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Abstract 
 
 

Photoplethysmography (PPG) is a low-cost, non-invasive technique 

used to detect volumetric changes in blood circulation, commonly used 

in smartwatch hardware for measuring heart rate. However, PPG signals 

are susceptible to motion artifacts, resulting in an unreliable heart rate 

estimation when the subject is moving and the sensor loses contact with 

skin. Many approaches have been proposed for resolving this problem, 

including the use of accelerometer data as a ‘ground truth’ for motion-

corrupted epochs. Here, we propose a random forest classifier for 

detecting noisy epochs from the PPG signal alone. We first construct a 

dataset consisting of PPG signals collected from smartwatches worn by 

22 participants over 30 days. We then construct labels for the ground 

truth dataset based on the smartwatch accelerometer, which allows us to 

recognize epochs of high-motion activity. Finally, we trained the classifier 

to recognize noisy epochs based on the PPG signal alone (without using 

the accelerometer). Our best classification results yield 88.72% accuracy 

and 93.5% F1 score, showing that it is possible to recognize noisy epochs 

based solely on the attributes of the raw PPG signal. 
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Chapter 1: Introduction 

 
1.1   Smartwatch technology 

 
Smartwatches have emerged as game-changing wearable 

devices, elegantly combining timekeeping, biometrics, and powerful 

computing capabilities. This technology has its origins in the early 1970s, 

when Pulsar, a branch of Seiko, released the first digital watch. 

However, it wasn't until the 2010s that the concept of smartwatches fully 

took hold, with the release of devices such as the Pebble and the first 

Samsung Galaxy Gear. As of 2023, smartwatch use has skyrocketed, with 

millions of individuals around the world utilizing these gadgets. The 

main reason for their appeal is convenience: smartwatch users can 

receive notifications, measure physical activity, monitor heart rate, and 

manage calls all from the convenience of their wrists. These 

characteristics make them useful tools for multitasking and leading a 

healthier lifestyle [1],[2].  

Many firms have entered the smartwatch market, with big 

players like Apple, Samsung, Garmin, Fitbit, and Xiaomi at the forefront. 

Each organization has its own set of features, aesthetics, and capabilities 

that appeal to different consumer tastes. Design, distinctiveness, and 

screen size are major components of aesthetic appeal [3]. 

The photoplethysmogram (PPG) sensor, which detects blood 

flow through the skin, is a critical component of smartwatches. This 

sensor monitors heart rate and is essential for a variety of health-related 

applications. Smartwatches also include other sensors, such as 

accelerometers for activity tracking, GPS for location services, and 

gyroscopes for gesture detection [4]. 

The connection of smartwatches with smartphones, which allows 

users to access apps and transfer data smoothly, is further propelling 

their adoption. The future of smartwatch technology is bright, with 

continued developments and collaborations between industry titans 

constantly pushing the boundaries of what these wearable devices can 

achieve [5]. 
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1.2   Heart rate, heart rate variability and disease 

 
The major job of the heart is to circulate blood throughout the 

body, ensuring that tissues receive the oxygen and nourishment they 

require. Assessing heart rate (HR) and heart rate variability (HRV) is an 

important approach to determining heart health and general wellness. 

HR is the number of heart beats per minute, whereas HRV is the 

variability in interval between each heartbeat. HR and HRV are useful 

indications of the autonomic nerve system's (ANS) functioning, which 

governs many of the body's automatic functions such as breathing and 

digestion. HRV specifically measures the balance of the 

parasympathetic and sympathetic nerve systems – the 'rest and digest' 

and 'fight or flight' systems, respectively [6] [7]. 

A high HR and a low HRV constantly may indicate a lack of 

flexibility to stimuli, which is common in chronic diseases. Increased HR 

and lower HRV have been associated with an increased risk of 

cardiovascular disease (CVD), diabetes, and other chronic diseases. A high 

HR and low HRV in diabetic individuals suggest the existence of 

autonomic neuropathy, a condition in which the nerves that control the 

heart and blood vessels are destroyed, increasing the risk of CVD. This 

implies that HR and HRV could be utilized to detect early warning 

signals of cardiovascular disease in diabetics  [8]. 

CVD, particularly heart disease, is also closely linked to increased 

HR and decreased HRV. These alterations could be attributed to the 

heart's decreased efficiency and overall poor health in people with these 

disorders. High resting heart rates, for example, have been linked to an 

increased risk of heart attack and stroke [9]. The link between HR and 

HRV in neurodegenerative illnesses such as Alzheimer's is complicated. 

Lower HRV may be an early sign of the disease, showing impaired 

function of the Vagus nerve, which is important in maintaining heart 

rhythm. However, more research is required to establish these findings 

[10]. 

While our understanding of these linkages is evolving, it is clear 

that the autonomic nervous system, as indicated in HR and HRV, plays 

an important role in chronic disorders. Recognizing this could lead to 

novel preventative tactics or therapies for persons suffering from or at 

risk of developing these illnesses. Using the PPG sensor, smartwatches 
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provide a low-cost, non-invasive alternative to ECG for monitoring 

cardiovascular parameters like HR and HRV. However, PPG sensors on 

the wrist also pick up motion artifacts (MA), affecting the data's 

accuracy. Many methods to correct these artifacts use accelerometers to 

identify and ignore noisy data epochs during HR computation [11]. 

 

1.3   Goal of research 

In this project, our goal is to devise a new approach to MA 

detection during smartwatch recording, based on the raw PPG signal 

and using machine learning. We first use the accelerometer signal to 

create a ground truth classifying PPG epochs as ‘MA’ or ‘non-MA’. After 

creating our dataset, we generate features for training and testing to 

classify the data using the random forest. 

 

1.4   Thesis outline 

In this thesis, we first review the fundamental concepts of PPG 

signal and its relation to the accelerometer signal (Chapter 2). In Chapter 

3 we present the dataset and methods of extracting smartwatch data 

features, then use those features for detecting motion artifacts in our 

PPG signal. Finally, in Chapter 4 we present the results of our 

classification methods and a short conclusion in Chapter 5.
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Chapter 2:   Background 

 
2.1   Photoplethysmography 

 
Photoplethysmography (PPG) is a non-invasive technique used to 

detect blood volume variations through an infrared light sensor placed 

on the surface of the skin. Correct identification of the PPG waveform 

and its main features is essential to extract several biomarkers, such as 

heart rate, blood pressure, cardiac output, and blood oxygen saturation. 

PPG sensors are usually placed on the distal parts of the human body, 

such as the arms, wrists, fingers, feet, or ears [12]. Some key benefits of 

using PPG in smartwatches are HR monitoring, sleep monitoring, stress, 

and relaxation monitoring. However, it is well known that motion 

artifacts (MA) can distort the signal. Some important noise sources that 

affect PPG analysis include body movement and sensor attachment, 

baseline change due to respiration, and hypoperfusion due to decreased 

peripheral perfusion. 

