . . .αk (A
disappears from the yield since the node is now internal; its place is taken by the labels of its
children according to the inorder traversal), followed by x′′i (since nothing changes to the right
of the node labelled A), as desired.

Whenever xi contains only terminals (case in which xi does not change), the yield of Ti con-
tains only terminals by inductive assumption, which means that all the leafs of Ti are labelled
with terminals. In such a case no expansion can take place, so the tree remains unchanged,
again as desired.

We note that whether some components can remain unchanged in the current step even if
they can be rewritten depends on whether the system is synchronized or not; the same depen-
dency is specified in the definition for the respective forest.

Suppose now that query symbols are present in some components, so a communication step
takes place. Let component xi contain Q j (so that xi = x′iQ jx

′′
i ); then after the communication

step xi becomes x′ix jx
′′
i . The yield of Ti was by inductive assumption x′iQ jx

′′
i . Now the leaf

labelled Q j becomes internal (so it disappears from the yield). It’s place is taken by the yield
of the subtree now rooted at Q j (by the definition of inorder traversal); this yield is however x j

(indeed, the tree rooted at Q j is a copy of Tj, which has yield x j by inductive assumption) and so
the yield of Ti becomes x′ix jx

′′
i (again by the definition of inorder traversal), as desired. Tj is reset

to the initial form iff x j is reset to the axiom (namely, whenever the system is returning) by the
respective definitions. That circular queries block equally the derivation and the construction

6
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of the parse trees is also immediate from definitions.

In order for parse forests to be useful we must also be able to get a parse forest and recon-
struct some derivation that gave birth to it. It turns out that this is possible. We can actually
do even better and reconstruct the derivation starting solely from the master parse tree of the
forest. In order to do this we will find the following notion of meta-tree useful.

Definition 4. META-TREE: Let Γ = (N, K,Σ, G1, . . . , Gn) be a context-free PCGS and let Tl, ≤ l ≤ n
be a tree in the parse forest of some derivation (S1, S2, . . . , Sn)⇒∗

Γ (x1, x2, . . . , xn).
A meta-node is then a maximal region of Tl which (a) has all the edges produced by applications of

rules from one component Gi of Γ , and (b) is rooted at Si, the axiom of Gi.
The meta-tree µ(Tl) of Tl is a the tree of meta-nodes constructed naturally as follows: The root is

the meta-node rooted at the root of Tl. There exists an edge in µ(Tl) for exactly all the edges (Q j, S j) in
Tl; this edge connects the meta-node that contains Q j (the parent) with the meta-node rooted at S j (the
child).

The yield of µ(T) is defined as being the same as the yield of the underlying parse tree T.

Lemma 2. There exists a meta-tree µ(T) for every parse tree T from any PCGS parse forest. Further-
more µ(T) covers all the nodes from T. The yield of µ(T) is the same as the yield of T.

Proof. Thatµ(T) is a tree is immediate by the definition of a parse tree. Indeed, component-wise
derivations build a meta-node; the introduction of a query symbol is followed immediately by
the connection of that symbol with the respective axiom, which then starts a new meta-node
that becomes the child of the initial meta-node, and so on.

A simple inductive argument over the depth of the nodes in T further shows that µ(T)
covers all the nodes of T. Indeed, the root Sl of T (at depth 1) is evidently the root of a meta-
node (and so inside some meta-node). Then if a node A (at depth d) with children A1, A2, . . . ,
Ak (at depth d + 1) is already in a meta-node rooted at Si, then the rewriting rule that generates
its children must come from Gi by the definition of a PCGS parse tree and so all A1, A2, . . . , Ak

are in the same meta-node. If a query Q j (depth d) is in some meta-node, then its only child
must be S j (again by the definition of a PCGS parse tree), which means that S j (depth d + 1) is
the beginning of a new meta-node (and so belong to some, although different meta-node).

Overall we established a natural bijection µ between every PCGS parse tree and its meta-
tree. In passing, the inductive argument used in the proof of Lemma 2 effectively establish an
algorithm for computing µ.

Now we can show that a valid derivation can be constructed from every master parse tree.

Lemma 3. Given a master parse tree T with yield w for some PCGS Γ , one can reconstruct a derivation
in Γ that produces w, provided that T was constructed based on a valid derivation in Γ .

