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Abstract

Localization is a critical topic for Autonomous Mobile Robots (AMRs) operating
within indoor environments. While laser based methods have shown a robust lo-
calization performance, they often face challenges such as the so called Kidnapped
Robot Problem (KRP) and the relocalization problem or the initial localization,
specifically in large scale environments. Monte Carlo Localization (MCL) has been
proposed as a solution to these challenges; however, its computational inefficiency
in expansive environments and its lack of robustness in ambiguous and highly dy-
namic settings, such as logistics and warehouses, limit its real time applicability. In
this thesis, we propose a novel deep learning based dual framework approach to
enhance the initial localization and relocalization capabilities of AMRs using 2D Li-
DAR point clouds, focusing on addressing the KRP. The proposed system integrates
global and local localization strategies to achieve an accurate rough alignment of
the robot’s pose during initialization or after kidnapping events. For global zoning,
advanced convolutional neural network (CNN) architectures such as GoogLeNet,
VGG16, VGG19, and DenseNet are utilized, demonstrating exceptional accuracy
and robust generalization by leveraging features from occupancy grid maps. For
local localization, the YOLOv8 modelis applied to Signed Distance Transform (SDT)
maps visualized with a seismic colormap, enabling precise keypoint detection and
achieving high precision recall performance metrics. To further enhance robust-
ness, we have also introduced an automatic data augmentation tool, capable of
simulating random occlusions, added objects, and rotations to enrich the training
datasets and improve the system’s resilience under real world conditions. The ap-
proach proposed has demonstrated significant advancements in AMR laser based
initial localization within large environments, offering a reliable solution for initial
localization and relocalization, with potential future applications in hierarchical
feature extraction and enhanced pose estimation.
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Chapter 1

Introduction & Problem Statement

1.1 Autonomous Mobile Robots and Indoor Localization

Autonomous Mobile Robots (AMRs) are computer-controlled systems designed to
navigate and perform tasks independently in complex and dynamic environments
without human intervention. These robots integrate advanced sensory technolo-
gies, computational systems, and intelligent algorithms, enabling adaptation to
diverse scenarios and applications [30]. AMRs have become essential in multi-
ple sectors, demonstrating significant versatility and the potential to revolutionize
various industries. In industrial automation, AMRs replace human labor in repet-
itive, hazardous, or precision demanding tasks, particularly in assembly lines and
warehouses [21, 40]. The healthcare sector employs AMRs to streamline hospi-
tal workflows, automate medical-supply delivery, assist patient monitoring, and
perform critical tasks like disinfection [40, 21]. In agriculture, AMRs assist in plant-
ing, harvesting, and crop-health monitoring, while also supporting operations in
hazardous environments, including mining, underwater exploration, and extrater-
restrial missions [30].

The core functionality of AMRs encompasses perception, cognition, locomo-
tion, and navigation. Perception relies on exteroceptive sensors principally Li-
DAR or cameras for obstacle detection and environmental mapping [30]. Cogni-
tion refers to decision-making, often implemented with advanced algorithms and
machine-learning techniques. Locomotion concerns the robot’s mechanical ability
to traverse varied terrains. Navigation involves localization, path planning, and
obstacle avoidance, all of which depend on robust mapping technologies [40, 40].

Indoor, GPS-denied environments impose stringent localization requirements.
While 2-D LiDAR offers a practical balance of accuracy, real-time processing, and
cost [43], its sparse point clouds limit environmental context, and sensor noise and
occlusions degrade accuracy, especially when the robot starts without any pose
estimate [48]. Hence, hybrid global-local strategies are needed [38]. Achieving
full AMR autonomy further requires resilience to dynamic scenes and unforeseen
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scenarios [2].

Figure 1.1: Representative AMR applications in industry (left), last-mile delivery
(centre), and healthcare (right).

1.2 Problem Statement: The Kidnapped Robot Problem

The Kidnapped Robot Problem (KRP) or the initial localization problem arises
when a robot is physically displaced without its proprioceptive sensors detecting
the motion, causing complete loss of pose [5, 42]. This failure mode jeopardizes
safety-critical tasks and interrupts mission workflows [16]. Relocalization based
on 2-D LiDAR reference maps [9, 24] is hampered by scan sparsity [8], dynamic
occlusions, sensor noise [23], and feature-poor settings such as corridors [4]. Con-
sequently, a computationally efficient, geometry-tolerant framework is required.

Key Challenges

* Occlusions and dynamics: Moving objects obscure salient map features.

* Sparse LiDAR measurements: Limited geometric information complicates
feature extraction.

* Sensor noise and misalignment: Introduce false matches and large pose
errors.

* Real-time constraints: Mobile platforms impose tight computational budgets.

1.3 Overview and Limitations of Existing localization Tech-
niques

This section reviews principal localization paradigms and summarises their limita-
tions with respect to KRP and dynamic indoor settings.
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Method Strengths Limitations

Odometry Simple, low cost Cumulative error growth

/Dead-Reckoning

Kalman Filter Real-time, noise-aware Assumes linearity; needs good
initial state

Monte Carlo local- | Handles multi-modal beliefs Computationally intensive in

ization (MCL) large spaces

Deep-Learning Ap- | Robust to appearance change Data-hungry; limited inter-

proaches pretability

Table 1.1: Representative indoor localization techniques.

1.3.1 Particle-Filter Methods: MCL and AMCL

Particle filters are a class of probabilistic localization algorithms that estimate the
state of a mobile robot based on a set of weighted hypotheses, commonly referred to
as particles. These methods are well-suited for non-linear and multi-modal local-
ization problems, however they struggle in large and highly changing environments
as they are computationally expensive and they all rely on the initial pose. Monte
Carlo Localization is a probabilistic approach that represents a robot’s belief about
its pose as a set of particles [27] as shown in Figure 1.2. Each particle corresponds
to a possible pose, with a weight assigned based on its agreement with sensor
measurements Figure 1.3. MCL operates through three primary steps: prediction,
measurement update, and resampling which is demonstrated in the Figure 1.5 and
Figure 1.4 respectively. The weight for particle m at time ¢ is

wEm] =p(z | x{m],m), (1.1)

where z; is the LiDAR observation and m the map. The posterior is approximated
via

M
P(x; | z1:, U14) = Z wEm] O (xe — xim]). (1.2)
m=1
Adaptive MCL (AMCL) reduces computation by varying the particle count accord-
ing to Kullback-Leibler divergence [11]. The required number of particles is

T >

N = 2e N1-5,k-17 (1.3)

with error tolerance €, confidence 6, and k histogram bins.