Figure 1 shows the basic features obtained directly from the PPG 

waveform. The systolic peak in a PPG signal refers to the highest point 

or peak in the waveform during the systolic part of the heart cycle. The 

systolic phase is characterized by the contraction of the ventricles of the 

heart and the ejection of blood into the arteries. Systolic blood pressure 

is generally measured using the systolic peak, which indicates the highest 

amplitude of pulsatile blood flow. The dicrotic notch is a slight 

downward deflection in the PPG waveform that occurs shortly after the 

systolic peak. It is caused by the aortic valve closing, which temporarily 

blocks arterial blood flow. The dicrotic notch is generally visible as a 

secondary peak or a tiny dip in the PPG waveform's descending limb. It 

denotes the start of the diastolic phase and is a key factor in determining 

arterial flexibility and vascular resistance. The highest point or peak in 

the waveform during the diastolic phase of the cardiac cycle is referred 

to as the diastolic peak in a PPG signal. The diastolic phase is 

characterized by the relaxation of the ventricles of the heart and the 

filling of the coronary arteries. The diastolic peak is used to calculate 

diastolic blood pressure because it represents the largest amplitude of 

blood flow during diastole [13]. 
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Figure 1: Major features of the pulse wave recorded using PPG. Figure reproduced 

from Charlton et al, 2021. 

 

Any wearable devices acquire additional signals which can be 

used with the PPG to provide improved physiological monitoring. 

Figure 2 shows one of the additional signals commonly acquired by 

wearables. As we can see in Figure 2a and Figure 2b the accelerometer 

signal increases during times of high motion, and the corresponding 

PPG signal is contaminated by noise during those timepoints, making 

accurate HR estimation impossible  

Accelerometry: Accelerometers measure static and dynamic 

acceleration. Due to their power efficiency and low price, they are 

already used in the majority of wearables for step counting and 

recognizing some activities (such as walking). Accelerometry signals can 

also be used to improve parameter estimation from the PPG [14]. 

Accelerometry signals can be used to reduce noise in PPG signals 

by canceling noise which is common to both accelerometry and PPG 
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signals. Accelerometry can also be used to identify periods when activity 

levels are too high to estimate parameters reliably from PPG signals. 

Accelerometry could also be used to contextualize PPG-derived 

parameters according to the activity in which they were recorded, as 

accelerometry can be used to infer body position (e.g. lying or standing), 

and could be used to identify a wide range of activities of daily living 

[15]. 

Gyroscope: Gyroscopes measure angular velocities around 

orthogonal axes and thus are suitable for capturing rotational 

movements. This feature can be used for adaptive motion artifact 

cancellation from PPG signals. In addition, gyrocardiography was 

recently proposed as a noninvasive monitoring method for the 

assessment of cardiac mechanics. 
 

 
 
Figure 2: Motion artifacts. Top left: accelerometer signals in three dimensions (x ,y, z). 

Top right: sum of accelerometer signals. Bottom: PPG signal taken from same time 

period, showing motion artifacts from samples 300-500.
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  2.2   Types of noises in PPG signals 

 
There are three types of noises in PPG signals shown in Figure 3. 

In this section, we explain each of them briefly. 

 

 
 

Figure 3: Examples of representative PPG distortion due to motion artifact, baseline 

wandering, and hypoperfusion. Figure reproduced from Shin et al, 2022. 

 

2.2.1 Motion artifact 

 
Motion artifacts, mainly caused by body motion such as hand 

movement, walking, and running, are critical noises when measuring 

PPG. When a person moves, motion artifacts are introduced into the 

PPG signal. These artifacts can be caused by mechanical movements of 

the skin, muscle contractions, or vibrations. Motion artifacts manifest as 

noise or interference in the PPG signal, making it difficult to extract 

accurate information about blood volume changes. Depending on probe 

type and light source, PPG measurement may be more sensitive to MA. 

Since MA is known to have a frequency range of 0.01–10 Hz, the major 

component of PPG can be distorted by overlapping with the main 

frequency band (0.5– 5 Hz) of PPG. Such distortion makes it difficult to 
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detect important features during analysis, causing false diagnoses. 

Therefore, MA must be removed or corrected before analysis. In MA 

removal using a frequency domain filter, a high-pass filter (HPF) is 

mainly used. 

 

2.2.2 Baseline and DC component 
 

The baseline or DC component of the pulsatile component of PPG 

and the AC amplitude of PPG can be changed by various factors, such 

as respiration, sympathetic nervous system activities, and 

thermoregulation.  The DC component is the constant or average value 

in a time-varying signal. It shifts the signal up or down but doesn't affect 

its shape.  HPF is frequently performed in the method of directly 

removing the baseline. The frequency component of the AC of PPG is a 

component related to pulsation. This is normally higher than 0.5 Hz (30 

bpm) in a healthy person. However, the respiratory component that 

causes baseline change has a frequency range of 0.15–0.5 Hz. HPF is 

performed to remove baseline movement located in the low-frequency 

range without damaging the AC component, based on the frequency 

range difference of signals. HPF is simpler and more convenient to 

perform than the method of baseline removal based on direct estimation. 

Hypovolemia, hypothermia, vasoconstriction, and decreased cardiac 

output or mean arterial pressure may weaken changes in blood volume 

in blood vessels, called poor perfusion or low perfusion. 

2.2.3 Hypoperfusion 
 

A medical disorder known as hypoperfusion is characterized by 

inadequate blood transport to tissues and organs, frequently leading to 

a shortage of the nutrients and oxygen required for cellular function. 

Tissue damage and, in extreme circumstances, organ failure may result 

from this. Hypoperfusion becomes more pronounced toward the 

peripheries of the body. It affects the pulsatile component of PPG, thus 

weakening amplitude change.  

In addition to the movement, respiration, and low perfusion of a 

subject, numerous factors can distort the PPG waveform. Typical 

examples include ambient light, the temperature of the measuring site, 

skin pigmentation in the measurement of body size, alignment of the 
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light source and photodetector, method of attaching the sensor to the 

skin, the contact pressure between the sensor and the skin, and posture 

of a subject. Ambient noise reduction is mainly attempted through 

hardware improvement [13]. Here, we focus mainly on detecting and 

remove the MA, which can be particularly challenging when computing 

derived features from the PPG waveform like HRV [16].
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Chapter 3:    Literature review 

 
Nowadays, PPG signals can easily be collected continuously and 

remotely using inexpensive, convenient, and portable wearable devices 

(smartwatches, rings, etc.) which makes them a suitable source for 

wellness applications in everyday life. However, PPG signals collected 

from portable wearable devices in everyday settings are often measured 

when a user is engaged with different kinds of activities and therefore 

are distorted by motion artifacts. There exists a variety of methods to 

detect and remove motion artifacts from PPG signals. The majority of the 

works related to the detection and filtering of motion artifacts in PPG 

signals can reside in three categories: (1) non-acceleration-based, (2) 

using synthetic reference data, and (3) using acceleration data. We 

explain each of them in this chapter. 

