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ABSTRACT

In this paper, we use concepts from digital topology for the topological filtering of reconstructed surfaces. Given
a finite set S of sample points in 3D space, we use the voronoi-based algorithm of Amenta & Bern1 to reconstruct
a piecewise-linear approximation surface in the form of a triangular mesh with vertex set equal to S. A typical
surface obtained by means of this algorithm often contains small holes that can be considered as noise. We
propose a method to remove the unwanted holes that works as follows. We first embed the triangulated surface
in a volumetric representation. Then, we use the 3D-hole closing algorithm of Aktouf & al.2 to filter the holes
by their size and close the small holes that are in general irrelevant to the surface while the larger holes often
represent topological features of the surface. We present some experimental results that show that this method
allows to automatically and effectively search and suppress unwanted holes in a 3D surface.

Keywords: Surface reconstruction, Voronoi filtering, Volumetric representation, Topological filtering, Digital
topology, Closing holes.

1. INTRODUCTION

Many applications in graphics and imaging such as the extraction of iso-surfaces from scalar functions defined
on regular grids, object modeling, visualization, and 3D segmentation require reconstruction of surfaces from 3D
sample points. As a result of noise and other artifacts, surfaces obtained by standard algorithms often suffer
from topological irregularities and geometric noise. In this paper, we introduce an approach based on digital
topology to remove the unnecessary nontrivial topology from reconstructed meshes.

Surface reconstruction has been widely studied in computer graphics, computer vision, and computational
geometry. Previous work on surface reconstruction falls into two categories: the volumetric approaches and the
sculpturing methods. The volumetric approaches are based on the determination of a distance function that can
be seen as an implicit function, where the surface sought is given as the iso-surface with iso-value 0 of the distance
function.3–5 The sculpturing methods for surface reconstruction are based on the concepts of Voronoi diagrams
and Delaunay triangulations. Among popular algorithms in the second category, there is an early algorithm
due to Boissonnat,6 which suggested to use Delaunay triangulations to form a structure that represents an
approximation surface to a given point set. Edelsbrunner et al.7 introduced the most famous computational
geometry construction that associates a polyhedral shape called α-shape with an unorganized set of points. The
α-shape is a subcomplex of the Delaunay triangulation obtained by removing the simplices with circumsphere
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radius greater than α. More recently Amenta and Bern1 contributed a new algorithm for the reconstruction of
surfaces from unorganized 3D sample points drawn from a smooth surface. In its implementation, the convex
hull and Voronoi diagram of the sample points are first computed. Then, two Voronoi vertices called poles are
associated to each sample point. At this point, the Delaunay triangulation is computed for the extended set of
points containing the original sample points and the poles. Finally, by Voronoi filtering which eliminates triangles
with circumspheres containing poles, and by normal filtering that eliminates any triangle forming a too large
angle between its normal and the pole vector at a vertex of the triangle, a piecewise linear surface approximating
the original smooth surface is obtained as a subset of the Delaunay triangulation.

Given a set of unorganized 3D sample points, we will make use of the algorithm of Amenta and Bern to
reconstruct an approximation surface. Typically, the surfaces reconstructed by means of this algorithm often
contain unwanted small holes that can be considered as noise. Identifying and closing these holes automatically
is very useful in many applications. We use the three-dimensional holes closing algorithm described in2 to
process the reconstructed surface for topological correctness. In order to use this algorithm on our data, several
preprocessing steps are necessary. We first embed the reconstructed surface in a volumetric representation
consisting of voxels with a fixed resolution. The resolution can be refined if needed. Then, the distance transform8

is computed to control the size of the holes that should be suppressed. More precisely, we find the minimum
box that encloses the surface. Then, we decompose the box into a uniform grid of cubes or voxels. We scan
all the voxels of the grid in the descending order of the distance transformation value and delete all the cubes
according to the distance or the topological number. The remaining cubes in the grid are the ones in which
the undesired holes have been closed. This construction presents a number of advantages. First, embedding the
surface in a volumetric representation allows to automatically fill in the small holes in the surface and to focus on
the more relevant ones. In addition, the more relevant topological features of a surface are more easily detected
in a cubical structure than in a triangular mesh. Moreover, once the volumetric representation is filtered, one
can use techniques such as marching cubes to extract a triangle mesh from the volumetric representation that
exhibits the corrected topology.