It is also important to note that some recent studies have explored hybrid ap-
proaches combining deep learning models [22] with particle filtering to improve
relocalization efficiency in large-scale environments. Future may focus on integrat-
ing learning based observation models and multi-modal sensor fusion to enhance
robustness in complex indoor scenarios. However, these techniques rely on a spe-
cific distribution, and make it not convenient in highly changeable maps.
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Figure 1.2: Initial uniformly sampled particles in MCL.
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Figure 1.3: Probability density function of particle weights.
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Figure 1.4: Particle convergence toward the true pose.
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Main steps of AMCL [ Main steps of AGM-AMCL |
Resample Resample
Predict according to
odometry motion model
y or portal motion model
Predictaccording to
odometry motion *

model

Update according to
observation model

v '

Update the cumulative
ambiguity error by
using AGM

Updateaccording to
observation model

Figure 1.5: Qualitative comparison of MCL and AMCL.

Feature MCL AMCL

Particle count | Fixed Adaptive based on uncer-
tainty

Computational | Can be high in large environ- | More efficient by reducing

efficiency ments unnecessary particles

Handling Struggles with sudden reloca- | More robust due to adaptive

(KRP) tions particle redistribution

robustness Limited Better but still challenged by

to dynamic rapid environmental changes

environments

Table 1.2: Comparison of Monte Carlo Localization (MCL) and Adaptive Monte
Carlo Localization (AMCL) [27]

1.3.2 State-Estimation Filters: KF and EKF

The linear Kalman filter (KF) [20] yields optimal estimates for Gaussian linear
systems. Prediction and update obey

f]: = ArXr_1 + Bruy, (1.4)
Py = AePraAp + Qx, (1.5)
Ky = Py H! (HePHY +Re) ™, (1.6)
Xr = J?I: + Kk(Zk - ka;) (1.7)

The Extended Kalman Filter (EKF) linearises around the current estimate with
Jacobians Fy and Hy [19, 42]. Despite wide adoption, both filters depend on accurate
initialisation and are brittle under severe non-linearities.
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Feature KF EKF

Model assumption Linear | Linearised nonlinear
Computational load Low Moderate (Jacobians)

Robustness to dynamics | Limited | Improved but approximation errors

Table 1.3: Comparison of KF and EKF.

1.3.3 Pose-Graph SLAM

Pose-graph approaches formulate SLAM as non-linear least squares optimisation
over robot poses (nodes) and spatial constraints (edges). They excel at loop closure
but require a reasonably aligned initial trajectory and grow computationally expen-
sive in large maps [15]. The Figure 1.6 and Figure 1.7 show the misalignment and
the correction using the pose graph, respectively. However, they are not used for
initial localization but rather for unknown environment Mapping and localization
simultaneously.

O

Real and Estimated Robot Poses

Pose Graph

Figure 1.6: Misaligned pose graph prior to optimisation.

O

Real and Estimated Robot Poses

Pose Graph
Optimization

Figure 1.7: Pose-graph correction after optimisation.



CHAPTER 1. INTRODUCTION & PROBLEM STATEMENT 7

1.3.4 Feature- and Scan-Matching Methods

1. Grid & ICP: Scan matching aligns current LiDAR scans with a pre-built map
using ICP [3] or [35]. These demand good initial alignment and degrade in
repetitive geometry [29].

2. Keypoint Matching: Algorithms such as SIFT [26] and ORB [34] extract
geometric keypoints for relocalization but falter under occlusion and sensor
noise [36, 46]. Figure 1.8 illustrates a typical sucess, they act as initial guess
for ICP.

Figure 1.8: Attempted initial localization using SIFT keypoints; mismatches arise
in dynamic scenes.

3. Correlation-Based: Correlation-based techniques compute the likelihood of
a pose by correlating LiDAR data with a map. Techniques like Monte Carlo
correlation improve localization robustness by sampling possible poses and
comparing likelihood [29, 31]

1.3.5 Global Localization Using Other Sensors

Global localization refers to the process by which a mobile robot determines its
position within a known map without any prior knowledge of its initial location
(Global Area X,Y and 0). Beyond 2D LiDAR, other sensors have been explored for
global localization, either standalone or in combination with LiDAR :

Camera-Based Methods

Cameras provide rich environmental data, enabling visual odometry and scene
understanding. CNNs have been widely used for RGB image-based global or local
localization as shown in the Figure 1.9, extracting features to match against a visual
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map [7]. These methods are sensitive to lighting changes and occlusions, limiting
their reliability in dynamic environments [47],

%
e
i
m‘
i
] f
W W W W F ® T+ T T T
= 5 *
M

Rontw A
Rauts 0

Figure 1.9: visual landmarks based localization

GPS-Based Localization

GPS is a common choice for outdoor localization due to its global availability,
high accuracy in open environments, and ease of integration with various devices.
However, it is impractical for indoor environments due to signal loss and multi-
path effects. High-accuracy GPS, such as Real-Time Kinematic, can offer precise
localization outdoors but requires additional infrastructure [4].

Sensor Fusion Approaches

Sensor fusion combines multiple sensors (e.g., LIDAR, camera, IMU, SONAR) to
enhance localization accuracy [44]. Techniques like EKF and graph-based optimiza-
tion are used to fuse data, leveraging complementary strengths of sensors. However,
these methods increase system complexity and computational requirements.

Role of Rough Alignment in Localization

Nearly all localization techniques depend on reliable initial localization or rough
alignment [44]. This step provides a coarse pose estimate, enabling other methods
(e.g., particle filters, graph-based optimization) to converge effectively. The pro-
posed CNN-based global zoning framework addresses this critical requirement by
leveraging 2D LiDAR data to classify zones accurately, serving as a robust founda-
tion for further localization tasks.
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Motivation and Proposed Deep-Learning Framework

Classical localization pipelines whether filter based, particle ased, or scan matching
suffer from four persistent limitations: reliance on a coarse initial pose to ensure
convergence; computational cost that scales unfavourably with map size or particle
count; vulnerability to occlusion, scene dynamics, and sensor noise; and restrictive
assumptions about sensor modalities or motion models [27, 44]. These constraints
motivate the exploration of data-driven methods that can learn robust geometric
signatures directly from sparse 2-D LiDAR data.

Research Objectives

1. Develop a global, learning-based zoning strategy that provides a reliable
initial pose estimate without handcrafted feature engineering.

2. Design a fine, keypoint-based local refinement stage that improves pose
accuracy within the selected zone and remains resilient to occlusions and
dynamic obstacles.

3. Validate the complete pipeline in simulation across diverse, photorealistic
scenarios generated via an automatic .pgm map-modification tool, demon-
strating robustness under partial map mismatch and sensor noise.

Proposed Solution

1. Global Zoning with CNNs: This approach employs CNN-based architec-
tures (GoogLeNet, DenseNet, VGG) to analyze features from occupancy grid
maps generated using 2D LiDAR data. The framework provides robust initial
zone-level localization, serving as a deep learning based alternative to tradi-
tional methods and enhancing Monte Carlo Localization (MCL) with precise
initial pose estimates.

2. Fine Localization via YOLOvVS8 Pose Estimation: Utilizing Signed Distance
Transform (SDT) maps with seismic-style visualization, YOLOv8 accurately
detectslocal keypoints. This stage refines the robot’s pose within the identified
zone, significantly improving localization precision.