Proof. Let Γ= (N, K,Σ, G1, . . . , Gn) and let µ(T) be the meta-tree of T. In what follows the length
of a derivation A ⇒ w1 ⇒ w2 ⇒ ·· · ⇒ wm is m. We proceed with our proof using a structural
induction over µ(T).

There are no query symbols in any of the leaves of µ(T), so any derivation consistent with
the respective leaf will do. Such a valid derivation can be obtained out of the meta-node using
the standard technique used for context-free grammars and their parse trees [12]. At least one
such a derivation must exist since the whole tree T comes from a valid derivation in Γ , so
the base case is established. It is worth noting additionally that the length of any derivation
corresponding to a leaf is equal to the number of internal nodes in that leaf (since each of these

7
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internal nodes correspond to the application of one rewriting rule and so with one step in the
derivation).

Consider now the inductive step that is, a meta-node N with κ internal nodes containing
exactly all the query symbols QN1

, QN2
, . . . , QNp (which are all necessarily leafs). Call the sub-

trees rooted at the roots of the children of N N1, N2, . . . , Np, respectively, and let their number
of internal nodes that are not labeled by query symbols be κ1, κ2, . . . ,κp, again respectively.

The proof of this step proceeds more conveniently if split it into one case for Γ being syn-
chronized and another for Γ being unsynchronized.

Synchronized: During the time N is expanded its children are also expanded by the same num-
ber of steps (Γ being synchronized). It follows that the query symbol QNi

must be generated
after precisely κi steps (indeed, this is how many steps are in the derivation that produced its
sub-parse tree). Out of all the possible derivations that generate N we thus choose one deriva-
tion that introduce every QNi

after κi steps. Such a derivation must exist since the whole tree T
was generated by a valid derivation to begin with.

The derivation we thus choose happens in the component given by the root of N. The other
components’ derivations are given by the inductive assumption. Putting all of these together
and then satisfying the p query symbols in the usual way (communication and if applicable
reduction to axiom for the communicated component) we obtain a whole derivation for N as a
parse tree, as desired.

Unsynchronized: We proceed as in the synchronized case, except that now we no longer need
to introduce the query symbols after any precise number of steps. We therefore just choose a
derivation that introduces all the query symbols present in N. We then proceed in the same
manner to construct the complete derivation for the parse tree N.

Note that the algorithm implied by the construction of Lemma 3 has a high time complexity
(since multiple derivations must be tried for most meta-nodes) and can likely be improved. At
this stage however just having an algorithm suffices.

Now we can finally state the main result that establishes the usefulness of parse trees for
PCGS with context-free components. Indeed, we showed that every derivation in a PCGS has
a corresponding parse forest (Lemma 1) and so a corresponding parse tree (the master parse
tree of that forest). Once a master parse tree is given, one derivation that generates it can be
determined (Lemma 3); this essentially makes the rest of the forest unnecessary. Putting these
two points together we have:

Theorem 4. Every derivation in a PCGS Γ with context-free components that produces a string w
(in the sense of the language generated by a PCGS that is, by the first component grammar) has an
equivalent parse tree with yield w. Conversely, given a master parse tree T with yield w that has been
constructed according to a valid derivation in Γ , one can reconstruct a derivation in Γ that produces
w.

We essentially showed that a given derivation in a PCGS is characterized by a single parse
tree. Whether this goes the other way around (that is, whether any parse tree corresponds to a
derivation) has a more complex answer that will be studied in the next couple of sections.

4 Interference and Characterization by Parse Trees

The usefulness of parse trees for context-free grammars is that they characterize exactly all the
derivations in a grammar, meaning that every derivation has an equivalent parse tree but also

8
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every parse tree corresponds to at least one derivation in the grammar. The first property is
already established for PCGS and their parse trees in Theorem 4 above. PCGS parse trees are
a relatively straightforward extension of the concept of (context-free) parse trees, so they have
the potential of having the second property as well.

However tempting (and useful) this might be however we show that this is most of the time
not the case. More precisely, the existence of the second property will turn out to be dependent
on the concept of interference:

Definition 5. CHECKPOINT AND INTERFERENCE: Let Γ = (N, K,Σ, G1, . . . , Gn) be a PCGS. A
checkpoint of component Gi by G j, ≤ i, j ≤ n during some derivation in Γ is either the end of the
derivation or the event of G j querying Gi.