 

 

3.1   Non-Acceleration-Based Methods 

 
The non-acceleration-based methods do not require any extra 

accelerometer sensor for motion artifact detection and removal. In 

existing works, these approaches utilize certain statistical methods 

because some statistical parameters such as skewness and kurtosis will 

remain unchanged regardless of the presence of the noise. In [17], such 

statistical parameters are used to detect and remove the impure part of 

the signal due to motion artifacts. If there is movement, the amplitude of 

the PPG signal changes greatly, and consequently, the statistical 

parameters rise above the formerly set thresholds and the signal is 

marked as corrupt. The corrupted signal is then cut out of the original 

signal and only the clean signal is left, as can be seen in Figure 4. 

According to a set threshold, a part of the signal is marked as corrupted 

with movement and cut out. In [18], authors detect motion artifacts 

using a Variable Frequency Complex Demodulation (VFCDM) method. 

In this method, the PPG signal is normalized after applying a band-pass 

filter. Then, to detect motion artifacts, VFCDM distinguishes between the 

spectral characteristics of noise and clean signals. Then, due to a shift in 

the frequency, an unclean-marked signal is removed from the entire 
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signal. Another method in this category is proposed in [19] that uses the 

Discrete Wavelet Transform (DWT) method. The DWT is used in signal 

processing to analyze several features (or 'frequencies') of the signal. 

This is accomplished by splitting the signal into lower-resolution (low-

frequency) and higher-resolution (high-frequency) components. Each 

degree of decomposition corresponds to a different scale or frequency of 

information. The low-frequency components of the signal correspond to 

slow changes in the signal, such as the overall trend, and the high-

frequency components correspond to 'rapid' changes, such as noise or 

tiny variations. The noise-free reconstructed PPG signal is produced by 

combining the low-frequency (trend) and high-frequency (variation) 

components. The 'mother wavelet' - the basic waveform utilized in the 

transformation process - is often picked before the signal is analyzed, 

which is a crucial limitation in adopting DWT. Because this waveform is 

predetermined, it may not fully match the PPG signal's unique 

characteristics, especially as the signal can be non-stationary (its 

statistical properties shift over time) and non-linear (it does not follow a 

straight line). As a result, some vital physiological data may be lost 

during the study. 

In most non-accelerometer-based methods, the clean output 

signal is often shorter than the original signal, since unrecovered noisy 

data is removed from the signal. 
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Figure 4: PPG preprocessing. Top: original PPG signal. Second row: PPG after pre-

processing. Third row: detected movement. Bottom: after cut-out algorithm applied. 

Reproduced from TaheriNejad et al, 2019. 

 

3.2   Synthetic reference data approaches for noise removal 

 
The length of the clean signal with some non-accelerometer-

based methods is shorter than the original signal. To mitigate this 

problem, a synthetic reference signal can be generated from the 

corrupted PPG signal. In [20], the authors use Complex Empirical Mode 

Decomposition (CEMD) to generate signals. After pre-processing, the 

EMD can be applied to the PPG signals. This entails breaking down the 

complicated PPG signals into a series of intrinsic mode functions (IMFs). 

As a parallel to simple harmonic functions, each IMF represents a simple 

oscillatory mode. This is accomplished by detecting local maxima and 

minima iteratively and then generating an envelope defined by a cubic 

spline line. The original signal is subtracted from the envelope mean result, 

and the procedure is repeated until the residual (the subtraction result) 
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becomes a monotone function from which no more IMFs can be 

recovered. The EMD-derived IMFs can now be used as reference data. 

It's worth noting that not all IMFs are employed; rather, a choice is made 

based on frequency content or other heuristic reasoning. After obtaining 

the reference data, it can be utilized to decrease motion artifacts in the 

original PPG signal. This is often accomplished through the elimination 

of motion artifact-related IMFs, or the use of methods such as adaptive 

filtering or wavelet denoising, with the reference signal serving as a 

guide to the reduction of motion artifacts.  

A similar approach that uses a synthesized reference signal was 

shown in [21]. A second PPG sensor is used to generate the movement 

signal. The second PPG sensor is positioned a few millimeters away from 

the skin, as seen in Figure 5a, so it only measures when the subject is in 

motion. The second PPG sensor is intentionally located a few millimeters 

farther from the skin to capture primarily motion artifacts rather than the 

cardiac-related signal. This sensor does not detect any meaningful signal 

when the subject is immobile. When the person moves, however, this 

sensor begins to take up signals due to its closeness to the skin, and these 

signals are primarily connected with motion artifacts. This second 

sensor's motion signal can then be used as a "reference" motion artifact 

signal. The signals collected from the two sensors can then be compared. 

The motion artifacts could then be statistically identified and eliminated 

from the primary signal, providing a cleaned PPG signal. 

In Figure 5b one can see the typical outputs of both sensors, first 

few seconds without motion and afterwards with motion.  
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Figure 5: a) Application of the two PPG sensors on the skin, where the second sensor 

is a reference sensor used to generate the motion signal. Reproduced from TaheriNejad 

et al, 2019. 

 

3.3 Acceleration-based methods 
 

Often an accelerometer sensor is also embedded in wearable 

devices. To eliminate the effect of motion artifacts, acceleration data can 

be used as a reference signal. In [22], with the help of acceleration data, 

Singular Value Decomposition (SVD) is used for generating a reference 

signal for an adaptive filter. In the adaptive filtering process, SVD is 

used to provide a reference signal for motion artifact reduction. A 

correlation exists between the motion accelerometer data and the noisy 

components of the raw PPG signal. It is therefore critical to separate PPG 

band motion artifact components from accelerometer data. The motion 

artifact reference signal is generated using frequency components from 

the PPG signal frequency band. Least mean square (LMS) adaptive filters 

based on stochastic gradient descent are used to remove in-band motion 

artifacts. The noise reference for the filtering procedure is the intended 

reference signal created in the previous stage using SVD. The LMS 

method adjusts filter coefficients based on the current least mean error. 

Different LMS filter versions, such as Normalized LMS, Delayed LMS, 

and Adjoint LMS, are investigated to discover the best one for this task. 

Then, the reference signal and PPG signal pass through an adaptive filter 

to remove motion artifacts. Because of its simplicity and stable 

a b 
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performance, the LMS adaptive filter is a popular type of adaptive filter. 

The LMS filter minimizes the mean square error between the desired 

and actual signals using a gradient-based steepest descent algorithm. 