3. Validation through Simulation: The framework’s effectiveness and robust-
ness are demonstrated through simulation tests, confirming its performance in
dynamic conditions and scenarios involving partial occlusions. These results
underline the solution’s potential applicability for practical deployment in
autonomous mobile robot navigation within indoor, two-zone environments.
Scenarios were generated using an automatic . pgm modification tool.



CHAPTER 1. INTRODUCTION & PROBLEM STATEMENT 10

To summarize, MCL, AMCL, KF and EKF all excel at continuous localization in
known maps, but not for initial localization [12], by fusing a motion model with 2D
LiDAR measurements, but they remain vulnerable to failures in the motion model
e.g., the Kidnapped Robot Problem if odometry drifts or the map is suddenly mis-
matched. Pose-graph methods extend this to SLAM in unknown environments,
still combining motion and LiDAR data to optimize pose graphs. For global initial-
ization, feature matching (SIFT or ORB) can provide an initial guess to ICP so that
scan-to-map alignment converges more reliably, they are manly used in mapping or
registration in general but not specifically for initial localization [1] or in visual cam-
era features [14], though LiDAR scan errors often caused by magnetic disturbances
can still break convergence. While camera-based methods, GPS, or multi-sensor
fusion offer alternative initial-pose solutions, this work focuses exclusively on 2D
LiDAR approaches.



Chapter 2

Background on Deep Learning
Architectures

2.1 Fundamentals of Convolutional Neural Networks

Convolutional Neural Networks (CNNSs) are a class of deep learning models de-
signed to automatically and adaptively learn and encode dominant spatial hierar-
chies of features from inputs, such as images or occupancy grids or its SDT version.
By stacking convolutional, activation, and pooling layers, CNNs capture both lo-
cal and global patterns, making them particularly effective for tasks like feature
extraction in 2D LiDAR-based global zoning.

2.1.1 Convolution, Activation & Pooling Layers
Convolution Operation

The convolution operation applies a kernel K to an input feature map I to produce
an output feature map y:

Ymn = Z Im+i,n+j : Ki,j (2'1)
ij

Asillustrated in Figure 2.1, each output pixel is the weighted sum of a neighborhood
in the input feature map [33].

Activation Functions

Activation functions introduce non-linearities that enable CNN5s to learn complex
patterns. Common choices include ReLU, Mish, and Leaky ReLU. For example,
ReLU is defined as:

freLu(x) = max(0, x) (2.2)

Figure 2.2 shows the shapes of these functions [33].

11
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(Local receptive field) (filter)

Output
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Input

Figure 2.1: Illustration of the convolution operation where a kernel is applied to an
input matrix to produce a feature map. Adapted from [33].

Pooling Layers

Pooling layers downsample feature maps to reduce spatial dimensions and control
overfitting. Max-pooling selects the maximum value in each window:

Py = X; 23
k1 i/r]gglvfrl( ij) (2.3)

As shown in Figure 2.3, this operation significantly reduces the size of feature maps
while retaining the most salient activations.

2.1.2 Learning Rate & Optimizers
Model weights are updated via gradient descent according to:
Wnew = Wold — N VL (2.4)
where 1) is the learning rate. Two widely used optimizers are:
¢ SGD (Stochastic Gradient Descent), optionally with momentum.

¢ Adam (Adaptive Moment Estimation), which adaptively scales per-parameter
learning rates using first and second moment estimates.

2.1.3 Regularization Techniques

To prevent overfitting, several regularization methods are standard:

Weight Decay Adds an L, penalty on weights:

L' =L+AL|wl|? (2.5)
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Perceptron Sigmoid Tanh
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0.8 0.5
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Figure 2.2: Various activation functions used in neural networks, highlighting dif-
ferences and applications. Adapted from [18].

Batch Normalization Normalizes layer activations to reduce internal covariate
shift:

B(x) =y (550 +8 (26)
where up and op are computed over each mini-batch.
Dropout Randomly zeroes activations during training:
y=x-D (2.7)

with D a Bernoulli mask (keep probability p).

2.2 Architectural Features of Selected CNNs

This section reviews three CNN architectures chosen for global zoning based on
their structural innovations and performance characteristics.

221 GoogLeNet (Inception Modules)

GoogLeNet, also known as Inception v1 [41], is built upon the idea of network-in-
network modules, termed Inception modules that perform parallel convolutions at
multiple scales (1x1, 3x3, two stacked 3x3 to approximate 5x5) alongside pooling
layers, then concatenate all outputs. This design captures both fine and coarse



CHAPTER 2. BACKGROUND ON DEEP LEARNING ARCHITECTURES 14

1 13(|1(2

2191 |1 Max Pooling °]
f=2 >

1(5(2]1 = 613
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Figure 2.3: Illustration of max pooling operation reducing the spatial dimensions
of feature maps [33].

features efficiently and with relatively few parameters [32] the global architecture
of inception modules is illustrated in Figure 2.4.

Grid Size Reduction e .
(with some modifications) Grid Size Reduction

Input: $9x299x3, Output:8x8x2048 2x Inception Module C

e N

onvolution Input: Output:
vgPool 299x209x3 8x8x2048
laxPool Final part:8x8x2048 -> 1001
- P P
Auxiliary Classifier
I nected
x

Figure 2.4: Architecture of an Inception module [32].

2.2.2 DenseNet (Dense Connections)

DenseNet connects each layer to every other layer in a feed-forward fashion, ensur-
ing maximum feature reuse and strong gradient flow. Transition layers between
dense blocks compress feature maps and reduce dimensionality, keeping the net-
work compact and mitigating the vanishing gradient problem [17]. A simple dense
connection block is illustrated in Figure 2.5. Specifically, the output feature maps
of each layer are concatenated with those of all preceding layers and passed as in-
put to every subsequent layer within the block. This design distributes contextual
information throughout the network, so that each layer can directly leverage the
combined representations learned by all of its predecessors.
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DenseBlock —»

DenseBlock —I- DenseBlock |[—» DenseBlockF,
|1

BN-ReLU-Conv

SoftMax

BN-ReLU-Conv
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Figure 2.5: Illustration of dense connections in DenseNet [10].

2.2.3 VGG16/VGG19 (Deep Stacks of 3x3 Filters)

VGG networks use only 3x3 convolutions stacked deeply 13 convolutional layers
plus 3 fully connected layers in VGG16, extended to 16 convolutional layers in
VGG19. As shown in Figure 2.6, this uniform design makes them easy to imple-

ment and effective at capturing hierarchical spatial patterns, at the cost of higher
parameter counts [37].

Input
conv 1-1
Conv 1-2
+ Poaling
Conv 2-1
Conv 2-2
+ Pooling
conv 3-1
Conv 3-2
Conv 3-3
+ Pooling
Conv 4-1
Conv 4-2
conv 4-3

+ Pooling
Conv 5-1
conv 5-2
conv 5-3
+ Pooling
Top

Figure 2.6: VGG16 architecture illustrating its depth and convolutional layers [6].