A component G j interferes with another component Gi whenever there exists a checkpoint C of Gi

by G j and a string wi (the interference string) such that (a) Si ⇒
∗
Gi

wi, and (b) wi cannot be produced
by Gi by C in the respective derivation of Γ .

Clearly the components of a PCGS will somehow interfere with each other (else the re-
sulting system will not serve any purpose). Our notion of interference is more restricted and
is meant to only identify those cases in which one component controls another in between
queries. As it turns out, our notion of interference makes the difference for whether parse trees
or forests characterize completely PCGS derivations.

Theorem 5. Every master parse tree with root S1 and yield w of a PCGS Γ corresponds to a (not
necessarily unique) derivation (S1, S2, . . . , Sn) ⇒∗

Γ (w, x2, . . . , xn) for some xi ∈ N ∪ Σ, 2 ≤ i ≤ n iff
there is no interference in Γ .

Proof. Let Γ = (N, K,Σ, G1, . . . , Gn) and let T be some master parse tree with µ(T) its corre-
sponding meta-tree. (Recall that the notion and properties of a meta-tree were introduced in
Definition 4 and Lemma 2.)

We consider first the case in which no interference is present and we proceed by structural
induction over the (structure of) µ(T).

A leaf meta-node rooted at Si, 0 ≤ i ≤ n has no queries anywhere inside it; moreover the
rewriting rules that create the leaf come all from a single component. It is thus equivalent
to some component-wise derivation starting from the axiom Si in the respective component
grammar Gi. In the absence of interference multiple components can create any possible com-
bination of such leafs concurrently, including the ones corresponding to the actual leafs of the
given meta-tree. Indeed we note first that all the components start from their axioms. The fact
that there is no interference in Γ means that the components can reach any combination of indi-
vidual outcomes, including the ones corresponding to the leafs being considered. We can then
simply choose a component-wise derivation in Γ that produces a configuration which includes
the yields of all the leafs, as desired; the base case is established.

Consider now some meta-node rooted at Si, 0 ≤ i ≤ n together with all its children rooted
at Si1

, Si2
, Sik

(and so introduced by the query symbols Qi1
, Qi2

, Qik
, respectively). By the same

argument as above this meta-node corresponds to a component-wise derivation in the respec-
tive component. In the absence of interference the components corresponding to its children
have the time to reach any combination of configurations starting from their respective axioms
(by induction hypothesis), including the configurations that correspond to the actual children
of the node in discussion. The parent node is immaterial in the process as it does not perform
any query and so does not interfere with its children. Our meta-node corresponds to a deriva-
tion in the respective component resulting in some string that includes the query symbols Qi1

,

9
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Qi2
, . . . , Qik

(by the definition of a parse tree). These query symbols must then become roots to
trees corresponding to derivations in their respective components (again by the definition of a
parse tree). The actual children do corresponds to such derivations (by induction hypothesis).
Therefore the whole tree corresponds to a derivation, as desired. The induction is complete.

Consider now the checkpoint C of G j by Gi such that Gi interferes with G j at C in an other-
wise successful derivation of Γ with parse tree T. Let wi be the interference string. The check-
point C corresponds in T to a node labelled Qi having Si as sole child (which in turn is the root
of some subtree). Replace then the aforementioned tree rooted at Si with the tree correspond-
ing to the derivation Si ⇒

∗
Gi

wi. We still have a parse tree, yet such a tree cannot correspond to
any derivation in Γ since this would imply that wi is communicated to G j at checkpoint C (an
impossibility since the interference string wi is not available at that point).

5 Complete Characterization of PCGS Derivations with Parse Trees

Theorem 5 together with Definition 5 allows us to easily see which (if any) PCGS variant feature
complete characterization of their derivation based on parse trees.