With a similar approach, authors in [23] use DC remover using 

another type of adaptive filter. Another method proposes a robust HR 

estimation technique, denoted as MURAD- multiple Reference adaptive 

noise cancellation for HR estimation when the PPG signal is severely 

corrupted by MA. First, MA is removed from the PPG signal using an 

adaptive filtering technique based on recursive least squares (RLS). The 

key problem here is to develop an appropriate reference noise signal 

(RNS) for the adaptive filter. They employed 3-axis accelerometer data 

and the differential signal between the two PPG signals. Unlike 

previously reported adaptive noise cancellation (ANC) based algorithms 

(which employ a specific for a given time window), they made a real-

time choice of an RNS for each time frame that is most likely to result in 

an accurate HR calculation. They were able to minimize the MA by using 

many RNSs even though the direction of motion changed from time to 

time, obtaining a separate version of the cleaned PPG signal for each 

RNS. They then estimate a set of plausible HR values for each time 

window using all of the cleaned PPG signals. Because HR is a slowly 

fluctuating signal with significant overlap between subsequent frames, 

the difference between the actual HRs of two consecutive windows is 

unlikely to be significant. As a result, the particular number from the 

probable HR set that is closest to the previous window's estimated HR is 

picked as the HR in the current window. The estimated HR in this 

method, combined with several heuristic peak verification techniques, 

may estimate the HR with excellent accuracy even when the participants 

conduct severe physical workouts such as running, leaping, boxing, 

swimming, weightlifting, and so on[24]. 

The other method used a combination of adaptive filters using a 

single noise reference (CASINOR), a collection of adaptive filters with a 

single noise reference signal, to estimate the HR from the corrupted PPG 

signal. The power value of the accelerometer signals is used to choose the 

noise signal (i.e., a single accelerometer signal) from the three 

accelerometer signals, Figure 6. Combining two adaptive filters, namely 

RLS adaptive filters, a slow filter, and NLMS adaptive filters, results in 

a rapid filter that increases the quality of the denoised signal. The RLS 

filter removes the MA component from the PPG signal, whereas the 
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NLMS filter enhances time-varying parameter tracking. The proposed 

denoising structure combines the RLS and NLMS adaptive filters, with 

a single accelerometer signal serving as the common reference noise 

signal. To remove the MA component from the preprocessed PPG data, 

the accelerometer signal with the highest power value is provided as a 

reference input to the adaptive filters [21]. 

 

 

In smartwatches like Apple, Garmin, and Fitbit, there are many 

ways to tackle the issue of noise and motion artifact cancellation, 

including: 1) Hardware Approaches: For example, Fitbit employs pure 

pulse technology, which entails beaming LED lights onto the skin and 

measuring variations in light absorption with each heartbeat. This 

method can aid in noise reduction by ensuring a clear, robust signal in 

the first place. Also, The Apple Watch detects the quantity of blood 

flowing through the wrist at any one time by pairing green LEDs with 

light-sensitive photodiodes. Apple Watch can compute the number of 

heartbeats each minute by flashing its LED lights hundreds of times per 

second. 2) Multi-sensor integration: Other sensors, like accelerometers 

Figure 6: Block diagram of the proposed method used to estimate HR in [21] 
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and gyroscopes, are commonly found in Apple and Fitbit devices. The 

information gathered by these sensors can be utilized to increase the 

accuracy of heart rate measurements. For example, if the gadget detects 

that the wearer is moving a lot using the accelerometer, it can factor this 

into its analysis and perhaps reject PPG data collected during this period 

as it is likely to be noisy. 3) Software approaches: To remove high-

frequency noise and smooth the data, signal processing and filtering 

techniques might be applied. Data that is likely to be noisy can be 

identified and excluded using algorithms. They may, for example, detect 

periods of intensive physical activity (using accelerometer data) and 

reject PPG data collected during these periods because it is likely to be 

influenced by motion artifacts. 

As we mentioned previously, we want to use an accelerometer 

signal in a smartwatch (Samsung Galaxy Active 2) to label each segment 

of PPG signals and detect good(clean) and bad (motion artifact) 

segments. We then used those labels to train a classifier to recognize 

good and bad epochs based on raw PPG signal alone.
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Chapter 4: Proposed Method 

 
4.1   Data acquisition 

 
In this project, we use the Samsung Galaxy Watch Active 2 (Figure 7) 

for recording data from subjects. The Samsung Galaxy Watch Active 2 

is an advanced smartwatch, released in 2019, and allows access to raw 

PPG signals (unlike other smartwatches such as the Apple Watch series, 

which allows for heart rate extraction but does not give access to the raw 

signal). From the watch, we can extract the x,y,z components of the 

accelerometer, raw PPG signal, x,y,z components of the gyroscope, and 

corresponding timestamp of each sample. Samsung Galaxy Watch Active 

2 relies on the Tizen operating system, a Linux-based mobile operating 

system developed and used primarily by Samsung. The ‘Tizen Studio’ 

integrated development environment is used to develop apps for the 

watch, using the C programming language. The app developed has the 

following features: 

 Record 1 minute of PPG data for every 10 minutes of elapsed time 

(~2.4 hours of data per day), not recording continuously to 

preserve battery life and avoid device overheating. The data was 

recorded with a 10Hz sampling rate. 

 Save raw PPG data and timestamps to the file system of the watch 

in .csv file format. 
 

Figure 7: Samsung Galaxy Active 2 watch 
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Figures 8 and 9 show two representative epochs (10 seconds each) 

recorded from daily activity from one of the subjects. In Figure 8, the 

accelerometer has large fluctuations and the corresponding PPG signal 

is noisy. In figure 9, the accelerometer has very small fluctuations and 

the corresponding PPG signal is clean. 

 

 
 

Figure 8: HRV=380ms and BPM=52.74, sampling frequency=10 Hz 

 

 
 

Figure 9: HRV=51ms and BPM=75.86, sampling frequency=10 Hz 
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The normal range of HRV for a healthy person is between 20 and 

100 milliseconds. Also, the normal range of bpm for healthy adults is 

between 60 and 90 beats per minute. We calculate the HR (in BPM) and 

HRV (in ms) using the following method: 

 

a) Calculating Heart rate 

 

Peak Detection Method: Detect the peaks of the PPG waveform. The 

time between peaks is the period (T) of one cardiac cycle. 

 

𝐵𝑃𝑀 =
60

𝑇
 (1) 

1 

Where T is the time between peaks in seconds. 

 

b) Calculating the HRV 

 

SDNN (Standard Deviation of NN intervals): This is the standard 

deviation of the time intervals between adjacent peaks (often called NN 

intervals). 