The hole closing algorithm is based on some basic concepts of digital topology that allow to define the notion
of a hole and make a difference between holes, cavities, and concavities. At last, we present some experimental
results that show that this method allows to automatically and effectively search and suppress unwanted holes
in a 3D surface.

2. THE ALGORITHM OF SURFACE RECONSTRUCTION

Surface reconstruction is a very important and well known problem that is extensively studied in computer
graphics, computer vision, and computational geometry. In many applications in the cited domains, objects
are only known by the three coordinates of a set of points selected on their boundaries and often need to be
rebuilt only from the knowledge of these points. Many people have made great contributions about this problem
in the last decade. A very famous approach to this problem consists of using the computational geometry
structures of Delaunay triangulations and Voronoi diagrams. It has been proved to be very successful and with
guarantee homeomorphism between the reconstructed surface and the original one from which the sample points
are drawn. The advantages and the importance of using Delaunay triangulations and Voronoi diagrams for
surface reconstruction can be found in the paper of Jean-Daniel Boissonnat.6 Boissonnat pointed out that using
only a list of three coordinates of points set on the boundary of a given object leads to a poor representation of
the object. A structure of a graph (whose vertices are the given points and edges join points that are related
in some sense) on the set of points is needed in order to make explicit the proximity relationships between the
points. Among the different possible structures, the simplest ones, that is those with the fewest number of edges
and which allow to preserve the topology of the surface, are of crucial importance since they allow to simplify
the problem and any other structure can be obtained from them. In the general case, the simplest structure is
a simplicial polyhedron.9 Boissonnat advocated the use of the Delaunay triangulation and Voronoi diagrams
to associate a global structure to the points from which the simplest ones and other features of the surface
can be obtained. Many other algorithms have been devised following Boissonnat’s idea of using the Delaunay
triangulation, however all of them require the use of uniform or organized sample of points.
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(a) (b) (c)

Figure 1. Examples of cell complexes. (a) Hyper sheet sample points with relatively good density and nearly uniform. (b) Reconstructed
hyper sheet surface using the algorithm. (c) Some holes exist on the reconstructed surface of the golf club.

(a) (b)

Figure 2. (a) Hyper sheet sample points with 180 degree angle of normal filtering. (b) Reconstructed hyper sheet surface using the
algorithm. (c) Hyper sheet sample points with 172 degree angle of normal filtering.

club has obvious holes on the surface. Although the sample point sets are not necessarily r-samples, some of
them are quite dense, yet the results are not very satisfactory. As for the importance of normal filtering, the
reconstructed hyper sheet without normal filtering or with 180 degree looks perfect (see Figures 2 (a) and 2 (b)).
But if we set an angle less than 180 degrees to do the normal filtering, some good triangles will be eliminated at
the same time as some pockets. This creates several holes in the surface.

Discussion. From the test results, we believe that the sampling condition is crucial to the reconstruction result.
If the set of sample points is dense and almost uniform then the CRUST algorithm will give a very good result
in general. However, when the sample point is not dense then it is hard to test the r-sample condition and then
the reconstruction is very sensitive and the filtering may lead to several holes in the surface. The normal filtering
is the most sensitive to the density of the sampling, since in the CRUST algorithm, the pole vector is used to
represent the local surface normal which may differ completely from the real normal to the surface.