To summarize the strengths, weaknesses, and core ideas of each CNN architec-
ture, the Table 2.1 below provides an overview.

2.3 Enhanced Keypoint Detection with YOLOvVS for Local
Localization

Architecture and Feature Extraction

The architecture of YOLOVS is designed to efficiently process high dimensional
data and extract features that are essential for localizing keypoints. It employs
advanced convolutional layers that extract features at multiple scales, ensuring that
the detection process is not only fast but also extremely reliable.

Multi-Scale Feature Integration YOLOVS incorporates a multi-scale feature in-
tegration strategy that allows it to detect objects of various sizes more accurately
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Table 2.1: Comparison of CNN Architectures for Global Localization
Aspect GoogLeNet DenseNet VGG16/VGG19
Main Idea Inception Modules | Dense connections | Deep stacks of 3x3
with  multi-scale | for maximal fea- | filters capturing
convolutions ture reuse fine details
Architecture | Parallel multi-scale | Feed-forward Sequential 3x3
convolutions dense blocks with | conv layers fol-
transition layers lowed by fully
connected layers
Strengths Parameter-efficient | Mitigates vanish- | Simplicity; strong
multi-scale feature | ing gradients; fea- | transfer learning
extraction ture reuse performance
Weaknesses | Complex branch- | Higher memory | Large parameter
ing; tuning diffi- | consumption count; risk of
culty overfitting

through backbone, model neck and model head as shown in Figure 2.7. This is par-
ticularly important for keypoint detection where keypoints can vary in scale due
to perspective changes. The architecture utilizes a combination of skip connections
and up-sampling techniques to merge features from different layers, ensuring rich
feature maps at multiple resolutions.

Advanced Activation Functions The use of advanced activation functions such
as Mish and Leaky ReLU in YOLOv8 enhances the non-linearity in the model’s
learning, which is crucial for distinguishing complex patterns in keypoint struc-
tures. These functions help in maintaining the flow of gradients during training,
thus improving the model’s ability to learn robust features.

Keypoint Detection Mechanism

YOLOvV8'’s keypoint detection mechanism is tailored to identify at least three distinct
keypoints that correspond to fixed objects in the environment. This capability is
crucial for performing the necessary alignment between the robot’s submap and
the global reference map. The model’s robustness to occlusions and its ability to
handle scale variations make it uniquely suited for environments where the layout
may change or be partially obscured.
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Figure 2.7: Detailed architecture of YOLOvVS, showcasing its convolutional layers
and feature extraction mechanisms specifically optimized for keypoint detection [13,
45]

2.3.1 Architecture Stages and Components

YOLOvVS8 Pose follows a single stage detection framework, meaning it predicts
bounding boxes and keypoints in one forward pass. This approach is faster than
traditional two-stage methods (e.g., Faster R-CNN) while maintaining high accu-
racy. Below is a detailed breakdown of its architecture and the stages involved
explaining what is presented in the Figure 2.7 and Table 2.2:

Backbone (Feature Extraction)

The backbone is responsible for extracting features from the input image. YOLOv8
uses a CSPDarknet53 variant, which is optimized for speed and accuracy. It employs
Cross-Stage Partial (CSP) connections to reduce computational complexity while
maintaining feature richness, see Figure 2.7.

Neck (Feature Aggregation)

The neck module aggregates features from different scales to improve detection
accuracy. As shown in the Figure 2.7 YOLOVS8 uses a PANet (Path Aggregation
Network) for this purpose. It merges high-level semantic features with low-level
spatial details via lateral connections, ensuring both context and fine structure are
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preserved. PANet’s bidirectional pathways enhance localization of objects and
keypoints across a wide range of scales.

Head (Keypoint Prediction)

The head module is responsible for predicting keypoints and bounding boxes.
YOLOVS Pose introduces a keypoint head alongside the traditional detection head.
The keypoint head outputs per-joint heatmaps and offset maps, supervised with
a combination of focal and L1 losses to balance detection and pose accuracy. This
dual-head design enables simultaneous object detection and precise pose estimation
with minimal added complexity.

Table 2.2: Architectural Components in Each Stage

Stage Component Functionality
Backbone | CSPDarknet53 | Extracts multi-scale features using CSP blocks
and convolutional layers.

Focus Layer Reduces computational cost by focusing on im-
portant regions.
Neck PANet Aggregates features from different scales to im-
prove detection accuracy.
FPN Builds a feature pyramid to handle objects of
varying sizes.
Head Detection Head | Predicts bounding boxes, objectness scores, and

class probabilities.
Keypoint Head | Predicts coordinates and confidence scores for
keypoints.

In summary, this chapter has detailed the core principles and distinctive features
of key CNN and detection architectures, laying the theoretical groundwork for their
tailored application in 2D LiDAR-based localization addressed in the following
chapters.



Chapter 3

Proposed Methodology

3.1 Framework Overview

The proposed relocalization framework is designed to address the unique chal-
lenges posed by the Kidnapped Robot Problem (KRP) in dynamic and complex
indoor environments. This framework integrates both global and local localization
strategies, enhancing the robustness and accuracy of autonomous mobile robots

(AMRs) in establishing their position within a known map.

Figure 3.1: Proposed dual-framework workflow for relocalization.

Startup and
Initialization

Initial Localization

Is the
robot
kidnapped?

'

Global Zoning
(Rough

Already Localized o
reacy Localize Localization)

Local
Localization

(Pose
Refinement)

R

A

Robot Navigation

with AMCL

Validated

Localization

19




CHAPTER 3. PROPOSED METHODOLOGY 20

The relocalization framework operates on a dual-layer approach:

¢ Global zoning: As the Figure 3.1 illustrates, the global zoning utilizes the
advanced CNNs architectures to process 2D LiDAR data, extracting broad
spatial features from occupancy grid maps. This layer aims to establish a
rough alignment of the robot’s position within the environment, providing a
coarse estimate that narrows down the search area for more detailed analysis.

¢ Local Localization: Employs the YOLOv8 model for high-precision keypoint
detection on Signed Distance Transform (SDT) maps. This stage refines the
pose estimation by pinpointing specific landmarks and features that are cru-
cial for precise navigation and task execution see Figure 3.1.

The integration of global and local localization strategies is critical for achieving
seamless and efficient navigation. The global localization layer provides a macro-
scopic view of the environment, which is essential for initial pose estimation and
rapid recovery from disorientation. In contrast, the local localization layer offers a
pose refinement which is essential for detailed navigation and interaction with the
environment.

Role of CNNs in Global Localization

Convolutional Neural Networks (CNNs) are pivotal in the global localization of
Autonomous Mobile Robots (AMRs) using 2D Lidar data. The primary function of
CNN:is in this context is to extract meaningful spatial features from occupancy grid
maps, which are binary or grayscale images where each pixel value represents the
presence or absence of an obstacle.