 

𝑆𝐷𝑁𝑁 = √∑ (𝑁𝑁𝑖 − 𝑚𝑒𝑎𝑛(𝑁𝑁))
2𝑁

𝑖=1

𝑁
 (2) 

                                                                        

2 

Where NNi is each NN interval and N is the total number of NN 

intervals. 
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4.2   Method for Labelling Dataset 

 
The suggested technique labels motion artifacts in PPG signals 

based on accelerometer data. The accelerometer-captured motion of the 

hand serves as a reliable predictor of motion artifacts in the PPG signal. 

Accelerometers generate time-series data that represent the magnitude 

and direction of movement, which can be related to noise and artifacts 

in PPG data. As a result, accelerometers, which are typically included in 

the same wearable devices as PPG sensors, can be used successfully for 

this purpose. 

Our method requires identifying 10-second data segments as 

'epochs' and determining the standard deviation (STD) of accelerometer 

measurements for each epoch. Choosing a 10-second window for 

segmenting PPG signals was a balance between capturing enough data 

for robust motion artifact detection and allowing for real-time 

processing. Longer intervals could compromise the system's 

responsiveness, while shorter intervals might not provide sufficient data 

to accurately identify artifacts. Additionally, preliminary testing 

indicated that this segmentation duration yielded a reliable performance 

for artifact detection in our specific application. The standard deviation 

reflects the dispersion of data, and a greater STD indicates more intense 

or variable movement in the case of accelerometer data. As a result, 

epochs with more substantial hand movements, which are likely to cause 

more major motion artifacts, will have a higher standard. 

Following that, we apply Z-score normalization to the obtained 

standard values. The Z-score indicates how far an element deviates from 

the mean. As a result, greater Z-score epochs correspond to periods of 

vigorous or irregular movement, which contributes to a larger degree of 

motion artifacts in the PPG signal. We can accurately designate epochs 

with severe motion artifacts by evaluating Z-scores over a certain 

threshold. In this data, the threshold was Z>2. To locate outliers or 

abnormal data points, statistical data analysis frequently uses a Z-score 

threshold of 2. A Z-score of 2 is a cautious but useful cutoff for 

highlighting major deviations that may signify noise or motion artifacts 

because it corresponds to approximately 95.4% of the data lying within 

two standard deviations from the mean in a normal distribution. The 

decision is in line with the empirical rule in statistics, which is frequently 
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applied to find outliers. 

Using this approach, we can label all of the PPG segments that 

have motion artifacts by using an accelerometer. We then separate into 

our train and test dataset, and can classify each epoch of the PPG signal 

by using different machine learning algorithms. 

 

4.3   Methods of classification 

 
After creating the labeled dataset based on the accelerometer we 

used different methods for using this data for classification. By 

experiencing this method, we can find a fit mapping to the labeling 

method with an accelerometer signal. We used 1) raw data 2) FFT 

transformed data 3) Feature-selected data for doing the classification and 

used different algorithms to find the best results for each of them. We 

discuss each of them below. 
 

4.3.1 Extracting features related to the PPG signal 
 

            We extracted the following features from the raw PPG signal: mean, 

standard deviation, skewness, kurtosis, and Heart rate variability (HRV): 

a) Mean: The mean value of a signal is the average value of the signal: 

 

𝑀𝑒𝑎𝑛 =
∑ 𝑥𝑖𝑁

𝑖=1

𝑁
 (3) 

 

3 

The index of I is equal to index of the summation and N is the total 

number of elements you are summing. xi represents each individual 

element (data point) that you're summing up.x1,x2,…,xN are the 

elements you sum to calculate the mean. 

b) Standard deviation: The standard deviation of a set of numbers is a 

measure of their variance or dispersion. A low standard deviation 

implies that the values of the set tend to be close to the mean (also known 

as the expected value), whereas a high standard deviation shows that the 

values are spread out over a larger range. 
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𝑆𝑇𝐷 = √
1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 (4) 

4 

Where 𝑥̅ is the mean value of x. 

c) Skewness: Skewness is a statistical term that refers to the asymmetry 

of a set of data values. It is used to calculate the extent and direction of 

skew (difference from horizontal symmetry) in data. The skewness of 

data distribution is zero if it is fully symmetrical. A positive skew means 

that the right side of the distribution's tail is longer or fatter than the left 

side's tail. In other words, the number of higher values is bigger. A 

negative skew, on the other hand, shows that the tail on the left side is 

longer or fatter than the tail on the right side, indicating a greater 

number of lower values. 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁

∑ (𝑥𝑖 − 𝑥̅)3𝑁
𝑖=1

𝑠𝑡𝑑3
  (5) 

5 

d) Kurtosis: Kurtosis is a statistical term that describes how data is 

distributed around the mean. It denotes the degree of ‘tailedness’ or the 

sharpness of a distribution's peak. 

 

A distribution with a high kurtosis has a clear peak near the mean, a quick 

drop, and heavy tails. This is known as leptokurtic. A distribution with 

low kurtosis, on the other hand, has a flat top near the mean rather than 

a high peak. A Platykurtic distribution is flat. The standard normal 

distribution has a kurtosis of three and is known as mesokurtic. 
 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁

∑ (𝑥𝑖 − 𝑥̅)4𝑁
𝑖=1

𝑠𝑡𝑑4
 (6) 

 6 

e) Heart Rate Variability (HRV): The period between each heartbeat is 

used to calculate HRV. These intervals are commonly known as RR 
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intervals. These intervals are commonly referred to as "pulse to pulse" 

intervals or PP intervals in the context of PPG, but the concept is the 

same. We followed these general steps to compute HRV from a PPG 

signal: 

 

 Identify each PPG signal peak that represents a heartbeat. 

 Time the intervals between each peak (PP intervals). This can 

be done in a variety of units, but it is often done in milliseconds. 

 Use the PP intervals to compute HRV. 

 
In the first experiment, we extracted features for training and testing 

datasets. Then we trained the best model for finding the bad and good 

labeled data. Our goal is to find the best Model for the detection of bad 

and good epochs, thereby eliminating faulty HR estimates. We used an 

Extra trees Classifier for detecting the good and bad epochs in the 

dataset, details are below. We first explain the Random Forest Classifier. 

 

4.3.2   Random Forest classifier 

 
A random forest (RF) classifier is an ensemble classifier that generates 

several decision trees from a random subset of training samples and 

variables [25]. Before we can comprehend how the random forest 

algorithm works in machine learning, we must first grasp the ensemble 

learning technique. Ensemble simply refers to the combination of 

numerous models. As a result, rather than a single model, a group of 

models is utilized to create predictions. Ensemble employs two 

methods: 

 Bagging: It generates a different training subset from the sample 

training data with replacement, and the final output is 

determined by majority voting. Consider Random Forest. 

 Boosting: It turns weak learners into strong learners by 

constructing sequential models with maximum accuracy. For 

instance, ADA BOOST and XG BOOST. 