3. TOPOLOGICAL FILTERING OF RECONSTRUCTED SURFACES

In this section, we develop a method based on digital topology for the topological filtering of a reconstructed
surface. We first find a volumetric representation of the surface and use it to track unwanted holes in the structure
using the hole closing algorithm in.2 We refer the reader to the following works13–15 for the basic notions of
digital topology used in this section. First, embedding the surface in a volumetric representation automatically
fills in small holes in the surface. So, one can discard studying those holes and focus on the more relevant
ones. In addition, the more relevant topological features of a surface are more easily detected, and their sizes
are more easily estimated, and processed in a cubical structure than in a triangular mesh. Once the volumetric
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representation is filtered and the topological noise is eliminated, one can use techniques such as marching cubes
to extract a triangle mesh from the volumetric representation that exhibits the corrected topology.

Volumetric Representation of a Surface. The method used to embed a triangular surface into a discrete
volumetric cubical volume follows the following steps.

1. Put the smallest cube that encloses the entire surface into the collection L;
2. Check the cube size

if it is less or equal to the given size, stop and save the result;

else continue.
3. Divide the cube into 4 smaller equal sized cubes;
4. Check the intersection of these cubes and the surface triangles:

If there is an intersection, save the smaller cubes into L;

If there is no intersection, delete them.
5. Choose the largest cube from L and loop back to 2.

The key point of this method is to determine the existence of an intersection of the triangle and a voxel.
Fortunately, in Graphics Gems III, Douglas Voorhies16 gives an algorithm that detects whether a given triangle
intersects the axially-aligned cube with edges of length 1 centered at the origin. Voorhies’s approach uses the
general approach which proceeds from cheap trivial accept and reject tests through more expensive edge and
face intersection tests. Let C be a unit cube centered at the origin. The intersection algorithm is as follows.

1. Check whether the origin of C is contained in the solid obtained by dragging a unit cube centered at one
vertex of the triangle to the other vertex.

2. If no intersection exists in the first step, check whether any of the four diagonals of C intersects the interior
of the triangle.

Figures 3 and 4 show the volumetric representations of the surfaces of a golf club and a hypersheet at different
resolutions, where the resolution is controlled by the size of any edge of the uniform cubes that make up the
cubic grids in which the surfaces are embedded.

(a) (b) (c)

Figure 3. Volumetric representations of a surface of a golf club at different resolutions (size of grid cube) (a) 0.05. (b) 0.01. (c) 0.005.

Digital distance Transformation. The distance between a point p and a given object is the minimum
among all the distances from p to all the points of the object. In other words, it is the distance from p to the
nearest points belonging to the object. Since the computational cost of the exact Euclidean distance transform
is relatively high, the digital distance transform is used to approximate it in 3 dimensional digitized space. To
avoid computing the distances between one point to every point on the object every time, a point and a distance
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(a) (b) (c)

Figure 4. Volumetric representations of a surface of a hypersheet at different resolutions (a) 0.1. (b) 0.01. (c) 0.005.

mapping can be pre-computed and maintained. The distance of a given point p can be retrieved from the
mapping quickly. the process of building this mapping is called the digital distance transformation. Formally,
the distance transformation (often called DT ) is the process that computes the distance map from every point
outside a specific object to the object in a binary image. More precisely, DT can be expressed in a mathematical
way. Suppose an object lies in a M ×M ×M cubic grid B, where M is a positive integer. X and X are represent
the foreground and background of the object respectively. DT (i, j, k) denotes the digital distance from a given
voxel to the object, where i, j, k represent distances in the different axes directions and they are in increasing
order 0 ≤ k ≤ j ≤ i ≤ M . The distance transformation can be expressed as follows8:

DT (i, j, k) = min{D(max{|i−p|, |j−q|, |k−r|},mid{|i−p|, |j−q|, |k−r|},min{|i−p|, |j−q|, |k−r|}), p, q, r ∈ X}

where max, mid and min represent the maximum, the middle and minimum of the three values respectively.
D is the distance between two pixels through a minimal path between them. Since we are in a digital image,
the computation of the distance is quite different from the Euclidean distance. We use a discrete distance to
approximate the Euclidean distance. We introduce now some DT computation methods. The basic idea8 of
a digital DT is to approximate the global Euclidean distance computation with repeated propagation of local
distances within a small neighborhood range. Here, the local distance refers to the distance between neighboring
pixels or voxels in a small volume region (normally with size of 3 or 5). This approach is motivated by the
easiness of the computation. This idea was first presented by Rosenfeld and Pfaltz in about 1966.17

