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Abstract

Parallel communicating grammar systems (PCGS) were introduces as a formal lan-
guage model for parallel and concurrent computation. A PCGS is a set of formal
grammars working together on their own strings and communicating by transfer-
ring their work strings between each other. A PCGS can be synchronized (when
all the components grammars rewrite their strings simultaneously) or unsynchro-
nized (when at any step a component can choose to rewrite its string or wait).
Synchronization plays a significant role in the expressiveness of a PCGS. Indeed,
synchronized PCGS with context-free components were found to be Turing com-
plete, in contrast to the unsynchronized variant is (not necessarily striclty) weaker
than context-sensitive grammars.

We focus in this thesis on PCGS with regular components and more precisely on
the weaker, unsynchronized variant. Specifically, We investigate the capability of
unsynchronized regular PCGS to generate context-free languages. We find that we
can produce many constructs found in context-free languages. However, we also
find that certain context-free constructs cannot be generated by using this setup.
Consequently, we show that unsynchronized PCGS with regular components lack
the full computational ability to generate all context-free languages. In essence,
while unsynchronized PCGS with regular components offer promise in modelling
the behavior of context-free languages, they ultimately fall short in capturing all of
them. This contributes to the effort of understanding the computational capabilities
of different grammar systems.

i



Acknowledgments

I would like to thank my supervisor, Dr. Stefan D. Bruda, for his help in developing
the study topics and methodology. His opinion was always beneficial and allowed
me to think beyond the box.

In addition, I would like to thank all of the other distinguished teachers in
Bishop’s University’s Department of Computer Science, including Dr. Mohammed
Ayoub Aloui Mhamd, from whom I gained valuable knowledge and insights.

I would want to thank my wife, Narges, for her continuous support and presence
throughout the journey, which has been a constant source of strength, comprehend-
ing, and motivation, regardless of the problems we faced.

Last but not least, I would like to express my gratitude to my parents for their
constant support and affection, as well as for believing in me when I didn’t believe
in myself.

ii



Contents

1 Introduction 1

2 Preliminaries 3
2.1 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Parallel Communicating Grammar Systems . . . . . . . . . . . . . . . 5
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Previous Work 13
3.1 Context-Free PCGS are Turing complete . . . . . . . . . . . . . . . . . 16
3.2 Unsynchronized PCGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Recent Investigations on Unsynchronized Context-Free PCGS . . . . 18

4 Unsynchronized Regular PCGS and Context-Free Languages 20
4.1 Balanced Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Balanced Symbols with Intermediate Content . . . . . . . . . . . . . . 22
4.3 Palindromes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Embedded Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Sequences of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 On Generating all the Context-Free Languages . . . . . . . . . . . . . 25

5 Conclusions 31

Bibliography 33

iii



Chapter 1

Introduction

The study of computing systems that can process information simultaneously has
been a primary focus of theoretical computer science for a long time. Among
the several frameworks developed to explore the characteristics and capabilities
of parallel processing, Parallel Communicating Grammar Systems (PCGS) are dis-
tinguished by their unique method of combining parallelism and communication.
This thesis delves into the domain of unsynchronized PCGS, particularly those em-
ploying regular components, to determine their generative power in comparison to
the classical context-free grammars (CFGs).

In a PCGS, communication between grammars can be categorized as either
returning or non-returning. In a returning system, after fulfilling a communication
request, the queried component replaces its string with the corresponding axiom
and proceeds the derivation process from that point. Conversely, in a non-returning
system, the component’s string remains unchanged following a communication
event, allowing the subsequent derivation to continue rewriting the same string.
The status of the grammar that sent its current string depends on the type of
PCGS being considered. In a non-returning PCGS, the grammar continues working
without modifying its string, whereas in a returning PCGS, the grammar erases its
current string and resumes the derivation process from the axiom.

PCGS can also be divided into two types: synchronised and unsynchronized.
During a rewriting step in a synchronised PCGS, each component must synchro-
nously, apply a rewriting rule. The sole exception is when the related string is
entirely composed of terminals, in which case nothing happens with that string
during a rewriting step. Otherwise, if some component lacks sufficient rewriting
rules, the derivation will block. In unsynchronized PCGS, each grammar has the
option of doing a rewriting step or waiting. Because of the synchronization and
communication facilities, PCGS whose components are of a certain type are gener-
ally more powerful than a single Chomsky grammar of the same type. Synchronized
PCGS have received sustained attention through the years. The unsynchronized
variant on the other hand has received almost no attention. This motivates our
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CHAPTER 1. INTRODUCTION 2

thesis, where we investigate the generative power of unsynchronized PCGS.
The synchronized PCGS with context-free components are very powerful. They

are known to be Turing complete (that is, much more powerful than the components)
[3, 4]. The unsynchronized variant is as expected weaker, being less expressive than
context-sensitive grammars [11] but suspected to the equivalent to these grammars
being able to model many context-sensitive constructs [1].

As illustrated above people have focused extensively on the more glamorous
context-free components, so we thought to characterize the humbler but nonethe-
less interesting PCGS with regular components for a change. While context-free
grammars (CFG) are known for their ability to expressively define a wide variety
of language constructions that regular grammars cannot handle (such as nested
structures and recursive patterns, which are crucial in programming language de-
sign and natural language processing), regular grammars are well-known for their
simplicity and efficiency.

We are therefore wondering whether we can put together regular grammars in
an unsynchronized PCGS to generate any context-free languages. The answer turns
out to be not quite. In fact we find that the relationship between unsynchronized
PCGS with regular components and context-free grammars is surprisingly similar
with the relationship between unsynchronized PCGS with context-free components
and context-sensitive grammars. Indeed, on one hand we find that unsynchronized
regular PCGS can generate many typical context-free constructs. On the other hand,
we show that these PCGS cannot generate all the context-free languages.

On the other hand, our investigation reveals fundamental limits in unsynchro-
nized regular PCGS. Despite their ability to simulate certain context-free constructs,
we show that not all context-free languages can be generated by these systems. We
highlight the inherent computational constraints of unsynchronized PCGS when
faced with the complexity of certain context-free constructs. This thesis not only
demonstrates the ability of unsynchronized PCGS with regular components to
model context-free constructs, but it also identifies the limits of their expressive-
ness.

Considering our results compared with the aforementioned results regarding
unsynchronized context-free PCGS we are tempted to speculate that the languages
generated by unsynchronized regular PCGS are all context free. On the other
hand, we expect that unsynchronized context-free PCGS will be found to be strictly
weaker than the context-sensitive grammars. We hope that our approach will be
useful for showing the latter result, though it is quite possible that the opposite
will turn out to be true (and unsynchronized context-free PCGS will turn out to
be equivalent to context-sensitive grammars). Obviously this is mere speculation,
subject to future investigations.



Chapter 2

Preliminaries

We start by revisiting some fundamental concepts related to grammars, and then
define parallel communicating grammar systems, our main focus. Basically a gram-
mar rewrites a string; by contrast, a parallel grammar system consists of a set of
grammars that rewrite in parallel a set of strings in a cooperative fashion (com-
municating and possibly synchronizing the rewriting processes). The sequencing
and criteria of coordination and communication are determined by the cooperative
strategy among the component grammars [2].

2.1 Grammars

A grammar is a tuple𝐺 = (𝑁, 𝑇, 𝑆, 𝑃), where𝑁 is the set of non-terminal symbols,
𝑇 is the set of terminal symbols, 𝑃 is a set of rewriting rules (or productions or just
rules), and 𝑆 ∈ 𝑁 is the start symbol or axiom. A rule 𝛼 → 𝛽 ∈ 𝑃 shows that a
substring 𝛼 can be replaced by 𝛽. A rewriting step is the rewriting of the string 𝜔
into a string 𝜔

′ according to the rules of the grammar, which is written 𝜔 ⇒ 𝜔
′.

Formally, 𝜔 ⇒ 𝜔
′ iff 𝜔 = 𝑢𝛼𝑣, there exists a rule 𝛼 → 𝛽 ∈ 𝑃, and 𝜔′ = 𝑢𝛽𝑣 for some

strings 𝑢, 𝑣 ∈ (𝑁 ∪ 𝑇)∗.
A derivation from 𝜔 to 𝜔

′ is a chained sequence of rewriting steps which is
written 𝜔 ⇒∗ 𝜔

′. The language generated by a grammar consists of exactly all the
strings 𝜔 such that 𝑆 ⇒∗ 𝜔 and |𝜔|𝑁 = 0 that is, all the terminal strings that can be
generated by derivations that start from the axiom of the grammar. The language
generated by 𝐺 is denoted by 𝐿(𝐺). 𝑅𝐸𝐺, 𝐿𝐼𝑁, 𝐶𝐹, 𝐶𝑆, 𝑅𝐸 are the families of
regular, linear, context-free, context-sensitive, recursively enumerable languages,
respectively [6].

The Chomsky hierarchy defines four classes of grammars, depending on the
form of the rewriting rules. Let 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) be a grammar. We then have the
following:
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CHAPTER 2. PRELIMINARIES 4

Figure 2.1: The Chomsky hierarchy

1. A type-0 or unrestricted grammar, referred to as 𝐺, is characterized by the ab-
sence of any restrictions. This kind of grammar has the capability to generate
languages that are semi-decidable by Turing machines. The languages pro-
duced by a type-0 grammar are known as recursively enumerable languages
or RE for short. [10].

2. A grammar 𝐺 is considered type-1 or context-sensitive grammar, if |𝛼| ≤
��𝛽��

for every rewriting rule 𝛼 → 𝛽 in 𝑃. This type of grammar can have a
rewriting rule of the form 𝑆 → 𝜀, but only if 𝑆 is not in the right-hand side
of any rewriting rule. Languages generated by a type-1 grammar are called
context sensitive, or CS for short [10].

3. A grammar 𝐺 is classified as type-2 or context-free or CF for short if for every
rewriting rule 𝛼 → 𝛽 in 𝑃 we have |𝛼| = 1, indicating that 𝛼 is a single non-
terminal symbol. Within this category, linear grammars represent a specific
sub-type. In linear grammars, no rewriting rule is permitted to have more
than one non-terminal symbol in its right-hand side. Meanwhile, languages
generated by the linear grammar sub-type are referred to as Linear, or LIN.
[8, 9].