Feature Extraction with CNNs

CNN s excel in identifying patterns in visual data (in our case the submaps or
what we call zones), which makes them ideally suited for interpreting the complex
layouts of indoor environments depicted in occupancy grid maps. Through a series
of convolutional layers, each employing a set of filters, CNNs are able to capture
various aspects of the spatial layout, such as edges, corners, and other geometric
patterns, which are crucial for distinguishing different zones or areas within a map.

As shown in Figure 3.2, the basic architecture of a CNN consists of multiple
layers designed to process and extract features from input data [32], and then
passed through a dead forward neural network to make a prediction based on the
falattned features extracted by CNN.

Selection of CNN Architectures

The choice of CNN architectures in this framework and experiments was driven
by their ability to process large-scale spatial data efficiently. Architectures such as
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Figure 3.2: Schematic diagram of a basic convolutional neural network (CNN)
architecture [32].

GoogLeNet, VGG16, VGG19, and DenseNet were selected based on their depth and
complexity, which allow for a comprehensive extraction of hierarchical features.
These models vary in terms of layer depth and feature abstraction capabilities:

GoogLeNet introduces inception modules that process data at various scales,
capturing fine to coarse spatial features. While VGG16 and VGG19 offer deep
architectures with repeated convolutional layers, making them robust at capturing
more detailed spatial patterns. In other hand DenseNet [17] leverages feature reuse
through densely connected layers, enhancing feature propagation and reducing the
risk of overfitting. Finally, each architecture contributes uniquely to the robustness
and accuracy of global localization, facilitating reliable initial pose estimation in
diverse indoor settings.

Global localization was approached as an image-based classification problem:
given a single submap image, the task is to predict the zone or location of the
robot. We evaluated four CNN architectures as the localization model: GoogLeNet,
VGG16 [37], and DenseNet. The standard architectures were largely unmodified;
we added only a dropout layer in the final classification stage and applied L2
regularization (weight decay) of 1 x 1073. Each network was trained to classify
input images into one of the predefined zones. Training was conducted using
Stochastic Gradient Descent (SGD) with carefully tuned hyperparameters (learning
rate, momentum, weight decay) to ensure stable convergence, as the models were at
risk of overfitting. Hence, regularization techniques such as dropout, L2 norm, and
data augmentation were employed via rotation on the training set only, especially
for the larger VGG networks to reduce overfitting; in addition, batch normalization
was used to mitigate internal covariance shift.
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Role of YOLOVS in Local Localization

The YOLOv8 model plays a crucial role in the local localization phase, where preci-
sion is paramount. Local localization involves refining the robot’s pose estimation
to a high degree of accuracy, crucial for detailed navigation and interaction within
the environment.
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Figure 3.3: Role of keypoints detection for pose alignment [25].

Precision in Local Localization

Precision in local localization is critical for tasks requiring high fidelity spatial
awareness, such as obstacle avoidance, path planning, and targeted operations
within tight spaces. YOLOVS, with its advanced object detection capabilities, is
adept at identifying and precisely locating keypoints from Signed Distance Trans-
form (SDT) maps. These keypoints represent specific features within the environ-
ment, such as doorways, junctions, or designated areas of interest as shown in
Figure 3.3. These enhancements ensure that YOLOvVS provides reliable and precise
local localization, critical for the effective navigation and operation of AMRs in
complex indoor settings.

3.2 Dataset Preparation

The effectiveness of the proposed localization framework heavily relies on the qual-
ity and preparation of the dataset used for training the convolutional neural net-
works and YOLOv8 model. This section describes the specific characteristics of the
2D LiDAR data used, the protocols followed for data collection, and the preprocess-
ing and augmentation techniques implemented to ensure robustness and accuracy
in localization.
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Characteristics of Indoor 2D LiDAR Data

Two-dimensional (2D) Light Detection and Ranging (LiDAR) sensors form the core
of our indoor localization dataset by emitting laser beams and timing their reflec-
tions to produce high-resolution measurements, full 360° coverage, and immunity
to ambient lighting variations. However, they also present inherent challenges:
since data are captured in a single horizontal plane, objects above or below that
plane may be missed; shiny or specular surfaces can distort range readings; and
open areas with few nearby obstacles yield sparse scan points that complicate inter-
pretation. Additionally, unpredictable magnetic disturbances can introduce scan
errors that no current simulator can faithfully reproduce.

Data Collection and Preprocessing

Data for the experiments was collected in the Gazebo simulator within the Willow
Garage environment using ROS1 Noetic. A TurtleBot3 Burger equipped with a 2D
LiDAR sensor navigated through various simulated indoor scenes, recording raw
distance measurements and odometry data to build discrete, separated submaps
an approach that mitigates continuous odometry drift. Preprocessing of the LIDAR
scans involved applying median and Gaussian filters to smooth out sensor noise,
and converting the filtered scans into occupancy grid maps (occupied, free, or un-
known cells) via ROS1 Noetic to support accurate model training. Where the inputs
occupancy grid maps have been resized to 224 x 224 and normalized according to
standard ImageNet RGB means and variances, with random jittering [39] added ap-
plied online during training. In addition to raw accuracy, we examined the models’
confusion behavior between zones.

A dataset of 1,200 labeled images was used and collected from the simulation,
covering two zones under various viewpoints. The dataset was randomly split
ensuring no leakage between training, validation, and test sets into 60% for training,
25% for validation, and 15% for testing. We began with a set of base zone samples
and manually added distortions and occlusions (random rotations, translations, and
occlusions) to generate diverse scenarios. To further improve the generalization of
the CNN models, we applied random jittering and rotation augmentations to the
training images only. Each image in the dataset is labeled with its ground-truth
zone (for global zoning) and annotated with keypoint locations of interest (for local
localization refinement) after transforming it to SDT version.

3.2.1 Scenario Generation Techniques

Scenario generation and rotation based augmentation play a crucial role in improv-
ing the generalization capability of the proposed dual framework, by extending the
dataset to cover more real world scenarios.
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Figure 3.4: Simulated indoor test environment used for evaluating the localization
system. The environment is divided into distinct zones (e.g., rooms or areas) for
the global localization task.

1. Geometric Transformations: Including rotations, and translations to simu-
late different perspectives and scales that the robot might encounter.

2. Simulated Occlusions: Artificially adding random sized obstacles in the
occupancy grid maps to teach the models to handle blocked sensors or unex-
pected objects,

3. Noise Injection: Introducing random noise to the data mimics real-world
environmental noise and sensor errors, further robustifying the models.

3.3 Problem Formulation

State Vector Representation

The state vector encapsulates the robot’s position, orientation, and extracted features
from 2D LiDAR scans, defined as:

s=1[x,y,0,f1, f2, ..., ful (3.1)

where: x,y, 0 represent the robot’s 2D position and orientation, and fi, f2, ..., fu
are the features extracted from 2D LiDAR-based submaps.
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Optimization Objective: Cost Functions

The goal is to minimize localization errors while ensuring reliable relocalization.
The optimization is guided by the following cost functions:

Submap Classification Cost Function

This cost function classifies the current submap into a known zone using a CNN
and categorical cross-entropy loss:

C
Lsubmap = Z Yi log(?z) (3.2)

i=1

where C is the number of submaps (zones) classes, y; is the one-hot ground truth
label, and #; is the softmax probability for class i.