The simplest algorithm is the Path Generated Distance Transforms (PGDT). In the algorithm, the number
of steps in the minimum path is used as the distance. It counts as one step from one point to its neighborhood.
The neighborhood is defined using n-connectedness. Here distances of the points in the object are always set to
be zero. Starting from the boundary of the object, the distances of the points (P1) which are immediately n-
connected to the object are 1. The points that have no connection to the object but are n-connected relationship
to P1 have distances 2, which is increased by one from the distance to P1. Similarly, this can be repeated until
all the points out of the object are labeled with distances. It should be noticed that when one point is labeled
with different distances, we always keep the smallest distance. This method is utilized by many DT procedures
and it is easy to compute sequentially. In the computation, only a small fixed neighborhood region need to be
considered and the number of these neighbors is at most 8 in 2D and at most 26 in 3D. But the disadvantage of
this method is that the difference existing in the distances of different kinds of neighbors is ignored. To improve
that, some optimizations emerged.

Optimal distance computations. The development of a digital DT was made through several steps. At first, sim-
ply local distances accumulation were used. Then weighted local distances were also taken into account. More
recently, several papers mentioned the optimal distance derived in the context of minimizing the maximum error
and the unbiased mean square error. Integer approximations for the local distances are developed for neighbor-
hood sizes of three and five. Minimization is performed over circles and spheres to preserve the symmetries of
the neighborhoods.
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Type a b c Maximum difference Scale
PGDT 1 - - 1.26795 -
PGDT 1 1 - 0.41421 -
PGDT 1 1 1 0.73205 -
Case I 1 1.31402 1.62803 0.10402 -
Case II 1 1.31178 1.62960 0.10245 -
Case I/II 2 3 4 0.29289 2
Case I/II 3 4 5 0.11808 3
Case I 8 11 13 0.10732 8
Case II 13 17 22 to 23 0.10652 13
Case II 16 21 27 to 28 0.10296 16

Table 1. Integer 3× 3× 3 Distance Transformations.

1. Suppose M ×M ×M image, where 3 ≤ M . Set the value of the distance of each voxel in the object in the
image to be zero and others to be Infinite;

2. Give a label unvisited to every voxel;
3. For i from 1 to M

For j from 1 to M
For k from 1 to M
DT (i, j, k) = minimum DT of n visited neighbors plus local distance and label it has visited.

4. Set every voxel to be unvisited.
5. For i from M to 1

For j from M to 1
For k from M to 1
DT (i, j, k) = minimum DT of n visited neighbors plus local distance and label it has visited.

It is not hard to notice that two loops are needed to find the digital distance transformation. Since the
distance of any point on the object is set to zero and outside of the object is set to infinity initially, the points
that are next to the object point can get distance by adding local distances. If we start from a background grid
point, the value of the distance will not be updated until a point on the object is met. So the first scan can only
update the immediate background voxels of the object. The second scan will get the values of background voxels
that the first scan has not given.

Algorithm of hole closing. Based on the preprocessing above, a continuous object is discretized, i.e. the
Delaunay triangulation representation of the object is embedded in a volumetric and cubical representation that
is formed of a grid of voxels. Then through the computation of distance transformation, a label is assigned to
every voxel, where the voxels on the Delaunay Triangulation are assigned the distances of zero. At last, we are
ready to implement the algorithm of hole closing. Simply speaking, we keep a list L and a list H containing
all voxels’ coordinates and indexed by their DT . Then, we check the voxels in L in the descending order of the
index and in the first in first out order for the index with the same values.