4. A grammar 𝐺 is considered type-3 or regular if its rewriting rules are one of
these specific forms: 𝐴→ 𝑐𝐵, 𝐴→ 𝑐, 𝐴→ 𝜀, or 𝐴→ 𝐵. In these forms, 𝐴, 𝐵
represent non-terminals, while 𝑐 is a terminal symbol. Languages generated
by a type-3 grammar are called regular, or REG for short.

The types of grammars described above form a hierarchy as shown in Figure 2.1.
REG is the smallest and RE the largest class.
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2.2 Parallel Communicating Grammar Systems

A parallel communicating grammar system (PCGS for short) [14] provides a theo-
retical construct that combines the concepts of grammar with parallelism and com-
munication. The idea behind parallel communicating grammar systems (PCGS) is
the notion of multiple grammars that work together in parallel, communicate with
each other, and generate strings. This concept supports the investigation of the
language-theoretic properties of parallel systems.

Definition 2.1. PARALLEL COMMUNICATING GRAMMAR SYSTEM [2]: Let 𝑛 ≥
1 be a natural number. A parallel communicating grammar system (or PCGS) of degree 𝑛
is an (𝑛 + 3)-tuple

Γ = (𝑁, 𝑇, 𝐾, 𝐺1 , . . . , 𝐺𝑛)
where 𝑁 is a non-terminal and 𝑇 a termina alphabett, 𝐾 is the set of query symbol with
𝐾 = {𝑄1 , . . . , 𝑄𝑛}. The sets 𝑁 , 𝑇 and 𝐾 are mutually disjoint. Each 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛 is the
usual Chomsky grammar

𝐺𝑖 = (𝑁 ∪ 𝐾, 𝑇, 𝑃𝑖 , 𝑆𝑖) , 1 ≤ 𝑖 ≤ 𝑛

The grammars 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛 are the components of the system. Each query symbol 𝑄𝑖

in 𝐾 points to the component 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛.

A PCGS derivations consists of a series of rewriting and communication steps.
The communication has priority over rewriting, meaning that a rewriting step is
allowed only when no query symbol appears in the current configuration.

Definition 2.2. DERIVATION IN A PCGS [2]: Let Γ = (𝑁, 𝑇, 𝐾, 𝐺1 , . . . , 𝐺𝑛)
be a PCGS as above, for two 𝑛-tuples (𝑥1 , 𝑥2 , . . . , 𝑥𝑛) and (𝑦1 , 𝑦2 , . . . , 𝑦𝑛), with
𝑥𝑖 , 𝑦𝑖 ∈ 𝑉∗

Γ
, 1 ≤ 𝑖 ≤ 𝑛. W e write

(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) ⇒ (𝑦1 , 𝑦2 , . . . , 𝑦𝑛)

iff one of the following two cases holds:

1. |𝑥𝑖|𝐾 = 0 for all 1 ≤ 𝑖 ≤ 𝑛, then 𝑥𝑖 ⇒𝐺𝑖 𝑦𝑖 or 𝑥𝑖 = 𝑦𝑖 ∈ 𝑇∗ , 1 ≤ 𝑖 ≤ 𝑛.

2. There is 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, such that |𝑥𝑖|𝐾 > 0. We write such a string 𝑥𝑖 as

𝑥𝑖 = 𝑧1𝑄𝑖1𝑧2𝑄𝑖2 . . . 𝑧𝑡𝑄𝑖𝑡 𝑧𝑡+1 , 𝑡 ≥ 1,

for 𝑡 ≥ 1, 𝑧𝑖 ∈ (𝑁 ∪ 𝑇)∗ , 1 ≤ 𝑗 ≤ 𝑡 + 1. If |𝑥𝑖 𝑗 |𝐾 = 0 for all 1 ≤ 𝑗 ≤ 𝑡, then

𝑦𝑖 = 𝑧1𝑥𝑖1𝑧2𝑥𝑖2 . . . 𝑧𝑡𝑥𝑖𝑡 𝑧𝑡+1 ,

[and 𝑦𝑖 𝑗 = 𝑆𝑖 𝑗 , 1 ≤ 𝑗 ≤ 𝑡]. For all the indices 𝑖 not specified above we have 𝑦𝑖 = 𝑥𝑖 .
A PCGS is returning if the derivation proceeds as above, and non-returning if the
phrase “[and 𝑦𝑖 𝑗 = 𝑆𝑖 𝑗 , 1 ≤ 𝑗 ≤ 𝑡]” is removed from the definition.
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In other words, an 𝑛-tuple (𝑥1 , . . . , 𝑥𝑛) yields (𝑦1 , . . . , 𝑦𝑛) if either of the two
cases hold:

1. If there is no query symbol in 𝑥1 , . . . , 𝑥𝑛 , then we have a component-wise
derivation 𝑥𝑖 ⇒𝐺𝑖 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛 (one rule is used in each component 𝐺𝑖),
unless 𝑥𝑖 is terminal (𝑥𝑖 ∈ 𝑇∗), case in which it remains unchanged (𝑦𝑖 = 𝑥𝑖).

2. Whenever a query symbol is present, then a communication step has priority
and should happen. During this step, each query symbol 𝑄 𝑗 in 𝑥𝑖 is replaced
by 𝑥 𝑗 , but only if 𝑥 𝑗 does not contain any query symbols. Simply put, a
communication step involves replacing the query symbol 𝑄 𝑗 with the string
𝑥 𝑗 . The outcome of this process is known as 𝑄 𝑗 being satisfied by 𝑥 𝑗 . Once
the communication step is complete, the grammar 𝐺 𝑗 continues processing
from its axiom or from 𝑥 𝑗 depending on whether the system is returning or
non-returning. No rewriting step can take place unless all query symbols are
satisfied during a communication step. If some of them remain, the next step
will be another communication to satisfy them.

We use ⇒ to denote any derivation step (both component-wise rewriting and
communication). Whenever not clear from the context we may use ⇒𝑟 and ⇒𝑛𝑟

for the returning and non-returning modes, respectively. A sequence of rewriting
and communication steps are denoted by ⇒∗, the reflexive and transitive closure of
⇒. Again we may occasionally qualify this operator by using ⇒∗

𝑟 or ⇒∗
𝑛𝑟 (for the

returning or non-returning modes).
A derivation in a PCGS is blocked (that is, cannot continue) in the following two

cases [2, 12, 13, 15]:

1. If a component 𝑥𝑖 in the current n-tuple (𝑥1 , ..., 𝑥𝑛) includes non-terminals
but lacks any non-terminal that can be rewritten in 𝐺𝑖 , the derivation cannot
proceed.

2. The derivation also comes to a stop in the event of a circular query. This occurs
if 𝐺𝑖1 introduces 𝑄𝑖2 , 𝐺𝑖2 introduces 𝑄𝑖3 , and so on until 𝐺𝑖𝑘−1 introduces 𝑄𝑖𝑘

and 𝐺𝑖𝑘 introduces 𝑄𝑖1 . recall that communication is prioritized and only
strings free of query symbols can be communicated. Consequently in such a
cycle neither communication nor componentwise derivation can happen.

Definition 2.3. LANGUAGES GENERATED BY PCGS [2]: The language generated by
a PCGS Γ is the language generated by its first component (𝐺1 above), when starting from
the configuration (𝑆1 , . . . , 𝑆𝑛), that is:

𝐿 𝑓 (Γ) = {𝑤 ∈ 𝑇∗ | (𝑆1 , . . . , 𝑆𝑛) ⇒∗ (𝑤, 𝛼1 , . . . , 𝛼𝑛) ,
𝛼𝑖 ∈ (𝑁 ∪ 𝑇 ∪ 𝐾)∗ , 2 ≤ 𝑖 ≤ 𝑛}
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The tuple of axioms (𝑆1 , . . . , 𝑆𝑛) is where the derivation begins. Before 𝐺1
produces a terminal string, a number of rewriting and/or communication steps are
performed. At the end we will get a terminal string produced by the first grammar,
also called the master grammar.

Definition 2.4. PCGS SEMANTICS [15]: Let Γ = (𝑁, 𝑇, 𝐾, 𝐺1 , . . . , 𝐺𝑛) be a PCGS.

1. If only𝐺1 is allowed to introduce query symbols, then we say Γ is a centralized PCGS.
On other hand we say Γ is a non-centralized PCGS if there is no restriction imposed
on the introduction of query symbols.

2. A PCGS is said to be returning if each component resumes working from its axiom
after being communicated. When each component continues the processing of the
current string after communication instead, the PCGS is said to be non-returning.

3. A system is synchronized when each component grammar uses exactly one rewriting
rule in each component-wise derivation step (except when the component grammar is
holding a terminal string, case in which it is allowed to wait). In a non-synchronized
system, each component may choose to either rewrite or wait in any step which is not
a communication step.

In cases where both the returning and non-returning modes of derivation are
applicable to the same system, we may denote by 𝐿𝑟(Γ) the language generated by
Γ in the returning mode, and by 𝐿𝑛𝑟(Γ) the language generated by Γ in the non-
returning mode. We will often omit the subscript 𝑟 or 𝑛𝑟 whenever we want to refer
to both modes, or the mode is understood from the context.

In the synchronized case we denote by 𝑃𝐶𝑛(𝑋), 𝑛 ≥ 1 the family of languages
generated in the returning mode by non-centralized PCGS with at most 𝑛 com-
ponents and with rules of type 𝑋 (where 𝑋 is an element of the Chomsky hier-
archy). If centralized systems are user we add the symbol C, and for the non-
returning mode of derivation we use the symbol N. We thus obtain the classes
𝐶𝑃𝐶𝑛(𝑋), 𝑁𝑃𝐶𝑛(𝑋), 𝑁𝐶𝑃𝐶𝑛(𝑋). When an arbitrary number of components is
considered, we use ∗ in the subscript instead of 𝑛. If the number of components has
no restriction then the subscript 𝑛 may also be removed, thus obtaining the classes
𝑃𝐶(𝑋), 𝐶𝑃𝐶(𝑋), 𝑁𝑃𝐶(𝑋), and 𝑁𝐶𝑃𝐶(𝑋).