Random forest operates on the bagging principle (discussed below). 
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4.3.3 Bagging 

 
Random forest employs the ensemble approach of bagging, also 

known as Bootstrap Aggregation. Bagging selects a subset of the data at 

random. As a result, each model is constructed using the samples 

(Bootstrap Samples) provided by the original data using row sampling. 

This stage of row sampling with replacement is referred to as the 

bootstrap. Each model is now trained individually. After merging the 

findings of all models, the outcome is based on majority voting. 

Aggregation is the process of integrating all the findings and producing 

output based on majority voting (Figure 10). 
 

 
 

Figure 10: Bagging process. Reproduced from[31] 

 

Figure 11 shows an example. The Bootstrap sample is taken from 

genuine data (Bootstrap sample 01, Bootstrap sample 02, and Bootstrap 

sample 03) with a replacement, implying that each sample may not 

contain unique data. This bootstrap sample's models (Model 01, Model 

02, and Model 03) are trained individually. Contrasted with the sad 

emoji, the happy emoji now holds a majority. As a result of the majority 

vote, the final output is the happy emoji. 
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Figure 11: Bagging ensemble method. Reproduced from [32]
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4.3.4 Boosting 

 
Boosting is a strategy that employs the concept of ensemble 

learning. To obtain the final result, a boosting technique combines 

numerous simple models (also known as weak learners or base 

estimators). It is accomplished by developing a model in series utilizing 

weak models. There are various boosting algorithms; adaptive boosting 

(AdaBoost) was the first truly successful boosting algorithm designed 

for binary classification. AdaBoost is a popular boosting approach that 

combines numerous "weak classifiers" into a single "strong classifier", 

Figure 12. 
 

 
 

Figure 12: Boosting process. Reproduced from [33]
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4.3.5 Random forest algorithm procedures 

 
Step 1: For each decision tree in the Random forest model, a subset 

of data points and a subset of characteristics are chosen. Simply put, n 

random records and m features are drawn from a data set of k records. 

Step 2: For each sample, an individual decision tree is built.   

Step 3: Each decision tree will produce a result. 

Step 4: For Classification and Regression, the final result is 

evaluated using Majority Voting or Averaging. 

Consider the fruit basket as an example, as seen in the figure 

below. Now, n samples are drawn from the fruit basket, and an 

individual decision tree is built for each one. As illustrated in the 

illustration, each decision tree will produce an output. The final result is 

determined by majority voting. As seen in the graphic below, the 

majority decision tree produces an apple rather than a banana, hence the 

end outcome is an apple, Figure 13. 
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Figure 13: Example of Using Random Forest. Reproduced from[34]  

4.3.6 Extremely randomized trees classifier 

 
Similar to Random Forests, Extra Trees is an ensemble ML 

approach that trains numerous decision trees and aggregates the results 

from the group of decision trees to output a prediction. However, there 

are a few differences between Extra Trees and Random Forest. Random 

Forest uses bagging to select different variations of the training data 

to ensure decision trees are sufficiently different. However, Extra Trees 

uses the entire dataset to train decision trees. As such, to ensure 

sufficient differences between individual decision trees, it randomly 

selects the values at which to split a feature and create child nodes. In 

contrast, in a Random Forest, we use a greedy algorithm and select the 

value at which to split a feature. Apart from these two differences, 

Random Forest and Extra Trees are largely the same. 

The Extremely Randomized Trees classifier (commonly 

abbreviated as Extra Trees) is a form of ensemble learning algorithm that 

aggregates the outcomes of several de- correlated decision trees 
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gathered in a "forest" into a single result. This method is similar to the 

more well-known Random Forest algorithm, but with one crucial 

difference: whereas Random Forest employs bootstrapping to find the 

best threshold for each randomly selected feature at each node, the Extra 

Trees classifier chooses these thresholds entirely at random. 

This extra randomness can occasionally help to minimize model 

variance, which is useful if the model is overfitting. It can, however, 

increase bias, which might be problematic if the model is Underfitting. 

As a result, whether Extra Trees outperforms Random Forest is 

dependent on the specific data. 

So what effect do these changes have? Using the entire dataset 

(which is the default setting and can be changed) allows Extra Trees to 

reduce the bias of the model. However, the randomization of the feature 

value at which to split increases the bias and variance. [14] introduced 

the Extra Trees model conducts a bias-variance analysis of different tree-

based models. From the paper, we see on most classification and 

regression tasks Extra Trees have higher bias and lower variance than 

Random Forest. However, the paper goes on to say this is because the 

randomization in extra trees works to include irrelevant features in the 

model. As such, when irrelevant features were excluded, say via a 

feature selection pre-modeling step, Extra Trees get a biased score similar 

to that of Random Forest. 

In terms of computational cost, Extra Trees is much faster than 

Random Forest. This is because Extra Trees randomly selects the value 

at which to split features, instead of the greedy algorithm used in 

Random Forest. [14] [26] 

The second method we used for finding the better algorithm for 

classification is using FFT which we will discuss about it below. 

 
 

4.3.7 Using FFT of the dataset for detecting noise in signals 

 
The other method that we tested was using a fast Fourier 

transform of training and testing datasets to obtain better classification 

results. Fast Fourier transform (FFT) is one of the most useful tools and 

is widely used in signal processing. The FFT is an algorithm for 

computing the Discrete Fourier Transform (DFT) of a digital sequence 

quickly. The DFT is a mathematical transformation that allows us to 
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express a time- domain signal as a sum of frequency-domain sinusoidal 

functions. The DFT is a mathematical transform that separates the 

frequencies in a time-domain signal. FFT reduces the computational cost 

of DFT from 𝑂(𝑛2) to 𝑂(𝑛𝑙𝑜𝑔𝑛) allowing it to run much quicker on huge 

datasets. It decomposes a signal into its constituent frequencies, as well as 

their amplitudes and phases. FFT can be used to detect noise in the 

frequency domain. Noise is frequently manifested as sudden spikes at 

frequencies that do not correlate to physiological signals, or as a broad, 

continuous spectrum unrelated to any specific biological function. In 

FFT, the following is the difference between a clean and a noisy signal: 

The FFT of a clean PPG signal should reveal clear and distinct peaks 

corresponding to the heart rate and its harmonics. There may be 

additional peaks in a noisy signal corresponding to the noise sources, or 

the desirable peaks may be warped or broadened. If the noise is 

unpredictable, it might raise the baseline of the entire spectrum, making 

identifying the genuine signal more difficult [30]. The Fast Fourier 

Transform (FFT) mathematical formula: 

If x[n] is an input vector of length N (n = 0, 1..., N-1), then the 

FFT is calculated as follows: 

For n = 0 to N-1, and k = 0 to N-1 

 

𝑋[𝑘] = ∑ 𝑥[𝑛] ∗ 𝑒
𝑗∗2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 (7) 

7 

In this formula, X[k] is the Fourier Transform value at frequency 

k (k = 0, 1..., N-1), and X[n] is the input signal value at time n (n = 0, 1..., 

N-1). In addition, 'j' represents the imaginary unit in complex numbers. 