In the first step, the voxels with DT greater than ε are deleted. We obtain a thick layer of the surface with
all the holes and gaps closed. In order to close the specific holes, which are the holes with their radii less than
ε, on the surface, the topological number, which is crucial criterion in the algorithm is used to identify voxels to
be eliminated. When a voxel is not on the object and its topological number equals one, it will be deleted. In
other words, these voxels are on the virtual boundary of the temporary foreground and background. Normally,
the voxels will be deleted until the object is reached. For the holes whose radii are greater than epsilon, the
voxels in these holes will be eliminated. Because the DT of voxels in the center of the holes are greater than the
ε, these voxels will be eliminated from H. The rest of the voxels in the hole and not on the object will also be
deleted since their topological numbers are 1, which mean they are on the boundary. It is not difficult to observe
that the voxels on the object will never be picked up from the list L since we use the restriction DisIndex ≥ 3 as
a condition, i.e., theoretically, the DT of the voxel should not be zero. The crucial and tricky problem is to stop
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Input: ε, M ;
Output: Topological hull of the object in the image.
Set all voxels as unvisited;
Set value of DT of each voxel on the background to be "infinite" and value of DT of each voxel
on the object to be 0;
Compute DT of the grid voxels;
Define a list array L[MAXDIST ] with the size of maximum distance of DT ;
Assign the coordinates of each voxel to the list array L[DisIndex] with the index equals the value
of DT of the voxel. Give a true sign to E[i, j, k] representing the existence of voxel V (i, j, k) on
the list array L[DisIndex];
Set topological hull list H;
While (DisIndex < 3 ) // (3 is the minimum local distance) {

From L[DisIndex] with DisIndex from maximum value of DT (i.e.,MAXDIST), pick
up each voxel V [ii, jj, kk] in L[DisIndex] in the order of the beginning to the
end and set E[ii, jj, kk] to be false.

While (L[DisIndex] is not empty) {
Check the value of the voxel, i.e., V [ii, jj, kk].value
If (V [ii, jj, kk].value greater than ε or topological number of V [ii, jj, kk] == 1) {

Delete V [ii, jj, kk] from H ;
Add 26 neighbors which meet the following conditions.

1. It is in the M ×M ×M ;
2. It is not in L;
3. It is in H;
4. The DT of the neighbor is greater than 0;

Insert qualified voxel into L[Index] and set its E to be true;
// Index equals the DT of the voxel

If (DisIndex < Index)
DisIndex = Index ;

}
}

}
Return The rest of the voxels in H, i.e., the topological hull of the object.

Algorithm 2: Algorithm of Hole Closing In 3D Surface

deleting voxels in the holes whose radii are less than ε. This problem can be solved by checking the topological
numbers of the voxels in the holes. This can be observed in details in Figure 5. Since the center voxel in the
hole has the furthest distance, it should be selected from the list L right away. Because the hole has only one
layer, taking away the voxel O results in the connection of the backgrounds on the two sides of the surface object
locally. It is classified as a 2D isthmus and will be kept in the list H. Similarly, O′s neighbors are also isthmuses
and kept. So the single layer voxels that cover the hole will be kept in the list H.

Figure 5. Suppose only one layer left and the distance d of the voxel O in the center of the hole is the furthest one to
the object surface, the voxel is a 2D isthmus.
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(a) (b) (c)

Figure 8. (a) Volumetric representation of the surface of a golf club (different view). (b) Hole closing with hole size less than or equal to
0.1 (different view). (c) Hole closing with hole diameter less or equal than 0.5.

reconstructed surface is embedded represents a way to work with a smoothed version of the reconstructed surface
and a more refined structure with higher resolution can be obtained when needed. Hence, the thickness of that
volumetric representation represents a degree of smoothing of the reconstructed surface. Once the volumetric
representation is filtered and the topological noise is eliminated, one can use techniques such as marching cubes
to extract a triangle mesh from the volumetric representation that exhibits the corrected topology.

In a work in progress, we are attempting to force the extracted triangle mesh to agree with the original
reconstructed surface in the regions where topology is not corrected.
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