For the unsynchronized case we add the prefix 𝑈 , thus obtaining the classes
𝑈𝑃𝐶(𝑋), 𝑈𝐶𝑃𝐶(𝑋), 𝑈𝑁𝑃𝐶(𝑋), and 𝑈𝑁𝐶𝑃𝐶(𝑋) (and 𝑈𝑃𝐶𝑛(𝑋), 𝑈𝐶𝑃𝐶𝑛(𝑋),
𝑈𝑁𝑃𝐶𝑛(𝑋),𝑈𝑁𝐶𝑃𝐶𝑛(𝑋) as well).

2.3 Examples

PCGS can be classified according to their grammar structure, behavior after satis-
fying a query, and timing. Now we give some examples to show the corresponding
situations respectively.
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Recall that a PCGS is centralized if there is only grammar authorized to introduce
query symbols. If the number of grammars that can use the query to request a string
is greater than two, a PCGS is non-centralized.

For example, given

Γ = ({𝑆1 , 𝑆2 , 𝑆3}, 𝐾, {𝑎, 𝑏, 𝑐}, 𝐺1 , 𝐺2 , 𝐺3).

The following is a centralized PCGS, since query symbols only appears in 𝑃1:

𝑃1 = {𝑆1 → 𝑎𝑆1 , 𝑆1 → 𝑎𝑄2 , 𝑆2 → 𝑏𝑄3 , 𝑆3 → 𝑐},
𝑃2 = {𝑆2 → 𝑏𝑆2},
𝑃3 = {𝑆3 → 𝑐𝑆3}.

On the other hand, the following is a non-centralized PCGS, since query symbols
appears in both 𝑃1 and 𝑃2.

𝑃1 = {𝑆1 → 𝑎𝑆1 , 𝑆1 → 𝑎𝑄2 , 𝑆2 → 𝑏𝑄3 , 𝑆3 → 𝑐},
𝑃2 = {𝑆2 → 𝑏𝑆2 , 𝑆2 → 𝑏𝑄3},
𝑃3 = {𝑆3 → 𝑐𝑆3}.

Consider now what happens after a component provides the string for the gram-
mar which requests it by issuing the corresponding query symbol. In a returning
system, the grammar will resume working from its axiom. In a non-returning
system, the grammar will continue the rewriting of the current string of the corre-
sponding component.

Let us consider the following PCGS as an example:

Γ = ({𝑆1 , 𝑆2 , 𝑆3}, 𝐾, {𝑎, 𝑏, 𝑐}, 𝐺1 , 𝐺2 , 𝐺3),
𝑃1 = {𝑆1 → 𝑎𝑆1 , 𝑆1 → 𝑎𝑄2 , 𝑆2 → 𝑏𝑄3 , 𝑆3 → 𝑐},
𝑃2 = {𝑆2 → 𝑏𝑆2},
𝑃3 = {𝑆3 → 𝑐𝑆3}.

For the following derivation, the component 𝑃1 and 𝑃2 return to their corre-
sponding axiom when 𝑄1 and 𝑄2 are satisfied. Thus, PCGS is in returning mode
when the following derivation happens:

(𝑆1 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑆1 , 𝑏𝑆2 , 𝑐𝑆3) ⇒∗𝑛 (𝑎𝑛𝑆1 , 𝑏
𝑛𝑆2 , 𝑐

𝑛𝑆3) ⇒
(𝑎𝑛+1𝑄2 , 𝑏

𝑛+1𝑆2 , 𝑐
𝑛+1𝑆3) ⇒ (𝑎𝑛+1𝑏𝑛+1𝑆2 , 𝑆2 , 𝑐

𝑛+1𝑆3) ⇒
(𝑎𝑛+1𝑏𝑛+2𝑄3 , 𝑏𝑆2 , 𝑐

𝑛+2𝑆3) ⇒ (𝑎𝑛+1𝑏𝑛+2𝑐𝑛+2𝑆3 , 𝑏𝑆2 , 𝑆3) ⇒
(𝑎𝑛+1𝑏𝑛+2𝑐𝑛+3 , 𝑏2𝑆2 , 𝑐𝑆3).
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By contrast, the PCGS is in non-returning mode if the following derivation
occurs:

(𝑆1 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑆1 , 𝑏𝑆2 , 𝑐𝑆3) ⇒∗𝑛 (𝑎𝑛𝑆1 , 𝑏
𝑛𝑆2 , 𝑐

𝑛𝑆3) ⇒
(𝑎𝑛+1𝑄2 , 𝑏

𝑛+1𝑆2 , 𝑐
𝑛+1𝑆3) ⇒ (𝑎𝑛+1𝑏𝑛+1𝑆2 , 𝑏

𝑛+1𝑆2 , 𝑐
𝑛+1𝑆3) ⇒

(𝑎𝑛+1𝑏𝑛+2𝑄3 , 𝑏
𝑛+2𝑆2 , 𝑐

𝑛+2𝑆3) ⇒ (𝑎𝑛+1𝑏𝑛+2𝑐𝑛+2𝑆3 , 𝑏
𝑛+2𝑆2 , 𝑐

𝑛+2𝑆3) ⇒
(𝑎𝑛+1𝑏𝑛+2𝑐𝑛+3 , 𝑏𝑛+3𝑆2 , 𝑐

𝑛+3𝑆3).

A PCGS is called synchronized if each grammar uses exactly one rewriting
rule in each component-wise derivation step (except if the component grammar
is holding a terminal string). If each grammar can choose to either rewrite or
wait in any step which is not a communication step, then the system is called
unsynchronized. Note that the way how a query symbol generates an immediate
communication step is the same in both the synchronized and unsynchronized
systems.

We provide an example by using the system Γ with 𝑃1 , 𝑃2 , 𝑃3 as above. The
following derivation assumes that the system is synchronized:

(𝑆1 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑆1 , 𝑏𝑆2 , 𝑐𝑆3) ⇒∗𝑛 (𝑎𝑛𝑆1 , 𝑏
𝑛𝑆2 , 𝑐

𝑛𝑆3) ⇒∗𝑘

(𝑎𝑛+𝑘𝑆1 , 𝑏
𝑛+𝑘𝑆2 , 𝑐

𝑛+𝑘𝑆3) ⇒∗𝑚 (𝑎𝑛+𝑘+𝑚𝑆1 , 𝑏
𝑛+𝑘+𝑚𝑆2 , 𝑐

𝑛+𝑘+𝑚𝑆3) ⇒
(𝑎𝑛+𝑘+𝑚+1𝑄2 , 𝑏

𝑛+𝑘+𝑚+1𝑆2 , 𝑐
𝑛+𝑘+𝑚+1𝑆3) ⇒ . . .

On the other hand, when the system is considered unsynchronized, the follow-
ing is also a possible derivation:

(𝑆1 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑆1 , 𝑏𝑆2 , 𝑐𝑆3) ⇒∗𝑛 (𝑎𝑛𝑆1 , 𝑏𝑆2 , 𝑐
𝑛𝑆3) ⇒∗𝑘

(𝑎𝑛+𝑘𝑆1 , 𝑏
1+𝑘𝑆2 , 𝑐

𝑛𝑆3) ⇒∗𝑚 (𝑎𝑛+𝑘+𝑚𝑆1 , 𝑏
1+𝑘+𝑚𝑆2 , 𝑐

𝑛+𝑚𝑆3) ⇒
(𝑎𝑛+𝑘+𝑚𝑄2 , 𝑏

1+𝑘+𝑚𝑆2 , 𝑐
𝑛+𝑚𝑆3) ⇒ (𝑎𝑛+𝑘+𝑚𝑏1+𝑘+𝑚𝑆2 , 𝑆2 , 𝑐

𝑛+𝑚𝑆3) ⇒ . . .

Note that the derivation in an unsynchronized system is a special case of the
derivation in the synchronized system. Indeed, any unsynchronized system can be
converted into an equivalent synchronized system by adding the set {𝐴→ 𝐴 : 𝐴 ∈
𝑁} to all the sets of rewriting rules in all the components.

Now that the semantics of the PCGS communication and synchronization has
been illustrated, we proceed with a few more interesting examples.

Example 1. Consider a centralized non-returning regular PCGS

Γ1 = ({𝑆1 , 𝑆2}, 𝐾, {𝑎, 𝑏, 𝑐}, 𝐺1 , 𝐺2)

with

𝑃1 = {𝑆1 → 𝑎𝑆1 , 𝑆1 → 𝑎𝑄2 , 𝑆2 → 𝑐𝑄2 , 𝑆2 → 𝑐},
𝑃2 = {𝑆2 → 𝑏𝑆2}.
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A derivation in Γ1 has the following form:

(𝑆1 , 𝑆2) ⇒∗ (𝑎𝑘𝑆1 , 𝑏
𝑘𝑆2) ⇒ (𝑎𝑘+1𝑄2 , 𝑏

𝑘+1𝑆2) ⇒
(𝑎𝑘+1𝑏𝑘+1𝑆2 , 𝑏

𝑘+1𝑆2) ⇒ (𝑎𝑘+1𝑏𝑘+1𝑐𝑄2 , 𝑏
𝑘+2𝑆2) ⇒

(𝑎𝑘+1𝑏𝑘+1𝑐𝑏𝑘+2𝑆2 , 𝑏
𝑘+2𝑆2) ⇒ (𝑎𝑛𝑏𝑛𝑐𝑏𝑛+1𝑐 . . . 𝑐𝑏𝑘+𝑗𝑐, 𝑏𝑘+𝑗𝑆2),

for 𝑟 ≥ 2, 𝑘𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑟. Therefore:

𝐿(Γ1) = {𝑎𝑘1𝑏𝑘1𝑎𝑘2𝑏𝑘2 . . . 𝑎𝑘𝑟𝑏𝑘𝑟 𝑐 | 𝑟 ≥ 2, 𝑘1 ≥ 1, 𝑘𝑖 ≥ 2, 1 ≤ 𝑖 ≤ 𝑟}.

Although 𝐺1 , 𝐺2 are regular grammars, 𝐿(Γ1) is not linear. The result that 𝐿(Γ1)
is not linear can be proved easily by using the following necessary condition for a
language to be linear: If 𝐿 ⊆ 𝑉∗ is a linear language, then two regular languages
𝐿1 , 𝐿2 exist, such that 𝐿 ⊆ 𝐿1𝐿2 and for each 𝑥 ∈ 𝐿1 (𝑦 ∈ 𝐿2) there is an 𝑦 ∈ 𝐿2 (𝑥 ∈
𝐿1), such that 𝑥𝑦 ∈ 𝐿 [6].