Consider first synchronized PCGS. Such a system can perform “inter-component counting,”
in the sense that the number of steps being the same in two (or more) components allows for
the generation of comparable numbers of symbols in both (all three, etc.). In such a case the
number of nodes in the component parse trees is kept synchronized, so taking an arbitrary
parse tree from one component and plugging in into the master parse tree will not do (since this
synchronization is no longer taken into account). More to the point such an “inter-component
counting” is a clear interference by Definition 5 so we cannot have a complete characterization
by parse forests:

Corollary 6. There exists a master parse tree of some synchronized PCGS that does not correspond
to any derivation in that PCGS. There exists a parse forest of some synchronized PCGS that does not
correspond to any derivation in that PCGS. This all holds for both returning and non-returning PCGS.

Proof. Once the existence of a master parse tree not corresponding to any derivation is estab-
lished, the existence of a parse forest with the same property is immediate (just take the master
parse tree thus found and add some arbitrary but valid n − 1 parse trees for the remaining
components).

Interference between different components of a synchronized PCGS is clearly present (since
the components are synchronized and therefore restrict each other in the number of derivation
steps available). Theorem 5 establishes the desired result.

A constructive proof of this result is also easy to establish by finding an interference string.
In order to better illustrate the concept of interference string we also present this proof.

Let Γ = ({S1, S2, S′
2}, {Q1, Q2}, {a, b}, G1, G2) be a PCGS with G1 = ({S1, S′

2},{a, b}, R1 , S1)
and G2 = ({S2, S′

2},{a, b}, R2 , S2) such that

R1 = {S1 → aS1, S1 → Q2, S′
2 → ε}

R2 = {S2 → S′
2, S′

2 → bS′
2}

A derivation in Γ can only proceed as follows: Once the first component queries the second
the derivation is almost finished. Indeed, the only possible rewriting will erase S′

2 (commu-
nicated from the second component), thus reaching a string of terminals. The only successful
derivations thus involve some p + 1 > 0 component-wise derivations followed by a communi-
cation step, followed by one final component-wise derivation.

10
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2

εb

a
a

S1
S1

S1

Q2

S2

S’2
S’

Figure 2: Master parse tree that cannot correspond to any derivation in the respective PCGS

Whenever Q2 is introduced by the first component-wise derivation (p = 0) we have:

(S1, S2)⇒ (Q2, S′
2)⇒ (S′

2,σ)⇒ (ε,σ ′)

with σ being either S2 or S′
2 and so σ ′ being S′

2 or bS′
2 depending on whether the system is

returning or not. In either case the result of the derivation is ε.
If Q2 is introduced later (p > 0) we start with (S1, S2) ⇒ (aS1, S′

2). Each subsequent p − 1
derivations introduce one a in the first component and one b in the second, so after p steps we
obtain:

(S1, S2)⇒
∗ (aap−1S1, bp−1S′

2) = (apS1, bp−1S′
2)

A final component-wise derivation introduces Q2 in the first component while the second gains
another b, so we have:

(S1, S2)⇒
∗ (apQ2, bbp−1S′

2) = (apQ2, bpS′
2)

The second component is then communicated to the first, followed by the erasure of S′
2 in the

first component. Therefore:

(S1, S2)⇒
∗ (apbpS′

2,σ)⇒ (apbp,σ ′)

whereσ is either S2 or bpS′
2 (depending on whether Γ is returning or not) and soσ ′ is either S′

2

or bp+1S′
2, respectively. Clearly whether Γ is returning or not is immaterial as far as the string

produced by the derivation is concerned.
As argued earlier there is no other possible derivation. We thus conclude that L(Γ) = {apbp :

p ≥ 0}.
Consider now the tree depicted in Figure 2. It is a master parse tree for Γ according to Defi-

nition 2, but its yield is aab 6∈ L(Γ) and so cannot have any equivalent derivation. Incidentally,
this tree was constructed specifically as a counterexample using the pertinent portion of the
proof of Theorem 5 (b being an interference string of G2 by G1).

The unsynchronized, non-returning PCGS do not offer such strong synchronization, so it
is reasonable to believe that parse trees might after all describe exactly all their derivations.
Unfortunately, we still have interference and so this is yet again not the case:

Corollary 7. There exists a master parse tree of some non-returning, unsynchronized PCGS that does
not correspond to any derivation in that PCGS. There exists a parse forest of some synchronized PCGS
that does not correspond to any derivation in that PCGS.