For example, if we have a sequence x = [x[0], x[1], x[2], x[3]], we can 

compute its Fast Fourier Transform using the preceding method. Cooley 

and Tukey first proposed the concept of FFT in their seminal 1965 paper 

"An Algorithm for the Machine Calculation of Complex Fourier Series". 

This paper established the groundwork for modern FFT algorithms [27]. 

To summarize, FFT is an effective tool for analyzing PPG signals, 

and understanding how noise expresses itself in the frequency domain 

can help guide noise reduction approaches. The FFT of a noisy signal 
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will differ from that of a clean signal, reflecting the presence and nature 

of the noise, and adequate analysis and preprocessing can aid in 

minimizing these undesired components. 

After using FFT we found the best algorithm for the classification 

of the dataset and we found the Extra trees classifier that was explained 

in the previous section. 
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4.3.8 Raw data approach using Gradient boosting classifier 

 
In this section, we used the raw data segments of signals for 

classification and then found the best algorithm for this. The algorithm 

we used for this section is the Gradient boosting classifier which is an 

ensemble algorithm. 

The Gradient Boosting Classifier gradually constructs an 

ensemble of weak decision tree classifiers. It begins by developing a 

simple decision tree. Then it constructs successive trees in such a way 

that the previous trees' flaws are corrected. The new trees are fitted to 

the negative gradient of the previous predictions' loss function (usually 

the log loss or deviation). The Gradient Boosting Classifier's core 

components and concepts are as follows: 

Boosting: As we mentioned earlier, "Boosting" refers to the 

approach of merging numerous weak learners (individual classifiers 

with somewhat better accuracy than random guessing) to build a strong 

classifier. The boosting technique increases performance iteratively by 

providing more weight to misclassified occurrences in each iteration. 

Gradient Descent: The term "gradient" in the phrase "Gradient 

Boosting" alludes to the gradient descent optimization technique used 

to minimize the loss function. The algorithm calculates the negative 

gradient of the loss function concerning the current ensemble's 

predictions in each iteration and fits a new tree to the negative gradient 

residuals. 

Weak Learners: In the context of the Gradient Boosting Classifier, 

weak learners are often shallow decision trees with a short depth (also 

known as decision stumps), making them simple and computationally 

efficient. Based on a single characteristic and threshold, these trees make 

binary decisions. 

Ensemble Learning: The Gradient Boosting Classifier's final 

prediction is a weighted combination (voting) of predictions provided 

by all of the individual decision trees in the ensemble. 

Regularization: To prevent overfitting and increase 

generalization, the Gradient Boosting Classifier can use regularization 

approaches such as restricting the depth of individual trees and 

employing a learning rate. 

Because of its high predictive power and resistance to overfitting, 
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the Gradient Boosting Classifier is commonly employed in practice for 

classification tasks. It can handle both numerical and categorical features 

and works well on large datasets. 
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Chapter 5:   Results 

 
In this chapter, we present the results derived from the methods 

which are discussed in the previous chapter. we divided them into three 

sections. 

For the first experiment, we used 1500 segments which were 

labeled by using an accelerometer signal as noisy or clean signals. We 

used 22 subjects’ samples whose data was recorded for one month and 

added these samples to the primary dataset to have robust results. After 

recording we applied a Band Pass filter to PPG signals between 0.5 and 

5 Hz. After that, we used the method mentioned in the previous chapter 

(standard deviation of accelerometer) for labeling every 10 seconds of 

PPG data. Every 10 seconds of PPG data includes 100 samples. For 

coding purposes, the label class “true” was assigned a value of 1 while 

the class “false” was replaced by a value of 0. After labeling the PPG 

segments, we used the three aforementioned methods (features, FFT, 

and raw) for training and testing. 

During the preliminary examination of the experimental data 

acquired for this investigation, it became clear that there was a significant 

imbalance in the distribution of the two outcome labels [28]. This is a 

regular occurrence when using real-world of the classes. 

To address this class imbalance, two basic methods were used: 

class weights and resampling procedures. The former entailed 

modifying the weights assigned to each class in the machine learning 

model so that the minority class was given more weight during the 

learning process. This strategy is intended to keep the model from being 

unduly influenced by the majority class. The resampling approach used, 

on the other hand, was the Synthetic Minority Over-Sampling 

Technique, or SMOTE, which is an oversampling technique that creates 

synthetic samples from the minority class rather than simply replicating 

existing examples. This method encourages greater diversity in minority 

class data and is intended to improve the model's performance on the 

underrepresented class. 

A comparison of the resulting models revealed an intriguing 

observation following the comprehensive application of both class-

weight and SMOTE approaches. The accuracy, precision, recall, and F1 

scores of the models were comparable, showing that, for this specific 
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dataset and situation, both techniques were equally effective in 

addressing the issue of class imbalance. These findings emphasize the 

need for robust strategies in minimizing class imbalance in machine 

learning initiatives that use real-world data. 

 

5.1 Feature extraction results 

 

After using the Extra trees classifier for this dataset after feature 

extracting we obtained 87.72% accuracy and 93.26%F1 score. In the 

imbalanced datasets, the F1 score is more reliable for classification. Also, 

the other measure for checking the reliability of the models is using the 

ROC curve. (The AUC-ROC curve is a performance metric for 

classification tasks at various threshold levels). AUC is an abbreviation 

for "Area Under the receiver operating curve (ROC). 

The ROC curve is a graphical representation of a binary classifier 

system's diagnostic capabilities as its discrimination threshold is 

modified. It is calculated by graphing the True Positive Rate (TPR) vs. the 

False Positive Rate (FPR) at different threshold values. In machine 

learning, the True Positive Rate (also known as sensitivity, recall, or 

probability of detection) is the fraction of genuine positives that are 

properly detected. The False Positive Rate (also known as fall-out) 

quantifies the proportion of true negatives that are misidentified.) It is 

shown in Figure 14. 
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In Tables 5-1 and 5-2 we show the features in the three good and 

bad labeled samples in the dataset. these epochs are correctly classified 

by our model. As we can see in the tables, the measures are quite different 

for good and bad epochs. The statistical parameter differences show that 

bad epochs that have motion artifacts have a higher amount of 

parameters than epochs that don’t have motion artifacts. Skewness and 

kurtosis are measures of a signal's asymmetry and tail extremities, 

respectively. The distribution can be distorted by noise and motion 

artifacts, resulting in increased skewness or kurtosis values. 