Example 2. Consider the following PCGS:

Γ2 = ({𝑆1 , 𝑆
′
1 , 𝑆2 , 𝑆3}, 𝐾, {𝑎, 𝑏}, 𝐺1 , 𝐺2)

with

𝑃1 = {𝑆1 → 𝑎𝑏𝑐, 𝑆1 → 𝑎2𝑏2𝑐2 , 𝑆1 → 𝑎𝑆′1 , 𝑆1 → 𝑎3𝑄2 , 𝑆
′
1 → 𝑎𝑆′1 ,

𝑆′1 → 𝑎3𝑄2 , 𝑆2 → 𝑏2𝑄3 , 𝑆3 → 𝑐},
𝑃2 = {𝑆2 → 𝑏𝑆2},
𝑃3 = {𝑆3 → 𝑐𝑆3}.

We start with (𝑆1 , 𝑆2 , 𝑆3). We first use the rule 𝑆1 → 𝑎𝑆′1 and the rule 𝑆′1 → 𝑎𝑆′1 in
𝑃1 successively, then use the unique rules in 𝑃2 , 𝑃3 for 𝑘 ≥ 0 times. We get:

(𝑆1 , 𝑆2 , 𝑆3) ⇒𝑟 (𝑎𝑆′1 , 𝑏𝑆2 , 𝑐𝑆3) ⇒∗
𝑟 (𝑎𝑘+1𝑆′1 , 𝑏

𝑘+1𝑆2 , 𝑐
𝑘+1𝑆3).

Eventually, the rule 𝑆′1 → 𝑎3𝑄2 in 𝑃1 will be used:

(𝑎𝑘+1𝑆′1 , 𝑏
𝑘+1𝑆2 , 𝑐

𝑘+1𝑆3) ⇒𝑟 (𝑎𝑘+4𝑄2 , 𝑏
𝑘+2𝑆2 , 𝑐

𝑘+2𝑆3).

Since the query symbol 𝑄2 is present, 𝑏𝑘+2𝑆2 is sent to the first component and replaces 𝑄2
in the following communication step:

(𝑎𝑘+4𝑄2 , 𝑏
𝑘+2𝑆2 , 𝑐

𝑘+2𝑆3) ⇒𝑟 (𝑎𝑘+4𝑏𝑘+2𝑆2 , 𝑆2 , 𝑐
𝑘+2𝑆3).

Now we perform the following steps:

(𝑎𝑘+4𝑏𝑘+2𝑆2 , 𝑆2 , 𝑐
𝑘+2𝑆3) ⇒𝑟 (𝑎𝑘+4𝑏𝑘+4𝑄3 , 𝑏𝑆2 , 𝑐

𝑘+3𝑆3) ⇒𝑟

(𝑎𝑘+4𝑏𝑘+4𝑐𝑘+3𝑆3 , 𝑏𝑆2 , 𝑆3) ⇒𝑟 (𝑎𝑘+4𝑏𝑘+4𝑐𝑘+4 , 𝑏2𝑆2 , 𝑐𝑆3).
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Therefore, all strings 𝑎𝑛𝑏𝑛𝑐𝑛 , 𝑛 ≥ 4, can be produced in this way. We can use the following
derivation to obtain the string 𝑎3𝑏3𝑐3:

(𝑆1 , 𝑆2 , 𝑆3) ⇒𝑟 (𝑎3𝑄2 , 𝑏𝑆2 , 𝑐𝑆2) ⇒𝑟 (𝑎3𝑏𝑆2 , 𝑆2 , 𝑐𝑆3) ⇒𝑟

(𝑎3𝑏3𝑄3 , 𝑏𝑆2 , 𝑐
2𝑆3) ⇒𝑟 (𝑎3𝑏3𝑐2𝑆3 , 𝑏𝑆2 , 𝑆3) ⇒ (𝑎3𝑏3𝑐3 , 𝑏2𝑆2 , 𝑐𝑆3).

Finally, the strings 𝑎𝑏𝑐, 𝑎2𝑏2𝑐2 are produced directly by the master component𝑃1. Therefore
the language generates by this system is

𝐿𝑟(Γ2) = 𝐿𝑛𝑟(Γ2) = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 1}.

Since there is only one query from 𝑃1 to 𝑃2 and only one to 𝑃3, we obtain the same
language in both returning and non-returning modes (since the form of the strings being
communicated become immaterial after communication).

Note in passing that the above system is centralized. This demonstrates the
increased power of a PCGS. Indeed, quite a simple PCGS with regular components
can generate a classic examples of non-context-free languages.

Example 3. Consider the following PCGS:

Γ3 = ({𝑆1 , 𝑆2 , 𝑆3}, 𝐾, {𝑎, 𝑏, 𝑐, 𝑑}, 𝐺1 , 𝐺2 , 𝐺3)

with

𝑃1 = {𝑆1 → 𝑎𝑆1 , 𝑆1 → 𝑎𝑄2 , 𝑆3 → 𝑑},
𝑃2 = {𝑆2 → 𝑏𝑆2 , 𝑆2 → 𝑏𝑄3},
𝑃3 = {𝑆3 → 𝑐𝑆3}.

Each derivation in Γ3 starts with

(𝑆1 , 𝑆2 , 𝑆3) ⇒∗𝑘 (𝑎𝑘𝑆1 , 𝑏
𝑘𝑆2 , 𝑐

𝑘𝑆3), 𝑘 ≥ 0,

and then use the rules 𝑆1 → 𝑎𝑄2 , 𝑆2 → 𝑏𝑄3 in 𝐺1 , 𝐺2 respectively. We obtain three
cases:

(𝑎𝑘𝑆1 , 𝑏
𝑘𝑆2 , 𝑐

𝑘𝑆3) ⇒ (𝑎𝑘+1𝑄2 , 𝑏
𝑘+1𝑆2 , 𝑐

𝑘+1𝑆3),
(𝑎𝑘𝑆1 , 𝑏

𝑘𝑆2 , 𝑐
𝑘𝑆3) ⇒ (𝑎𝑘+1𝑆1 , 𝑏

𝑘+1𝑄3 , 𝑐
𝑘+1𝑆3),

(𝑎𝑘𝑆1 , 𝑏
𝑘𝑆2 , 𝑐

𝑘𝑆3) ⇒ (𝑎𝑘+1𝑄2 , 𝑏
𝑘+1𝑄3 , 𝑐

𝑘+1𝑆3).

In the first case, after communicating 𝑏𝑘+1𝑆2 to 𝐺1, the derivation is blocked. In the
second case the result is the same, after communicating 𝑐𝑘+1𝑆3 to 𝐺2. In the third case, there
are two query symbols in the configuration. 𝑄2 cannot be satisfied for the moment since it
asks for a string containing query symbols. Hence, we first satisfy 𝑄3:

(𝑎𝑘+1𝑄2 , 𝑏
𝑘+1𝑄3 , 𝑐

𝑘+1𝑆3) ⇒ (𝑎𝑘+1𝑄2 , 𝑏
𝑘+1𝑐𝑘+1𝑆3 , 𝑣3)
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(the form of 𝑣3 depends on whether Γ3 is considered as returning or non-returning).
Now 𝑄2 can be satisfied:

(𝑎𝑘+1𝑄2 , 𝑏
𝑘+1𝑐𝑘+1𝑆3 , 𝑣3) ⇒ (𝑎𝑘+1𝑏𝑘+1𝑐𝑘+1𝑆3 , 𝑣2 , 𝑣3).

When Γ3 is non-returning, 𝑣2 = 𝑏𝑘+1𝑐𝑘+1𝑆3 and 𝑆3 cannot be rewritten in 𝑃2, so the
derivation is blocked. Thus, the derivation can be concluded only in the returning case, case
in which we have:

(𝑎𝑘+1𝑏𝑘+1𝑐𝑘+1𝑆3 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑘+1𝑏𝑘+1𝑐𝑘+1𝑑, 𝑣′2 , 𝑐𝑆3),

where 𝑣′2 ∈ {𝑏𝑆2 , 𝑏𝑄3}. In conclusion,

𝐿𝑟(Γ3) = {𝑎𝑛𝑏𝑛𝑐𝑛𝑑 | 𝑛 ≥ 1}.

The purpose of this example is to show a more complicated way of working
with query symbols in the non-centralized case.



Chapter 3

Previous Work

We mainly concentrate in this chapter on synchronized PCGS due to the lack of find-
ings for unsynchronized cases, despite the many outcomes related to the generative
capabilities of various PCGS types.

The most powerful PCGS types are context-sensitive (CS) and recursively enu-
merable (RE). Interestingly, their behaviors are quite alike though not exactly the
same. It is immediate that a recursively enumerable grammar is as powerful as any
PCGS with recursively enumerable components. That is,

𝑅𝐸 = 𝑌𝑛(𝑅𝐸) = 𝑌∗(𝑅𝐸), 𝑛 ≥ 1,

for all 𝑌 ∈ {𝑃𝐶, 𝐶𝑃𝐶, 𝑁𝑃𝐶, 𝑁𝐶𝑃𝐶} [2].
It turns out that this also applies to PCGS with context-sensitive components in

relation to context-sensitive languages:

𝐶𝑆 = 𝑌𝑛(𝐶𝑆) = 𝑌∗(𝐶𝑆), 𝑛 ≥ 1,

for all 𝑌 ∈ {𝐶𝑃𝐶, 𝑁𝐶𝑃𝐶} [2]. However, it is important to note that this finding
pertains to the centralized case and is not applicable to non-centralized PCGS.

Despite these points, it should be noted that PCGS with CS components are not
particularly practical due to their reliance on a computationally expensive model,
namely the context-sensitive grammar. More useful types employ simpler, compu-
tationally less demanding components. Therefore, exploring PCGS with regular or
context-free components is more interesting and relevant.