Keypoint Detection Cost Function

This cost helps refine pose by regressing key landmark coordinates from the SDT
map:

N
1 ~
Lie = 5 > ki~ kil (3.3)
i=1

where: N is the number of keypoints, k; is the predicted keypoint, and k; is the
ground truth keypoint.

YOLOV8-Pose Objective Function

YOLO (You Only Look Once) is a family of real-time object detection models.
YOLOVS is the latest and most advanced version, integrating improvements in
speed and accuracy. YOLOvS8-Pose extends this architecture to also estimate the
object keypoints using a single-stage detector that jointly predicts bounding boxes,
class labels, and keypoint coordinates in a single forward pass [45].

LyoLovs = AboxLbox + ActsLels + /\poseLpose (34)

where: Ly is the Complete Intersection over Union (CloU) loss for bounding
box regression, L is the Binary Cross-Entropy (BCE) loss for classification, Lpose
is the Mean Squared Error (MSE) loss over keypoints, and Apox, Acls, Apose are the
respective loss weights.

This combined objective allows YOLOv8-Pose to simultaneously detect objects
and estimate their associated keypoints in a single forward pass, enabling real-time
localization.
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Alignment Cost Function

This cost aligns the current submap with the global map using weighted error
minimization:

N
1 .
Latign = 12—1: w; (% — x;)° (3.5)

where: w; is the weight of each particle (likelihood of correct pose), %; is the
estimated pose, and x; is the ground truth pose.

To summarize, this chapter has established the theoretical foundations of both
classical probabilistic filters and modern CNN- and YOLO-based approaches de-
tailing their principles, strengths, and limitations—and has outlined the dataset
preparation and dual-layer framework that will underpin the subsequent imple-
mentation and evaluation of our 2D LiDAR-based relocalization system.



Chapter 4

Experimental Results and
Evaluation

4.1 Introduction

Localization is a fundamental capability for autonomous robots, essential for navi-
gation, path planning, and overall autonomy. A particularly challenging scenario is
the initial localization or the KRP where a robot is unexpectedly relocated without
prior knowledge of its new position. Solving this requires global localization to
determine the robot’s general location within a map and local localization to refine
its exact pose.

This chapter evaluates deep learning based localization methods for address-
ing this problem. We assess global localization using CNN models (GoogLeNet,
VGG16, VGG19, and DenseNet) trained on grid maps and local pose refinement us-
ing YOLOv8-Pose on SDT-transformed maps. The performance of these models is
compared against traditional approaches such as Monte Carlo Localization (MCL)
and feature-based methods (SIFT and ORB). We analyze their accuracy, robustness,
and efficiency while discussing the advantages of deep learning in handling oc-
clusions, environmental changes. Finally, we outline the system’s limitations and
suggest directions for future improvements.

4.2 Results and Disscussion

4.2.1 Global Localization Performance

Table 4.2 summarizes the performance metrics for each CNN model on the global
localization task. All models achieved high accuracy, with some differences in
generalization performance:

As shown in Table 4.2, the application of data augmentation had a signifi-
cant impact on improving the generalization capability of all models. GoogLeNet

27
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Metric Equation Description

Average | AP = /01 p(r)dr where: - p(r): | Calculates the average precision

Precision | Precision as a function of re- | over different recall values by in-

(AP) call. Variants: AP50 (OKS | tegrating the precision-recall curve.

threshold 0.5), AP75 (OKS | Specifically for pose estimation, AP
threshold 0.75), AP@[.5:95] | is computed based on OKS thresh-
(average over OKS thresholds | olds (similar to IoU thresholds in
from 0.5 to 0.95 with a step of | object detection).

0.05).

Mean mAP = % Zf\il AP; where: | Computes the average of AP val-

Average | - N: Number of classes or | ues across different classes or OKS

Precision | OKS thresholds - AP;: Aver- | thresholds. For YOLOvV8-Pose,

(mAP) age Precision for class i or at | mAP@[.5:.95] is often the primary

OKS threshold i metric, averaging AP values over
OKS thresholds from 0.5 to 0.95.

Precision | Precision = == The proportion of correctly identi-
fied keypoints out of all predicted
keypoints. TP = True Positives, FP
= False Positives. A higher preci-
sion indicates fewer false keypoint
detections.

Recall Recall = 1~ The proportion of correctly iden-
tified keypoints out of all actual
ground-truth keypoints. TP = True
Positives, FN = False Negatives. A
higher recall indicates fewer missed
ground-truth keypoints.

Table 4.1: Keypoint Detection Metrics for YOLOv8-Pose

achieved a validation accuracy of 97.48% and a test accuracy of 95.24% with aug-
mentation, whereas without augmentation, its test accuracy dropped drastically
to 35.62%, demonstrating an improvement ratio of 2.67x. Similarly, VGG16 and
VGG19 reached 100% test accuracy when trained with augmented data but only
achieved 33.45% and 37.12%, respectively, without augmentation, highlighting their
susceptibility to overfitting in limited datasets. The largest improvement ratio was
observed in VGG16 (2.99x), indicating that augmentation was particularly beneficial
for this model. DenseNet, which reached 100% accuracy across training, valida-
tion, and test sets with augmentation, exhibited a significant performance drop to
34.18% without augmentation, resulting in an improvement ratio of 2.79x. These
results confirm that while DenseNet demonstrates superior generalization due to
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Table 4.2: Performance Metrics for Global Localization with and without Data
Augmentation

Model Validation | Test Acc. Test Acc. Improv.
Acc. (Scenario Gen.) | (No Scenario Gen.) | Ratio
GoogLeNet | 97.48% 95.24% 35.62% 2.67x
VGG16 99.50% 100.00% 33.45% 2.99x
VGG19 99.16% 100.00% 37.12% 2.69x
DenseNet 100.00% 100.00% 34.18% 2.79x

its densely connected architecture that enhances feature reuse and gradient flow,
it still relies on data augmentation to avoid overfitting. The observed discrepan-
cies in test accuracy between augmented and non-augmented training indicate that
CNN-based localization models require diverse training examples to learn robust
spatial features from occupancy grids. Without augmentation, models were prone
to memorizing training data rather than learning transferable features, leading to
poor generalization on unseen test maps. The convergence behavior of all models
further supports this finding, as training stability and generalization improved with
augmentation, allowing the models to achieve high accuracy within fewer epochs.
The performance gap between augmented and non-augmented training highlights
the importance of incorporating transformations such as rotations, scaling, and
noise perturbations when training CNN-based localization models on occupancy
grid maps. These findings emphasize that, for robust global localization in kid-
napped robot scenarios, leveraging augmentation strategies is crucial to ensure the
network learns invariant spatial representations rather than overfitting to specific
training examples.