11
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Proof. Again once the existence of a master parse tree not corresponding to any derivation
is established, the existence of a parse forest with the same property is immediate (just take
the master parse tree thus found and add some arbitrary but valid n − 1 parse trees for the
remaining components).

We will establish interference using a system with two components having the following
sets of rewriting rules, respectively:

R1 = {S1 → aQ2, S2 → bQ2, S2 → c}

R2 = {S2 → xS2}.

We have (S1, S2) ⇒
∗ (aQ2, xnS2) ⇒ (axn S2, xnS2). This first checkpoint does not feature any

interference. If the derivation continues however using S2 → bQ2 rather than S2 → c, we get
(axn S2, xnS2) ⇒

∗ (axnQ2, xn+kS2) for some k ≥ 0. Clearly the second component is forbidden
to produce any string xl S2 with l ≤ n even if it is perfectly capable of doing so if left to its
own devices. The interference is established and so the result is an immediate consequence of
Theorem 5.

The unsynchronized, returning case is slightly more interesting, though the result is still
mostly negative:

Corollary 8. Let a unique-query PCGS be a PCGS in which no rewriting rule contains two or more
occurrences of the same query symbol. Then:

Every parse tree with root S1 and yield w of an unsynchronized, returning PCGS Γ corresponds
to a (not necessarily unique) derivation (S1, S2, . . . , Sn) ⇒∗ (w, x2, . . . , xn) in Γ for some xi ∈ N ∪ Σ,
2 ≤ i ≤ n iff Γ is a unique-query PCGS.

Proof. If (by contrapositive): If Γ is not unique query then interference happens as follows: Let
A → σ1Qiσ2Qiσ3 be one of the rules of component G j than makes Γ non-unique-query. G j

then interferes with Gi since G j imposes a fixed number of steps (zero!) on Gi between the
satisfaction of the first and the second occurrence of Qi. By Theorem 5 at least one parse tree
that does not correspond to any derivation in Γ exists.

Only if: When Γ is unique query then no interference is possible. Indeed, any checkpoint
reduces the queried component to its axiom, and then the respective component has as much
time as needed to derive by itself any possible string. The whole positive part of the proof of
Theorem 5 applies literally to this case.

6 Unique-Query Context-Free PCGS

Between other things, the complete characterization of derivations in unique-query context-
free PCGS by parse trees implies that this variant is by far the least powerful PCGS with
context-free components possible. Indeed, in such a case we do not gain anything from us-
ing a PCGS; a simple context-free grammar will do just as well.

Corollary 9. Exactly all the languages generated by unique-query, unsynchronized, returning context-
free PCGS are context free.

Proof. That every context-free language can be generated by a unique-query, unsynchronized,
returning context-free PCGS is immediate since a context-free grammar is a special case of
PCGS (with one component and no use for query symbols).

12



(c
) 
De
pa
rt
m
en
t 
of
 C
om
pu
te
r S
ci
en
ce
, B
ish
op
’s
 U
ni
ve
rs
ity

ht
tp
:/
/c
s.
ub
ish
op
s.
ca
/r
es
ea
rc
h

TR 2013-001: Parse Trees and Unique Queries in CF-PCGS S. D. Bruda, M. S. R. Wilkin

Let now Γ= (N, K,Σ, G1, . . . , Gn) be a unique-query, unsynchronized, returning context-free
PCGS with Gi = (N ∪ K,Σ, Ri, Si), 1 ≤ i ≤ n. Let σi be a renaming such that σi(x) is the string
x in which all the occurrences η ∈ N are replaced by (η, i). We extend naturally σi to rewriting
rules as σi(A →α) =σi(A)→σi(α), and to sets of rewriting rules as σi(ρ) = {σi(r) : r ∈ ρ}.

Consider then the context-free grammar G = ((N × {1, 2, . . . , n}) ∪ K,Σ, R, (S1, 1)), where
R =

⋃

0≤i≤n R′
i with R′

0 = {Q j → (S j, j) : 1 ≤ j ≤ n} and R′
i =σi(Ri), ≤ i ≤ n. We find that there

is a natural bijection β between the set of parse trees of Γ and the set of parse trees of G such
that the yield of T is identical with the yield of β(T) and thus we complete the proof. Indeed,
this establishes that w ∈ L(Γ) =⇒ w ∈ L(G) by Theorem 4, that w ∈ L(G) =⇒ w ∈ L(Γ) by
Theorem 8, and so that L(Γ) = L(G), as desired.