We note that the class of languages produced by a centralized returning PCGS
with regular components is a subset of the class of languages generated by a non-
centralized returning PCGS with regular components. Essentially, this indicates
that a PCGS, in general, exhibits greater power than an individual grammar of
the same type, and the power of the system amplifies with the increase in its
communication facilities. [15]:

𝐶𝑃𝐶𝑛(𝑅𝐸𝐺) ⊊ 𝑃𝐶𝑛(𝑅𝐸𝐺), 𝑛 > 1.

13
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The concept is similarly valid for PCGS with context-free components, as follows:
[6]:

𝐶𝑃𝐶∗(𝐶𝐹) ⊆ 𝑃𝐶∗(𝐶𝐹).
However, in this scenario it is important to note that only increasing communication
within the system does not necessarily enhance its power.

In general, the centralized variant is a specific case of a non-centralized PCGS. It
is obvious that centralized qualifier limits the communication initiation to the first
grammar in the system. Consequently, for any languages created by a centralized
PCGS of any type, there is a non-centralized PCGS of the same type that can generate
the same language:

𝐶𝑃𝐶𝑛(𝑋) ⊆ 𝑃𝐶𝑛(𝑋), 𝑛 ≥ 1.

This indicates that the introduction of increasingly more powerful communica-
tion facilities is largely the reason why the generative power of a PCGS is greater
than a single grammar component. Once these facilities are limited, the generative
power also becomes limited.

These two findings further illustrate the limitations in the generative power of
PCGS. Specifically, when limited to only two regular components, the languages
generated by centralized or non-centralized PCGS are all context-free.

1. 𝐶𝑃𝐶2(𝑅𝐸𝐺) ⊊ 𝐶𝐹.

2. 𝑃𝐶2(𝑅𝐸𝐺) ⊆ 𝐶𝐹.

They has been proved in [2].
Enhancing the generative power of a system can also be achieved by increasing

the number of components in the system. As previously mentioned, this does
not change the generative capacity in the recursively enumerable case, and to an
extent, the same holds for the context-sensitive case. However, when examining
classes lower in the hierarchy, it becomes evident that an increase in the number of
components generally leads to a rise in the system’s generative capacity.[2]:

1. There are languages that can be generated by a PCGS with two or more regular
components, which cannot be produced by a linear grammar:

𝑌𝑛(𝑅𝐸𝐺) \ 𝐿𝐼𝑁 ≠ ∅,

for 𝑛 ≥ 2, 𝑌 ∈ {𝑃𝐶, 𝐶𝑃𝐶, 𝑁𝑃𝐶, 𝑁𝐶𝑃𝐶}.

2. A language exists that can be generated by a PCGS with three or more regular
components but cannot be produced by a context-free grammar:

𝑌𝑛(𝑅𝐸𝐺) \ 𝐶𝐹 ≠ ∅,

for 𝑛 ≥ 3, 𝑌 ∈ {𝑃𝐶, 𝐶𝑃𝐶, 𝑁𝑃𝐶, 𝑁𝐶𝑃𝐶} (and 𝑛 ≥ 2 for non-returning
PCGS).
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3. A language exists that can be generated by a PCGS with two or more linear
components, but cannot be produced by a context-free grammar:

𝑌𝑛(𝐿𝐼𝑁) \ 𝐶𝐹 ≠ ∅,
for 𝑛 ≥ 2, 𝑌 ∈ {𝑃𝐶, 𝐶𝑃𝐶, 𝑁𝑃𝐶, 𝑁𝐶𝑃𝐶}.

4. A language exists that can be generated by a non-returning PCGS with two
or more regular components, which cannot be produced by a context-free
grammar:

𝑌𝑛(𝑅𝐸𝐺) \ 𝐶𝐹 ≠ ∅,
for 𝑛 ≥ 2, 𝑌 ∈ {𝑁𝑃𝐶, 𝑁𝐶𝑃𝐶}.

If the power of the components increases, then the power of the PCGS will
generally increase. This applies strictly to the centralized case for regular, linear
and context-free components [2]:

𝐶𝑃𝐶𝑛(𝑅𝐸𝐺) ⊊ 𝐶𝑃𝐶𝑛(𝐿𝐼𝑁) ⊊ 𝐶𝑃𝐶𝑛(𝐶𝐹), 𝑛 ≥ 1.

In the case of non-centralized PCGS, the same relationship is likely to apply, al-
though this requires further investigation.

The following statement implies that the language families 𝐶𝑃𝐶𝑛(𝑅𝐸𝐺) and
𝐶𝑃𝐶𝑛(𝐿𝐼𝑁) are not too large:

𝐿𝐼𝑁 \ 𝐶𝑃𝐶∗(𝑅𝐸𝐺) ∪ 𝑁𝐶𝑃𝐶∗(𝑅𝐸𝐺) ≠ ∅,
Indeed, this means that there are specific languages within the scope of linear
grammars that can be effectively generated by these parallel systems. There exists
a language that can be generated by a linear grammar but cannot be produced by
either non-centralized parallel communicating grammar systems 𝑁𝐶𝑃𝐶∗(𝑅𝐸𝐺) or
centralized parallel communicating grammar systems 𝐶𝑃𝐶∗(𝑅𝐸𝐺) with any num-
ber of regular grammars.

The language family 𝐶𝑃𝐶2(𝑅𝐸𝐺), which consists of languages generated by
centralized parallel communicating grammar systems using exactly two regular
grammars, is strictly included in the set of languages generated by context-free
grammars.

𝐶𝑃𝐶2(𝑅𝐸𝐺) ⊂ 𝐶𝐹,

In other words, every language produced by a centralized parallel communicating
grammar system with two regular grammars is also a language generated by a
context-free grammar, but there exist languages within the broader set of context-
free languages that cannot be generated by such centralized systems with only two
regular grammars.

The number of components in a PCGS may also affect the expressive power. In
this respect the hierarchies of languages generated by PCGS with either regular or
linear grammars (namely, 𝐶𝑃𝐶𝑛(𝑅𝐸𝐺) and 𝐶𝑃𝐶𝑛(𝐿𝐼𝑁), 𝑛 ≥ 1) where found to be
infinite [2].
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3.1 Context-Free PCGS are Turing complete

By contrast to the infinite hierarchies mentioned above the hierarchy of synchro-
nized, non-centralized PCGS with context-free components, collapses quite early
into the class of recursively enumerable languages. Remarkably, it has been proven
that a PCGS with six context-free components, operating in a non-returning manner,
can simulate a 2-counter machine [5], thus generating any recursively enumerable
language. This Turing completeness extends to returning systems as well, although
the exact number of components required might vary. For returning systems it was
initially established that 11 context-free components are sufficient to collapse the
hierarchy to recursively enumerable languages: 𝑅𝐸 = 𝑃𝐶11𝐶𝐹 = 𝑃𝐶∗𝐶𝐹 [4]. Such
a PCGS simulating any 2-counter machine is shown in Figure 3.1. This upper limit
was later reduced to just five components [3]. However, these results hinge on the
broadcast communication model, where a component holds onto its string until all
requests are fulfilled [7], different from the one-step communication model where
the component resets immediately after a single communication. Under one-step
communication, the hierarchy still collapses, but not this warly. The best result so
far requires 95 components to reach the recursively enumerable class [16]. It should
be noted however that this result was obtained by modifying the sub-optimal 11-
component construction [4], so it is probably improvable.

In terms of size complexity we note that any recursively enumerable language
can be generated by returning PCGS with context-free components if the system is
designed with a given number of non-terminals [5]. This indicates a nuanced rela-
tionship between the number of components, the type of grammars used, and the
communication model, all of which influence the generative power and complexity
of PCGS.

3.2 Unsynchronized PCGS

As previously noted, unsynchronized PCGS have received relatively little attention.
It is quite apparent that the family of languages generated by a PCGS family in un-
synchronized mode is included, though not necessarily strictly, within the family
of languages generated by the same PCGS family in synchronized mode. Indeed,
recall that any unsynchronized PCGS can be converted into an equivalent synchro-
nized PCGS by the simple expedient of adding the set {𝐴 → 𝐴 : 𝐴 ∈ 𝑁} to the
set of rewriting rules of each component. In other words, every unsynchronized
PCGS can be simulated by a synchronized PCGS with components form the same
grammar family.

After finding that unsynchronized PCGS are weaker, they have essentially been
overlooked in further studies. Results on this matter are scarce and include the
following [2]. The centralized case is very weak in some circumstances:

𝐿(𝑈𝐶𝑃𝐶∗𝑅𝐸𝐺) = 𝑅𝐸𝐺, 𝐿(𝑈𝐶𝑃𝐶∗𝐿𝐼𝑁) = 𝐿𝐼𝑁.
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𝑃𝑚 = {𝑆 → [𝐼], [𝐼] → 𝐶, 𝐶 → 𝑄𝑎1} ∪
{< 𝐼 >→ [𝑥, 𝑞, 𝑍, 𝑍, 𝑒1 , 𝑒2]|(𝑥, 𝑞0 , 𝑍, 𝑍, 𝑒1 , 𝑒2 , 0) ∈ 𝑅, 𝑥 ∈ Σ} ∪
{< 𝐼 >→ 𝑥[𝑦, 𝑞, 𝑍, 𝑍, 𝑒1 , 𝑒2]|(𝑥, 𝑞0 , 𝑍, 𝑍, 𝑞, 𝑒1 , 𝑒2 ,+1) ∈ 𝑅, 𝑥, 𝑦 ∈ Σ} ∪
{< 𝑥, 𝑞, 𝑐′1 , 𝑐

′
2 , 𝑒

′
1 , 𝑒

′
2 >→ [𝑥, 𝑞′, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2]|(𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑞′, 𝑒1 , 𝑒2 , 0) ∈ 𝑅,

𝑥 ∈ Σ, 𝑐′1 , 𝑐
′
2 ∈ {𝑍, 𝐵}, 𝑒′1 , 𝑒

′
2 ∈ {−1, 0,+1}} ∪

{< 𝑥, 𝑞, 𝑐′1 , 𝑐
′
2 , 𝑒

′
1 , 𝑒

′
2 >→ 𝑥[𝑦, 𝑞′, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2], < 𝑥, 𝑞𝐹 , 𝑐

′
1 , 𝑐

′
2 , 𝑒

′
1 , 𝑒

′
2 >→ 𝑥|

(𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑞′, 𝑒1 , 𝑒2 ,+1) ∈ 𝑅, 𝑐′1 , 𝑐
′
2 ∈ {𝑍, 𝐵},