From a learning and convergence standpoint, all models were observed to con-
verge quickly within a few epochs given the relatively small and well-structured
dataset. The GoogLeNet and DenseNet models, in particular, trained faster and
required fewer epochs to reach high accuracy, whereas VGG16 and VGG19, with
their larger number of parameters, needed more epochs and careful tuning of learn-
ing rate schedules. Nonetheless, by the end of training, all CNN models provided
excellent global localization performance on the simulated initial submaps after the
kidnapped robot scenarios. Figure 4.1 illustrates example training and validation
accuracy curves for two of the models (placeholder), demonstrating stable training
progress and only minimal gaps between training and validation accuracy. This is
indicative of good generalization, which is illustrated in Figure 4.2.

In addition to raw accuracy, we examined the models” confusion behavior be-
tween zones. All CNNs exhibited confident predictions, rarely confusing one zone
for another. GoogLeNet, being slightly less complex, showed a few misclassifica-
tions typically between visually similar adjacent zones. The VGG and DenseNet
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Figure 4.1: Training and validation accuracy and loss curves for GoogLeNet,
DenseNet, and VGGNet on the global localization task.

Figure 4.2: Global Zoning Results
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models, on the other hand, had virtually zero confusion on the test set, correctly
identifying every zone even when images had moderate occlusion or lighting vari-
ation. For example, DenseNet successfully recognized a room even when some of
its distinctive features were occluded by an object, leveraging other contextual cues
in the scene. These results demonstrate that CNN-based global localization can be
remarkably accurate for the kidnapped robot problem, effectively solving the global
re-localization in a single image inference.

4.2.2 Limitation of the Global Zone Classification

To further inspect the model’s ability to learn spatial and semantic features unique
to each zone, we performed a leave-one-zone-out validation. Specifically, we trained
the model on one zone while validating on (1) the entirety of the other zone and (2) a
10% hold-out from the training zone and vice versa. The model failed to distinguish
between zones, overfitting to non-discriminative cues (e.g., color) instead to general.
To solve this issue, we may need attention-based learning, using the SDT version
of the grid maps, using transfer learning, advanced hyperparameters tuning, and
relying on universal deep learning models that are used in medical imaging to
learn spatial features may also improve the generalization ability. All this can be
addressed in further work.

Figures 4.3a and 4.3b show the feature embeddings when training exclusively
on Zone 1 and Zone 2, respectively. In both cases, there is a large overlap between
the two classes in feature space, which explains the poor discrimination. In contrast,
Figure 4.3c illustrates the clear separation of embeddings when the model is trained
on samples from both zones simultaneously.

E-SNE on Validation Features (Fold 1)

t-SNE of CNN Features: Train

P AR
S i aCou Pl

(a) Features learned from (b) Features learned from (c) Features learned from
Zone 1 only Zone 2 only both zones

Figure 4.3: t-SNE visualization of feature embeddings under (a) leave-one-zone-out
on Zone 1, (b) leave-one-zone-out on Zone 2, and (c) joint training on both zones.
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4.2.3 Local Localization and Keypoint Detection Performance

After determining the coarse location (zone) of the robot via the global localiza-
tion stage, the next step is to refine the robot’s exact pose within that zone. This
local localization stage was implemented using a keypoint detection approach.
We employed YOLOVS-Pose, a state-of-the-art one-stage object detection model
extended to predict keypoints, to detect specific visual landmarks or features in
the robot’s environment. Instead of camera images, we used transformed grid
maps derived from LiDAR point clouds. These maps were converted into binary
occupancy images and then processed using the Signed Distance Transform (SDT)
to highlight structural features. The keypoints detected from SDT maps include
structural elements such as room corners, door edges, and corridor intersections,
which serve as reliable localization landmarks. By identifying correspondences
between detected keypoints in the SDT maps and their reference positions in the
environment, the robot’s precise pose can be computed. YOLOv8-Pose was trained
on a dataset of SDT-transformed occupancy maps, where each map had several
annotated keypoints relevant for localization.
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Figure 4.4: Training Curves Yolov8-pose

Table 4.3: Performance Metrics for YOLOv8-Pose Model

Precision| Recall | mAP@50 | mAP@504 Precision| Recall mAP@50 | mAP@50-
(Box) (Box) | (Box) 95 (Box) | (Pose) (Pose) (Pose) 95 (Pose)
0.996 1.000 | 0.995 0.995 0.996 1.000 0.995 0.942
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(a) YOLOvS8-Pose keypoint detection on (b) YOLOVS8-Pose keypoint detection on
SDT-transformed occupancy map (Test SDT-transformed occupancy map (Test
Case 1). Case 2).

Figure 4.5: Comparison of YOLOv8-Pose keypoint detection performance on two
different SDT-transformed test cases. The model successfully detects key structural
landmarks, demonstrating robustness to occlusion and missing regions.

The YOLOvVS8-Pose model demonstrated excellent performance in detecting these
keypoints. It achieved a precision of 99.64% on the test set as shown in the Table 4.3
as we trained only one class for the keypoint detection purpose (Zone 1). In other
words, virtually every keypoint present in the SDT map was detected, and almost all
detections were correct with negligible false positives precision ~ 99.6%. This high
precision and recall indicate the reliability of the local localization component: the
model rarely misses a useful landmark and gives very few incorrect detections. This
reliability is crucial because false detections could lead to incorrect pose estimates,
and missed detections could leave the robot uncertain about its precise location.
Figure 4.5 illustrates an example output from YOLOv8-Pose on a test SDT map,
showing how the model identifies keypoints (highlighted by markers) even when
part of the map is occluded.

Beyond precision metric, the YOLOv8-Pose model was tested under changed
environment conditions, such as missing keypoints and artificial noise in the SDT
maps as shown in Figure 4.5a and Figure 4.5b. Despite these alterations, the model
consistently detected alternative structural keypoints, ensuring successful local lo-
calization. Itsjoint detection and keypoint regression architecture contributed to its
robustness, enabling accurate pose refinement even in modified environments. The
detected keypoints were then matched with a reference SDT map to compute the
robot’s precise pose. Due to the model’s high accuracy, the resulting positional and
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orientation errors were minimal. Once the CNN-based global localization identi-
fied the correct zone, YOLOv8-Pose effectively refined the pose, reliably addressing
the kidnapped robot problem.

4.3 Comparison with Traditional Methods

To contextualize our approach, we compare it with classical localization methods,
particularly Monte Carlo Localization (MCL) and feature-based approaches like
SIFT and ORB.

We calculated a set of zone-level occupancy grid maps directly from Gazebo
simulations by placing random static objects in a known indoor environment. By
“dynamic objects,” we refer to movable objects that were repositioned between
simulation runs but assumed to be static during data capture. These types of objects
can typically be filtered out in practice using techniques like Kalman filtering, which
allows for tracking and discarding transient or moving elements in the environment.