Intuitively, a derivation in G simulates the derivation in Γ component by component while
the respective parse tree is constructed (and so generates an isomorphic parse tree). The non-
terminals are the old nonterminals in Γ with an added associated index to keep track which
rewriting (i.e., node expansion) happens in which component. The occurrence of a query sym-
bol will change this index in G, meaning that in Γ whatever happens afterward is the result of
a derivation in a different component. This all follows faithfully the definition of PCGS parse
trees (Definition 2).

Formally, given some parse tree T of Γ we construct β(T) in a natural way by considering
every meta-node N in the meta-tree µ(T) and relabeling all the nodes in N with root Si from
l to σi(l). (Recall that the notion and properties of a meta-tree were introduced in Definition 4
and Lemma 2.)

That β is one-to-one is immediate given that σi is one-to-one and that only the node labels
are changed by β while the structure of the tree remains the same.

Let now T′ be a parse tree of G. T′ is rooted at (Si, i) with i = 1, the axiom of G and so
β−1(T′) is rooted at Si for i = 1 (the axiom of G1). Then every node labeled (A, i) is expanded
using some rule from σi(Ri) (only these are usable given the second component of the label),
meaning that the corresponding node in β−1(T′) is expanded using some rule from Ri. When
a node labeled Q j is encountered, it can only be expanded using the rule Q j → (S j, j), so the
label of its sole child is (S j, j), and so from then on only rules from σ j(R j) will be applicable

(same reason as above). Therefore in β−1(T′) a node labeled Q j can only have one child labeled

S j, and from then on only rules from R j will be applicable. As far as β−1(T′) is concerned the

above description matches exactly Definition 2 and soβ−1(T′) is a parse tree for Γ . The function
β is thus onto.

The fact that β is a bijective relabeling of nodes in a tree which does not change terminal
symbols established immediately that the yields of T and β(T) are the same for any T.

It is also worth noting that for synchronized context-free PCGS non-returning systems are
(not necessarily strictly) weaker than their returning counterparts [8]. This turns out to be
reversed in the unique-query, unsynchronized case (returning, unique-query PCGS being the
weakest of them all). Indeed, a non-returning unique-query context-free PCGS T can simulate
a returning unique-query context-free PCGS S in a trivial manner: we construct the context-
free grammar corresponding to S as in Corollary 9 above and we just call that T (that is, a
non-returning unique-query context-free PCGS). T is the lowest common denominator of all
the context-free PCGS (having one component and no use for queries) so it can be any kind of
context-free PCGS. We therefore showed the following:

Corollary 10. Any returning unique-query context-free PCGS can be simulated by a non-returning
unique-query context-free PCGS.
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We are not aware of any results in the intermediate case (namely, unsynchronized PCGS
that are not necessarily unique query).

7 Conclusions

Parse trees have established themselves in the realm of context-free grammars as an authori-
tative theoretical tool as well as a significant practical tool. We believe that such trees can be
equally useful in the realm of PCGS. We therefore introduced the concept of parse trees for
context-free PCGS (Definition 2) such that every derivation in a PCGS has an equivalent parse
tree (Theorem 4).

A parse tree is however most useful if the correspondence the other way around also holds
(meaning that there is a derivation for every parse tree), such that a parse tree characterizes
completely a PCGS derivation. We identified the notion of interference (Definition 5), whose
presence is exactly all that is needed for the lack of complete characterization by parse trees
(Theorem 5). Our incursion into the area thus proved to be substantially less successful than
anticipated, as parse trees still cannot fully characterize derivations most of the time (Corollar-
ies 6, 7, and 8).

The bright spot in this whole incursion are the unsynchronized, returning, unique query
context-free PCGS which have in this respect very nice properties, namely that parse trees do
characterize derivations completely (Corollary 8). As a consequence, this PCGS flavour turns
out to have the same generative power as context-free grammars (Corollary 9) that is, to be the
weakest of them all (indeed the weakest possible variant of context-free PCGS!).