𝑒′1 , 𝑒
′
2 ∈ {−1, 0,+1}, 𝑥, 𝑦 ∈ Σ},

𝑃
𝑐1
1 = {𝑆1 → 𝑄𝑚 , 𝑆1 → 𝑄

𝑐1
4 , 𝐶 → 𝑄𝑚} ∪

{[𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2] → [𝑒1]′, [+1]′ → 𝐴𝐴𝐶, [0]′ → 𝐴𝐶, [−1]′ → 𝐶|
𝑥 ∈ Σ, 𝑞 ∈ 𝐸, 𝑐1 , 𝑐2 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}} ∪
{[𝐼] → [𝐼]′, [𝐼]′ → 𝐴𝐶},

𝑃
𝑐1
2 = {𝑆2 → 𝑄𝑚 , 𝑆2 → 𝑄

𝑐1
4 , 𝐶 → 𝑄𝑚 , 𝐴→ 𝐴} ∪

{[𝑥, 𝑞, 𝑍, 𝑐2 , 𝑒1 , 𝑒2] → [𝑥, 𝑞, 𝑍, 𝑐2 , 𝑒1 , 𝑒2], [𝐼] → [𝐼]|𝑥 ∈ Σ, 𝑞 ∈ 𝐸,
𝑐2 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}}

𝑃
𝑐1
3 = {𝑆3 → 𝑄𝑚 , 𝑆3 → 𝑄

𝑐1
4 , 𝐶 → 𝑄𝑚} ∪

{[𝑥, 𝑞, 𝑍, 𝑐2 , 𝑒1 , 𝑒2] → 𝑎, [𝑥, 𝑞, 𝐵, 𝑐2 , 𝑒1 , 𝑒2] → [𝑥, 𝑞, 𝐵, 𝑐2 , 𝑒1 , 𝑒2]
[𝐼] → [𝐼]|𝑥 ∈ Σ, 𝑞 ∈ 𝐸, 𝑐2 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}}

𝑃
𝑐1
4 = {𝑆4 → 𝑆

(1)
4 , 𝑆

(1)
4 → 𝑆

(2)
4 , 𝑆

(2)
4 → 𝑄

𝑐1
1 , 𝐴→ 𝑎}

𝑃
𝑐2
1 = {𝑆1 → 𝑄𝑚 , 𝑆1 → 𝑄

𝑐2
4 , 𝐶 → 𝑄𝑚} ∪

{[𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2] → [𝑒2]′, [+1]′ → 𝐴𝐴𝐶, [0] → 𝐴𝐶, [−1] → 𝐶|
𝑥 ∈ Σ, 𝑞 ∈ 𝐸, 𝑐1 , 𝑐2 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}} ∪
{[𝐼] → [𝐼]′, [𝐼]′ → 𝐴𝐶}

𝑃
𝑐2
2 = {𝑆2 → 𝑄𝑚 , 𝑆2 → 𝑄

𝑐2
4 , 𝐶 → 𝑄𝑚 , 𝐴→ 𝐴} ∪

{[𝑥, 𝑞, 𝑐1 , 𝑍, 𝑒1 , 𝑒2] → 𝑎, [𝑥, 𝑞, 𝑐1 , 𝐵, 𝑒1 , 𝑒2] → [𝑥, 𝑞, 𝑐1 , 𝐵, 𝑒1 , 𝑒2],
[𝐼] → [𝐼]|𝑥 ∈ Σ, 𝑞 ∈ 𝐸,
𝑐1 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}}

𝑃
𝑐2
3 = {𝑆3 → 𝑄𝑚 , 𝑆3 → 𝑄

𝐶2
4 , 𝐶 → 𝑄𝑚} ∪

{[𝑥, 𝑞, 𝑐1 , 𝑍, 𝑒1 , 𝑒2] → 𝑎, [𝑥, 𝑞, 𝑐1 , 𝐵, 𝑒1 , 𝑒2] → [𝑥, 𝑞, 𝑐1 , 𝐵, 𝑒1 , 𝑒2]
[𝐼] → [𝐼]|𝑥 ∈ Σ, 𝑞 ∈ 𝐸, 𝑐1 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}}

𝑃
𝑐2
4 = {𝑆4 → 𝑆

(1)
4 , 𝑆

(1)
4 → 𝑆

(2)
4 , 𝑆

(2)
4 → 𝑄

𝑐2
1 , 𝐴→ 𝑎}

𝑃𝑎1 = {𝑆 → 𝑄𝑚 , [𝐼] →< 𝐼 >, [𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2] →< 𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2 >,

< 𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2 >→< 𝑥, 𝑞, 𝑐1 , 𝑐2 , 𝑒1 , 𝑒2 >, , 𝐼 >→< 𝐼 >, |𝑥 ∈ Σ,

𝑞 ∈ 𝐸, 𝑐1 , 𝑐2 ∈ {𝑍, 𝐵}, 𝑒1 , 𝑒2 ∈ {−1, 0,+1}}
𝑃𝑎2 = {𝑆 → 𝑆3 , 𝑆(1) → 𝑆(2) , 𝑆(2) → 𝑆(3) , , 𝑆(3) → 𝑆(4) ,

𝑆(4) → 𝑄
𝑐1
2 𝑄

𝑐1
3 𝑄

𝑐2
2 𝑄

𝑐2
3 𝑆

(1)}.

Figure 3.1: A CF-PCGS that simulate a 2-counter Turing machine
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On the other hand, 𝐿(𝑈𝑁𝐶𝑃𝐶2𝑅𝐸𝐺) contains non-semi linear languages. It is also
the case that:

𝐿(𝑈𝑃𝐶2𝑅𝐸𝐺) \ 𝐿(𝑅𝐸𝐺) ≠ ∅
𝐿(𝑈𝑃𝐶2𝑅𝐸𝐺) ⊆ 𝐿(𝐶𝐹)
𝐿(𝑈𝑃𝐶2𝐿𝐼𝑁) \ 𝐿(𝐶𝐹) ≠ ∅
𝐿(𝑈𝐶𝑃𝐶2𝐶𝐹) \ 𝐿(𝐶𝐹) ≠ 0

3.3 Recent Investigations on Unsynchronized Context-Free
PCGS

It was recently found that language generated by unsynchronized context-free
PCGS can be recognized by nondeterministic Turing machine using 𝑂(|𝑤|) tape
cells for each input instance 𝑤, meaning that these languages are all context sensi-
tive [11].

During a derivation process in PCGS, a component 𝑥𝑖 of the current configura-
tion is called non-direct-significant for the generation of the string 𝑤 if either:

1. 𝑖 ≠ 1 and the respective component is not queried, or

2. 𝑖 = 1 and the derivation from 𝑥1 to 𝑤 in 𝐺1 cannot end successfully unless 𝑥1
is reduced to the axiom sometime in the future, or

3. 𝑖 ≠ 1 and 𝑥𝑖 is queried by 𝑥 𝑗 , 𝑗 ≠ 𝑖, and then 𝑥 𝑗 become non-direct-significant.
Notably, definition introduces the concept of non-direct-significant components,
categorizing components whose structure is irrelevant for derivation, allowing for
their removal without affecting lateral effects. Note that in a returning system a
non-direct-significant component may become direct-significant in the future, but
that can only happen when the respective component is reduced to the axiom,
which is done with no regard of the structure of that component.
Lemma 3.1. Let Γ = (𝑁, 𝐾, 𝑇, 𝐺1 , . . . , 𝐺𝑛) be an unsynchronized returning context-free
PCGS without 𝜀-rules, and let 𝑤 be a string. Let also (𝑥1 , . . . , 𝑥𝑛) be a configuration of
the system. Then, if the length of a component 𝑥𝑖 becomes greater than |𝑤|, that component
becomes non-direct-significant for the generation of 𝑤.

Lemma 3.1 establishes that if the length of a component surpasses the length of
the generated string𝑤, it becomes non-direct-significant for the generation process.
Corollary 3.2 extends this finding to unsynchronized non-returning context-free
PCGS.
Corollary 3.2. Let Γ = (𝑁, 𝐾, 𝑇, 𝐺1 , . . . , 𝐺𝑛) be an unsynchronized non-returning
context-free PCGS without 𝜀-rules, and let 𝑤 be a string. Let (𝑥1 , . . . , 𝑥𝑛) be a con-
figuration of the system. Then, if the length of a component xi becomes greater than |𝑤|,
that component becomes non-direct-significant for the generation of 𝑤.
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Proposition 3.3. Let Γ be an unsynchronized (returning or non-returning) PCGS with 𝑛
context-free components (𝑛 ≥ 1) and no 𝜀-rules. Then there is a Turing machine 𝑀 that
recognizes the language 𝐿(Γ) using at most𝑂(|𝑤|) amount of work tape space for each input
instance w

Corollary 3.4. All languages generated by unsynchronized (returning or non-returning)
PCGS with context-free components and no 𝜀-rules are context-sensitive.

Proposition 3.3 asserts a significant computational result, indicating that any
language generated by an unsynchronized PCGS, be it returning or non-returning,
with context-free components and no 𝜀-rules, is context-sensitive. This theoretical
foundation is crucial for understanding the computational complexity of languages
generated by such grammar systems. The result was then extended by the elimina-
tion of the requirement that 𝜀-rules must be absent:

Proposition 3.5. Let Γ be an unsynchronized (returning or non-returning) PCGS with 𝑛
context-free components (𝑛 ≥ 1). Then there is a Turing machine 𝑀 that recognizes the
language 𝐿(Γ) using at most 𝑂(|𝑤|) amount of work tape space for each input instance 𝑤.

Therefore all languages generated by unsynchronized (returning or non-returning)
PCGS with context-free components are context-sensitive.

It is important to recognize that all the results other than the one mentioned
in this section are quite specific and have not seen significant extension or devel-
opment in nearly 20 years. Additionally, there are no existing results concerning
unsynchronized regular PCGS.