* Monte Carlo Localization (MCL): MCL is a particle filter-based localization
approach that estimates the robot’s pose by maintaining and updating a dis-
tribution of particles according to a motion model and sensor model [28].
However, MCL critically depends on accurate odometry and a good initial
distribution of particles [12]. In the kidnapped robot scenario, where the
robot is suddenly moved without any odometric trail, MCL often fails to
converge efficiently. It either requires a very large number of uniformly dis-
tributed particles or extensive resampling to localize correctly, which leads to
increased computation time and often delayed or failed recovery. In contrast,
our CNN-based global localization approach provides a direct and immediate
location estimate from the observation, bypassing the need for particle-based
tracking and significantly reducing localization delay.

* Feature-based Localization (SIFT/ORB): Classical feature-based methods
such as SIFT and ORB operate by extracting keypoints from occupancy or
edge-based maps and matching them against a reference database of known
locations. While ORB offers better robustness to rotation and scale changes,
it is computationally intensive, limiting its use in real-time systems. SIFT, on
the other hand, is faster but less discriminative, especially in repetitive or oc-
cluded environments. Although both methods sometimes predict the correct
zone based on the majority of keypoint correspondences, a closer inspection
(see Figure 4.6) reveals that many of these matches are imprecise or incor-
rect only a small subset of keypoints yield accurate spatial correspondences.
Furthermore, when parts of the scene are occluded or altered (e.g., a moved
object), these traditional descriptors fail to localize the robot accurately. This
is evident in cases where SIFT or ORB cannot locate the correct keypoints in
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direct collected data from Gazebo simulator, leading to misclassification as
shown in Table 4.4.

Our proposed deep learning-based method, even though it may not explic-
itly detect fine-grained geometric correspondences like traditional keypoint-based
methods, rarely makes incorrect predictions. It achieves this by learning robust,
high-level semantic representations from Signed Distance Transform (SDT) maps
that are invariant to occlusion, viewpoint changes, and minor environmental vari-
ations. As demonstrated in Figure 4.6, our model consistently outperforms both
MCL and feature-based approaches in terms of accuracy and robustness in the
context of the kidnapped robot problem.

Table 4.4: Classification Performance across Two Zones (Combined)

Metric SIFT (Zonel+2) | ORB (Zonel+2) | Ours (GoogLeNet)
Precision 0.55 0.80 0.975
Recall 0.55 0.80 0.975
F1 Score 0.55 0.80 0.975

Resilience to Occlusion and Environmental Variations

Although our global localization module, based on CNN classification of occupancy
grids, does not explicitly learn spatial relationships or topological layout, it is still
capable of reliably identifying the correct zone. This suggests that the model is
learning high-level structural features or distributional patterns that are sufficiently
discriminative across zones. Moreover, the local refinement stage using YOLOvS-
Pose proves highly robust to partial occlusions and missing structural elements in
the Signed Distance Transform (SDT) maps. Even when key segments are occluded
or altered, the pose estimation remains accurate due to YOLOV8's ability to general-
ize and detect available spatial cues. As demonstrated in Figure 4.7a, the model can
infer and localize relevant keypoints despite significant occlusions, outperforming
traditional feature-based approaches that fail in the absence of detectable keypoints.
This robustness is critical for real-world scenarios where environmental dynamics
or sensor noise may corrupt portions of the input data. Our integrated system
thus ensures fast, reliable localization even in the presence of visual inconsistencies
or structural changes. Accurate keypoint detection greatly enhances the transfor-
mation matrix used for pose alignment. YOLOv8-Pose reliably identifies semantic
landmarks (e.g., corners, object edges), leading to more precise alignment. As
shown in Table 4.5, YOLOv8-Pose achieves a much lower RMSE (0.376) compared
to ICP (3.719). ICP’s higher error stems from its sensitivity to noise, initial pose,
and occlusions, while YOLOv8-Pose leverages learned features for more robust and
accurate localization.
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Figure 4.6: Visual comparison of ORB, SIFT, and our GoogLeNet-based approach
in zone classification. Correct and incorrect predictions are shown for traditional
methods, while our model provides consistent results.
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Figure 4.7: Comparison between YOLOVS8 pose-based prediction and traditional
ICP alignment for local pose refinement.

Table 4.5: Comparison of Average RMSE for Alignment between YOLOv8-Pose and
ICP

Method Average RMSE
ICP (Iterative Closest Point) 3.719
YOLOv8-Pose Based Alignment 0.376

4.4 Conclusion

In this chapter, we experimentally validated the proposed deep learning based lo-
calization framework for addressing the kidnapped robot problem. The two-stage
system CNN-based global zoning and YOLOv8-Pose-based local pose refinement
achieved near-perfect global classification accuracy and highly precise pose esti-
mation, even under challenging conditions like occlusions and dynamic changes.
Compared to traditional methods such as MCL and feature-matching techniques
(SIFT, ORB), our approach demonstrated faster, more reliable relocalization without
the need for prior pose knowledge or long robot movement. These results confirm
that 2D LiDAR based deep learning methods can effectively solve the initial local-
ization and relocalization problem, paving the way for real-world deployment



Chapter 5

Conclusion and Future Work

This thesis introduced a deep learning-based localization framework designed to
address both initial global localization and relocalization following kidnapping
events in mobile robots. The proposed two stage pipeline first performs global
zone level classification using convolutional neural networks (CNNs) on occupancy
grid submaps derived from 2D LiDAR data, and second, refines the robot’s pose
locally using YOLOv8-Pose-based semantic keypoint detection. By eliminating the
need for odometry or prior pose estimates, the system achieves accurate and robust
localization recovery with minimal movement and no external aid.

Experimental results in simulated environments demonstrated that the system
achieves high zone classification accuracy and sub-centimeter pose alignment, even
under occlusions, dynamic obstacles, and map changes. Compared to traditional
methods like MCL, AMCL, ICP, and classical feature-matching algorithms (e.g.,
SIFT, ORB), the framework showed greater robustness, speed, and accuracy while
using only low cost 2D LiDAR data. However, challenges remain. The global zon-
ing stage can overfit to non-distinctive spatial patterns, leading to misclassifications
in complex layouts. Future work will explore attention-based learning, transfer
learning, and hybrid models to improve feature discrimination and generaliza-
tion. Additionally, as the number of zones increases, classification performance
may degrade due to spatial similarity, necessitating scalability testing in real-world
scenarios.

Another limitation is the current reliance on simulated training data. To sup-
port real-world deployment, the framework requires a significantly larger and more
diverse dataset. Future research will address this through domain adaptation and
continuous learning to handle environmental changes over time. A critical next
step is deploying the system as a ROS 2-compatible service, enabling seamless in-
tegration into robotic platforms and real-time operation. Overall, the proposed
framework offers a scalable, cost effective, and modular solution to the Kidnapped
Robot Problem, with strong potential for deployment in dynamic indoor environ-
ments such as warehouses and office spaces.
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