 
Table 1: Features extracted for good epochs 

Mean Standard 

deviation 

Skewness Kurtosis HRV 

164.44 7119.2 0.48 1.17 57ms 

254.82 5541.95 0.54 1.27 59ms 

149.06 7542.01 0.49 1.06 53ms 
 

 
 

Figure 14:  ROC curve for using feature extraction in the dataset. 
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Table 2: Features extracted for bad epochs 

Mean Standard 

deviation 

Skewness Kurtosis HRV 

750.17 135671.86 4.55 34.61 300ms 

1919.87 83375.72 4.3 31.04 389ms 

492.12 100514.17 2.88 21.9 269ms 
 

 

We then found the most essential feature that has the most 

effect on training the dataset (Figure 15). HRV had the most effective 

role in the training of data. 

 

 
 

Figure 15: Comparison of feature importance 
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5.2 Using FFT of the dataset  

 
The second method we tested was running the classifier on the 

FFT of our epochs. 

We used this transformation on our training and testing dataset 

to see the results. we gained 86.4% accuracy and 92.5% F1 by using FFT 

for classification. As we can see in the figure in the roc curve the AUC 

(area under the curve) is about 88% which is a good measure for this 

classification (Figure 16). 
 

 
 

Figure 16: ROC curve for using FFT on the dataset. 
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Figure 17: FFT of clean epochs of PPG 

 

 
Figure 18: FFT of Noisy epochs of PPG 

 

As can be seen above, the FFT of a clean PPG signal (one that is 

devoid of noise or artifacts), shows a clear and well-defined peak at the 

heart rate frequency (usually about 1-2 Hz for a resting individual) and 

its harmonics. The rest of the frequency spectrum would be rather quiet, 

indicating that the signal is largely made up of these frequency 

components (Figure 17). The scenario changes if you take the FFT of a 

noisy PPG signal (a signal tainted with motion artifacts or other types of 

noise). While there may still be a peak at the heart rate frequency, there 

will also be other peaks corresponding to the noise frequencies (Figure 

18). For example, if there is a motion artifact in the signal, you may notice 

peaks at the frequencies associated with the motion.
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5.3 Using Raw Data 

 
Our last approach used the raw data segments of signals for 

classification and then found the best algorithm for this problem. The 

algorithm we used for this section is Gradient Boosting Classifier which 

is an ensemble algorithm. 

We gained 78.94% accuracy and 87.91% F1 for the classification 

of raw data without changing the training and testing datasets. The ROC 

curve is shown in Figure 19. 

 

 
 

Figure 19: ROC curve of using raw data for classification 

 

The best method with the best results is using feature extraction for all 

dataset samples. the comparison among them is shown in Table 5-3. 

 
 

Table 3: Comparison between the methods and their results 

Measure Using Raw Data 
Using Feature 

Extraction 
Using FFT 

F1 87.91% 93.5% 92.5% 

accuracy 78.94% 87.72% 86.4% 
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5.4 Robustness and generalization 

 
The primary goal of any machine learning endeavor is to discern 

underlying patterns and structures within that data, not just fit a model 

to a given set of training data. The ability of a model to generalize, that is, 

to generate accurate predictions when supplied with additional, unseen 

data, is the ultimate test of its efficacy. The inherent complexity and 

variety of real-world data pose a hurdle in accomplishing this. The real 

world frequently presents circumstances that are significantly more 

complex or diverse than those represented in our training datasets. We 

used a rigorous technique to test our model's robustness and 

generalizability. Rather than depending on a single dataset, we used data 

from five different participants. Because of this variety, we were able to 

replicate a more realistic environment in which the model would meet 

data points it had never seen before during the training phase. The goal 

was to see if our model could predict outcomes consistently and reliably 

across these various datasets, showing its robustness and 

generalizability. Table 5-4 summarizes the results to provide a clear and 

succinct picture of our model's performance across these datasets. The 

results in this table provide insight into how well our model adapts to 

unknown data, which is an important criterion for determining its real-

world applicability and reliability. 

 
 

Table4: Testing the algorithms for unseen datasets. 

 Raw Data FFT of data Feature extraction of 

data 

accuracy F1 accuracy F1 accuracy F1 

Subject1 87.11% 92.97% 90% 94.64% 86.88% 92.81% 

Subject2 70.66% 82.35% 71.55% 83% 73.55% 84.48% 

Subject3 72.88% 82.81% 76.88% 86.52% 76.22% 86.15% 

Subject4 86.44% 92.44% 90% 94.55% 89.11% 94% 

Subject5 94% 96.87% 96% 97.93 95.12% 97.47% 
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Chapter 6:   Conclusion 

 
Due to the voluminous nature of smartwatch PPG data, the use 

of expert labeling is out of the question. Therefore, in this project, we 

used an automated method of labeling noisy segments PPG signal with 

the help of an accelerometer signal embedded in the smartwatch. The 

purpose of this project was to detect noisy and clean segments of PPG 

data which can help us to find the correct health information like BPM 

and HRV. After acquiring the data from our participants and creating 

the ground truth labeled dataset, we tested some methods of training 

and testing data to find out which of them could better detect the noisy 

and clean epochs. Using statistical features of data and FFT on the 

dataset gave us promising results for detecting the artifacts in PPG 

segments. Because the dataset is imbalanced due to being real data from 

a smartwatch the metric for classification could be F1 instead of 

accuracy. The F1 of using FFT and statistical features of data for 

classifications are 92.5% and 93.5% respectively. 

 

 

6.1   Limitations and further work 

 
We used the accelerometer signal to find noisy epochs. However, 

using only the accelerometer signal to determine motion and noise 

artifacts is not sufficient, for many reasons. One of the main problems is 

that the PPG signal quality can be poor even without arm movement. 

This can occur due to a myriad of reasons but two primary reasons are 

bad contact of the PPG sensor to the skin (watch not worn tightly), and 

darker skin color in some subjects [15]. To detect PPG waveform 

distortion, time domain features are not that effective because a small 

change in the PPG time series can lead to a huge deviation in the time 

domain-based features. As a result, in this study, PPG signal quality has 

been analyzed in the time-frequency domain. Based on the analysis of 

the time-frequency spectra (TFS), we want to determine whether the 

time domain PPG signal is corrupted by MNA or not. For this issue, we 

can use the variable frequency complex demodulation (VFCDM) and 

add this method to our projects to detect the noises in segments and label 

them to have a better dataset. The other issue that we can consider in our 
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project is using an ECG signal [16]. We can use ECG for labeling the 

dataset beside the Accelerometer signal. We can use R-peak detection in 

ECG and PPG signals and use RR intervals of both signals for finding 

artifacts or noise too. Secondly, the accelerometer-based method for 

finding ground truth eliminates epochs acquired during exercise, which 

is arguably the most important time to measure HR. It is possible to 

acquire a clean PPG signal during exercise if the watch is worn 

correctly. Future work should establish a better way for labelling 

good/bad epochs/one that does not depend solely on the magnitude of 

the accelerometer signal.
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