Chapter 4

Unsynchronized Regular PCGS
and Context-Free Languages

Regular grammars are valued for their simplicity and effectiveness, while context-
free grammars (CFGs) are noted for their broader range of expression. This poses a
question: Can we combine the simplicity of regular grammars with the expressive
might of CFGs? This is where Parallel Communicating Grammar Systems (PCGS)
come in, an interesting concept where multiple grammars operate simultaneously,
sharing information to generate language strings. In this chapter, we show how we
can express typical context-free language constructs using unsynchronized regular
PCGS. We find that typical context-free constructs can be generated in this man-
ner. We then investigate whether all context-free languages can be generated by
unsynchronized regular PCGS. However, we find in the end that this is not the case.

We first illustrate the generative power of unsynchronized regular PCGS by
generating four very typical context-free languages.

4.1 Balanced Symbols

We first consider a very basic context-free construct namely, counting. It is very
common for a context-free language to include a comparison between the number
of occurrences of two symbols. In this kind of constructs a pushdown automaton
will use its stack as a counter. The simplest such a construction is the language with
two symbols having the same number of occurrences:

𝐿𝑏𝑎𝑙 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 0}

The context-free grammar that defines 𝐿𝑏𝑎𝑙 is 𝐺𝑏𝑎𝑙 = (𝑁,𝑇, 𝑃, 𝑆) where 𝑁 = {𝑆} is
set of non-terminals,𝑇 = {𝑎, 𝑏} is set of terminals and𝑃 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀} is set of
rewriting rules. To simulate this CFG using an unsynchronized PCGS with regular
components, we can use two grammars. The first grammar generates the 𝑎’s and the

20



CHAPTER 4. REGULAR PCGS AND CONTEXT-FREE LANGUAGES 21

second grammar generates the 𝑏’s. Consider thus Γ𝑏𝑎𝑙 = ({𝑆1 , 𝑆2}, 𝐾, {𝑎, 𝑏}, 𝐺1 , 𝐺2)
where:

𝑃1 = {𝑆1 → 𝑎𝑄2 , 𝐵 → 𝑆1} (4.1)
𝑃2 = {𝑆2 → 𝐵𝑏} (4.2)

A derivation in Γ𝑏𝑎𝑙 can proceed in both returning and non-returning mode, both
generating the same strings in the language 𝐿𝑏𝑎𝑙 . The returning mode results in the
following kind of derivations:

(𝑆1 , 𝑆2) ⇒ (𝑎𝑄2 , 𝐵𝑏) ⇒ (𝑎𝑆2 , 𝐵𝑏) ⇒ (𝑎𝐵𝑏, 𝑆2) ⇒∗𝑛

(𝑎𝑛𝐵𝑏𝑛 , 𝑆2) ⇒𝐵→𝑆1
⇒ (𝑎𝑛𝑆1𝑏

𝑛 , 𝑆2) ⇒ (𝑎𝑛𝑏𝑛 , 𝑆2)

The non-returning mode on the other hand would proceed like this:

(𝑆1 , 𝑆2) ⇒ (𝑎𝑄2 , 𝐵𝑏) ⇒ (𝑎𝑆2 , 𝐵𝑏) ⇒ (𝑎𝐵𝑏, 𝐵𝑏) ⇒∗𝑛

(𝑎𝑛𝐵𝑏𝑛 , 𝐵𝑏) ⇒
𝐵→𝑆1

⇒ (𝑎𝑛𝑆1𝑏
𝑛 , 𝐵𝑏) ⇒ (𝑎𝑛𝑏𝑛 , 𝐵𝑏)

To understand the constraints on the derivation within the PCGS, consider
what happens if in the first step 𝐵 is rewritten to 𝜀 (𝐵 → 𝜀). By doing this,
the system stops working immediately, failing to produce any 𝑎’s. Such an result is
basically incompatible with the principles managing 𝐿𝑏𝑎𝑙 , as it necessitates a balance
between the numbers of 𝑎’s and 𝑏’s. Therefore, the resulting strings, potentially of
the form 𝑏𝑛 , fall outside 𝐿𝑏𝑎𝑙 , leading the PCGS design to explicitly disallow this
path. Similarly, should the second component 𝑆2 remain unaltered in the initial
step, the derivation comes to a stop. This comes from the system’s dependency on
the concurrent generation of 𝑎’s and 𝑏’s for balance, a core requirement of 𝐿𝑏𝑎𝑙 . An
absence of this coordinated generation leads to an inconsistency, the string is out of
sync with 𝐿𝑏𝑎𝑙’s balance requirements.. Thus, the PCGS architecture is structured to
prevent such inconsistencies by ensuring that every step complies to the generation
of strings within 𝐿𝑏𝑎𝑙 . By employing multiple grammars in an unsynchronized
method, The PCGS successfully separates the generation of a context-free language
into small tasks that regular grammars can handle.

In this example, the CFG’s task of generating balanced 𝑎’s and 𝑏’s is divided
between two grammars in the PCGS. Generating an equal number of symbols is
trivial in a synchronized system, but considerably more challenging in the absence
of synchronization. Still, we were able to replace the synchronization (which would
only require one communication step at the end) with a sequence of communication
steps that accomplishes the same outcome. In effect we generate one symbol in each
component, put the two symbols in the same component (so that they now match
each other), and then repeat as necessary. This simple example’s construction
demonstrates that an unsynchronized PCGS with regular grammars can simulate
the behavior of a CFG.
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4.2 Balanced Symbols with Intermediate Content

As an extension of the previous example we expand on the same idea of balanced
symbols (so that a pushdown automaton would also use its stack as a counter), but
this time with some (not counted) symbols in between. the following language:

𝐿𝑏𝑎𝑙.𝑖𝑛𝑡 = {𝑎𝑛𝑏𝑚𝑐𝑛|𝑛, 𝑚 ≥ 0}

This language consists of strings with an equal number of 𝑎’s and 𝑐’s, separated
by any number of 𝑏’s. Let 𝐺𝑏𝑎𝑙.𝑖𝑛𝑡 = (𝑁,𝑇, 𝑃, 𝑆) where 𝑁 = {𝑆, 𝐴, 𝐵, 𝐶} is set of
non-terminals, 𝑇 = {𝑎, 𝑏, 𝑐} is set of terminals, and the rewriting rules are defined
as follows:

𝑃 = {𝑆 → 𝑎𝐴𝑐, 𝐴→ 𝑎𝐴𝑐|𝜀, 𝐶 → 𝑐𝐶|𝜀, 𝑆 → 𝐵, 𝐵 → 𝑏𝐵|𝜀}

The equivalent Unsynchronized PCGS with regular components is:

Γ𝑏𝑎𝑙.𝑖𝑛𝑡 = ({𝑆1 , 𝑆2}, 𝑘, {𝑎, 𝑏, 𝑐}, 𝐺1 , 𝐺2)

Where:

𝑃1 = {𝑆1 → 𝑎𝑄2 , 𝑆1 → 𝐶, 𝐵 → 𝑆1 , 𝐶 → 𝑏𝐶, 𝐶 → 𝜀}
𝑃2 = {𝑆2 → 𝐵𝑐}

A derivation (returning or non-returning) in this system proceeds as follows:

(𝑆1 , 𝑆2) ⇒ (𝑎𝑄2 , 𝐵𝑐) ⇒ (𝑎𝑆2 , 𝐵𝑐) ⇒ (𝑎𝐵𝑐, 𝑆2) ⇒ (𝑎𝑆1𝑐, 𝑆2) ⇒∗𝑛

(𝑎𝑛𝑆1𝑐
𝑛 , 𝐵𝑐) ⇒ (𝑎𝑛𝐶𝑐𝑛 , 𝐵𝑐) ⇒ (𝑎𝑛𝑏𝐶𝑐𝑛 , 𝑆2) ⇒∗𝑚 (𝑎𝑛𝑏𝑚𝐶𝑐𝑛 , 𝑆2) ⇒𝐶→𝜀

⇒ (𝑎𝑛𝑏𝑚𝑐𝑛 , 𝑆2)

The grammar Γ𝑏𝑎𝑙.𝑖𝑛𝑡 is designed to generate strings of the form 𝑎𝑛𝑏𝑚𝑐𝑛 . For this
to happen, each component of the PCGS plays a specific role. The first component
𝑆1 begins by generating 𝑎’s, component 𝐶 generating 𝑏’s. Simultaneously, the
second component 𝑆2 needs to start generating 𝑐’s to maintain the balance and
order of symbols as per the language rules. Delay or inaction in one component
can disrupt the harmony and sequence required in the string generation process.
The second component 𝑆2 is responsible for generating the 𝑐’s in the sequence.
If it does not start its rewriting process immediately, the sequence of 𝑐’s will not
be initiated, disrupting the intended pattern of the language. If 𝑆2 stays put and
does not rewrite, the derivation process can become blocked. This is because the
generation of 𝑐’s (which balance the ’a’s) will be delayed or might not occur at all.
In the absence of 𝑐’s, the strings generated would not conform to the language’s
specification of having equal numbers of 𝑎’s and 𝑐’s, separated by any number of
𝑏’s.



CHAPTER 4. REGULAR PCGS AND CONTEXT-FREE LANGUAGES 23

It is worth noting that the inner content (𝑏𝑚) is generated by a designated
non-terminal (𝐶). There is nothing preventing that non-terminal to generate any
language that can be generated by an unsynchronized regular PCGS. Similarly,
there is nothing preventing the outer part (𝑎𝑛 · · · 𝑐𝑛) to be any other language that
can be generated by an unsynchronized regular PCGS. We will elaborate on this
later in Section 4.4.

4.3 Palindromes

Another common context-free construct is the presence of a pair of substrings
where one if the reversal of the other. In such a case a pushdown automaton will
use its stack to match the first substring with the second (in reverse due to the
last-in-last-out nature of the stack). The simplest language of this nature is:

𝐿𝑝𝑎𝑙 = {𝑤𝑤𝑅|𝑤 ∈ {𝑎, 𝑏}∗} (4.3)

where 𝑤𝑅 denotes the reverse of the string 𝑤. Each string in the language 𝐿𝑝𝑎𝑙 is a
palindrome because the second half of the string is a mirror image (or reverse) of
the first half. The following grammar generates 𝐿𝑝𝑎𝑙 : 𝐺𝑏𝑎𝑙 = ({𝑆}, {𝑎, 𝑏}, 𝑃, 𝑆) with
𝑃 = {𝑆 → 𝑎𝑆𝑎, 𝑆 → 𝑏𝑆𝑏, 𝑆 → 𝜀}.