7.1 Incidental Results

Our results were obtained using the intermediate step of a parse forest (Definition 3), which
in the end got reduced to a single parse tree. While parse forests do not convey any more
information than their master parse trees, they may be needed as an intermediate step in any
process of actually constructing parse trees. That is, the only immediate way arising from our
results of actually constructing a parse tree for a context-free PCGS is to construct the parse
forest first and then discard all but the first tree of that forest. Parse forests do not have much
theoretical utility but may prove to be needed in practice.

The concept of splitting a PCGS parse tree into regions thus obtaining a meta-tree (Defini-
tion 4 and Lemma 2) is natural, very simple, and worth remembering. It has proven extremely
useful in our effort and might have further utility elsewhere.

A final nod goes to an interesting reversion in the power of returning versus non-returning
context-free PCGS. In the synchronized case it has been long known that the non-returning
variant can be simulated by the returning flavour, making the returning PCGS more power-
ful [8]. When it comes to unique-query, unsynchronized PCGS the simulation goes the other
way around (Corollary 10). It would be interesting to know how is the wind blowing in the
intermediate case (unsynchronized PCGS that are not necessarily unique query); given the role
reversal in the extremes, the simulation can essentially go either way, or it may even be that the
two variants are not comparable.

7.2 PCGS in Formal Methods?

So what about the bigger picture? Our eventual goal is exploiting PCGS in formal specification
and verification. The attention received by PCGS so far was from the formal languages com-
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munity and so people have focused on the “more powerful is better” facet of these systems. It
did not take long to identify Turing complete variants [6], the apex of such a pursuit. Power
(and Turing-completeness in particular) are essential properties for identifying those real-life
phenomena (computational or otherwise) that can be modelled using the respective formalism.

Our goal is in this respect less ambitious. Instead of trying to model general computational
phenomena, we are aiming at modelling only the interactions of (albeit complex) computing
systems with their environment, so that such interactions can be specified and then verified (the
bread and butter of formal methods). In this context the facet of interest of any underlying for-
malism becomes “less powerful is better,” as long as the properties of interest can still be mod-
elled. In this respect we note that overall unsynchronized PCGS appear to be more amenable to
practical applications, they being less powerful but still expressive enough to model complex,
potentially recursive systems. They seem even better suited for the particular task of system
specification, as they are arguably closer to the way an actual concurrent system works.

Unfortunately unsynchronized PCGS have received little attention: They have been found
to be weaker in terms of generative power compared to their synchronized counterparts, and
then they have been effectively ignored. In practice however (and especially in specification
and verification) the increased generative power per se does not matter; on the contrary, the
simpler the formalism the better it is as long as the features of interest can be modelled by it.
It thus appears that unsynchronized PCGS fit this profile very well, and so focusing on this
variant is a promising line of investigation.

Other variants have also been proposed, including centralized PCGS [5] (where only the
master grammar is allowed to query) or PCGS with terminal transmission [9] (in which only
terminal strings can be communicated). They further simplify the formalism which is in gen-
eral a good thing, but when it comes to formal verification we believe that these further simpli-
fications reduce too much the ability of the formalism to model real-life phenomena. We thus
believe that unsynchronized context-free PCGS are in the sweet spot when it comes to formal
methods.

This all being said, we note that the unique query variant is the only one that can make full
use of parse trees (though whether the use of parse trees is indeed required for our purposes
remains to be seen). More interestingly, the computational power of the unique-query variant
does not vary with the number of components, which is appealing from the point of view
of modelling parallel systems with arbitrary (and possibly dynamic) number of concurrent
threads of execution. Whether the unique query restriction is a reasonable restriction remains
however to be seen.

In general, before starting to use them in formal methods (or indeed any practical domain),
unsynchronized PCGS need to be analyzed thoroughly, especially with respect to generative
capacity and closure properties. Such an analysis is as we already mentioned missing almost
completely. Doing this is included in our short-term, immediate interests. At the same time
the possible ways of modelling the behaviour of complex application software using PCGS
need to be investigated, and this is yet another of our immediate interests. Indeed, we moved
tentatively our interest from MVPL to PCGS simply because of the necessarily awkward form
of an MVPL-based specification; should a PCGS-based specification be equally awkward, our
pursuit becomes substantially less interesting.
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