We can generate the same language using a PCGS where the master grammar
starts by generating a symbol and then calls a different component for each kind of
symbol thus generated. That component in turn will generate a matching symbol.
In all we obtain the following system:

Γ𝑝𝑎𝑙 = ({𝑆1 , 𝑆2 , 𝑆3}, 𝑘, {𝑎, 𝑏}, 𝐺1 , 𝐺2 , 𝐺3)

Where:

𝑃1 = {𝑆1 → 𝑎𝑄2 , 𝐴→ 𝑏𝑄3 , 𝐵 → 𝜀}
𝑃2 = {𝑆2 → 𝐴𝑎}
𝑃3 = {𝑆3 → 𝐵𝑏}

(4.4)

Suppose that we want to generate 𝑎𝑏𝑏𝑎. The corresponding derivation (return-
ing or non-returning) goes as follows:

(𝑆1 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑄2 , 𝐴𝑎, 𝑆3) ⇒ (𝑎𝐴𝑎, 𝐴𝑎, 𝑆3) ⇒ (𝑎𝑆1𝑎, 𝑆2 , 𝑆3) ⇒
(𝑎𝑏𝑄3𝑎, 𝑆2 , 𝐵𝑏) ⇒ (𝑎𝑏𝐵𝑏𝑎, 𝑆2 , 𝑆3)

Now we can delete 𝐵 using 𝐵 → 𝜀 and we end up with 𝑎𝑏𝑏𝑎. In fact we can go back
and forth between components as many times as we like:

(𝑎𝑏𝐵𝑏𝑎, 𝑆2 , 𝑆3) ⇒∗𝑛 (𝑎𝑛𝑏𝑛𝐵𝑏𝑏𝑎𝑛 , 𝑆2 , 𝑆3) ⇒ 𝑎𝑛𝑏𝑛𝑏𝑛𝑎𝑛 = (𝑎𝑏)𝑛(𝑏𝑎)𝑛
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Obviously we do not have to alternate between 𝑎 and 𝑏. For example the string
𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎 is obtained in a similar manner:

(𝑆1 , 𝑆2 , 𝑆3) ⇒ (𝑎𝑄2 , 𝐴𝑎, 𝑆3) ⇒ (𝑎𝑆2 , 𝐴𝑎, 𝑆3) ⇒ (𝑎𝐴𝑎, 𝑆2 , 𝑆3) ⇒
(𝑎𝑏𝑄3𝑎, 𝑆2 , 𝐵𝑏) ⇒ (𝑎𝑏𝑆3𝑎, 𝑆2 , 𝑆3) ⇒ (𝑎𝑏𝐵𝑏𝑎, 𝑆2 , 𝑆3) ⇒∗3

(𝑎𝑎𝑎𝑏𝑏𝑏𝐵𝑏𝑏𝑏𝑎𝑎𝑎, 𝑆2 , 𝑆3) ⇒ (𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎, 𝑆2 , 𝑆3)

4.4 Embedded Matching

A simple generalization of the systems that generate balanced symbols and palin-
dromes will generate matched symbols within matched symbols, another typical
context-free construct.

We note first that both palindromes and balanced strings are generated (by a
context-free grammar or regular PCGS) by matching pairs of symbol. For brevity
call both these kind of strings matchings.

Consider the PCGS shown in Relation 4.4 that generated palindromes, but in-
stead of erasing 𝐵 at the end we transform it into a query to a brand new component:

𝑃1 = {𝑆1 → 𝑎𝑄2 , 𝐴→ 𝑏𝑄3 , 𝐵 → 𝑄4}
𝑃2 = {𝑆2 → 𝐴𝑎}
𝑃3 = {𝑆3 → 𝐵𝑏}

The new component in turn will generate balanced strings, just like the system
shown in Relation 4.1:

𝑃4 = {𝑆4 → 𝑎𝑄5 , 𝐶 → 𝑆4}
𝑃5 = {𝑆5 → 𝐶𝑏}

The language generated by the resulting PCGS is {𝑤𝑎𝑛𝑏𝑛𝑤𝑅|𝑤 ∈ {𝑎, 𝑏}∗ , 𝑛 ≥
0}, which consists of a matching embedded into another matching. Obviously
this construction is not restricted to these particular matchings and to only one
embedding. We can go with different matchings and we can embed an arbitrary
number of such matchings.

4.5 Sequences of Symbols

For completeness we now consider multiple sequences of unrelated symbols. This
is not an overly interesting context-free construct (the language is actually regular),
but we use this example to show how separate, dedicated components can be
made responsible for their own sub-language, while all this sub-languages are put
together in the master component. In all we consider the following language:

𝐿𝑠𝑒𝑞 = {𝑎 𝑖𝑏 𝑗𝑐𝑘 | 𝑖 , 𝑗 , 𝑘 ≥ 0}
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This language includes is generated by the following unsynchronized PCGS with
regular components:

Γ𝑠𝑒𝑞 = ({𝑆1 , 𝑆2 , 𝑆3 , 𝑆4}, 𝑘, {𝑎, 𝑏, 𝑐}, 𝐺1 , 𝐺2 , 𝐺3 , 𝐺4)

Where:

𝑃1 = {𝑆1 → 𝑄2 , 𝑋 → 𝑄3 , 𝑌 → 𝑄4}
𝑃2 = {𝑆2 → 𝑎𝑆2 , 𝑆2 → 𝑋}
𝑃3 = {𝑆3 → 𝑏𝑆3 , 𝑆3 → 𝑌}
𝑃4 = {𝑆4 → 𝑐𝑆4 , 𝑆4 → 𝜀}

This PCGS is designed to handle cases where 𝑖, 𝑗, 𝑘 can be zero, prevents us
from writing 𝑆 → 𝑤𝑖𝑄𝑖 like in the other examples, meaning it can generate strings
with no ’𝑎’s, ’𝑏’s, and ’𝑐’s, or any combination thereof. This flexibility is achieved
through the independent yet coordinated functioning of each component, guided
by the master component𝑃1. Consider that we want to construct 𝑎𝑏𝑏𝑐𝑐𝑐. Derivation
(returning or non-returning) is as follows:

(𝑆1 , 𝑆2 , 𝑆3 , 𝑆4) ⇒ (𝑄2 , 𝑎𝑆2 , 𝑏𝑆3 , 𝑐𝑆4) ⇒ (𝑎𝑆2 , 𝑎𝑋, 𝑏𝑆3 , 𝑐𝑆4) ⇒
(𝑎𝑋, 𝑆2 , 𝑏𝑆3 , 𝑐𝑆4) ⇒

We have 𝑎, now is 𝑏𝑏 turn:

(𝑎𝑄3 , 𝑆2 , 𝑆3 , 𝑆4) ⇒ (𝑎𝑏𝑆3 , 𝑎𝑆2 , 𝑏𝑆3 , 𝑐𝑆4) ⇒∗2 (𝑎𝑏𝑏𝑆3 , 𝑆2 , 𝑏𝑌, 𝑐𝑆4) ⇒
(𝑎𝑏𝑏𝑌, 𝑆2 , 𝑆3 , 𝑆4) ⇒

And now we go for the last non-terminal 𝑐𝑐𝑐:

(𝑎𝑏𝑏𝑄4 , 𝑆2 , 𝑆3 , 𝑆4) ⇒ (𝑎𝑏𝑏𝑐𝑆4 , 𝑆2 , 𝑆3 , 𝑆4) ⇒∗3 (𝑎𝑏𝑏𝑐𝑐𝑐𝑆4 , 𝑆2 , 𝑆3 , 𝑐𝑆4) ⇒𝑆4→𝜀

⇒ (𝑎𝑏𝑏𝑐𝑐𝑐, 𝑆2 , 𝑆3 , 𝑆4)

The final configuration represents the string 𝑎𝑏𝑏𝑐𝑐𝑐, which is in the language
𝐿𝑠𝑒𝑞 . This method effectively simulates the language 𝐿𝑠𝑒𝑞 by allowing independent
generation of ’𝑎’s, ’𝑏’s, and ’𝑐’s in any quantity, including none. The unsynchronized
nature of the PCGS provides the necessary flexibility to generate all valid strings in
the language, illustrating the power of this grammar system in language simulation.

4.6 On Generating all the Context-Free Languages

We have illustrated above the uses of regular components in an unsynchronized
PCGS to generate a few common context-free constructs. Now we want to try these
techniques in a more general context to simulate an arbitrary context-free grammar.
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We hope to generate all context-free languages using unsynchronized (returning or
non-returning) PCGS with regular components.

The examples presented earlier illustrate the potential of unsynchronized com-
munication between regular grammars in a PCGS to mimic the behavior of a
context-free grammar. Now we want to construct an unsynchronized regular PCGS
equivalent to the general form of a context-free rewriting rule namely:

𝐴→ 𝑤1𝑋1𝑤2𝑋2𝑤3𝑋3 . . . 𝑤𝑛𝑋𝑛𝑤𝑛+1 (4.5)

for 𝑛 ≥ 1, 𝑋𝑖 ∈ 𝑁 , and 𝑤𝑖 ∈ 𝑇∗. We have already presented such a simulation for
the case 𝑛 = 1. The rule becomes

𝐴→ 𝑤1𝐵𝑤2.

and the equivalent PCGS is already well known:

𝑃1 = {𝑆1 → 𝑤1𝑄2 , 𝑋 → 𝐵1}
𝑃2 = {𝑆2 → 𝑋𝑤2}

Indeed, the only possible derivation in this system is:

(𝑆1 , 𝑆2) ⇒ (𝑤1𝑄2 , 𝑋𝑤2) ⇒ (𝑤1𝑋𝑤2 , 𝑆2) ⇒ (𝑤1𝐵1𝑤2 , 𝑆2) ⇒ 𝑤1𝐵1𝑤2

In this scenario, unsynchronized PCGS with regular components can simulate this
structure. This system can effectively show the production of terminal strands 𝑤1
and 𝑤2 and manage a single non-terminal 𝐵1.

This looks promising. Unfortunately the case 𝑛 = 2 (and by extension 𝑛 ≥ 2)
does not go as smooth. In fact we will show that it is not possible at all to construct
an equivalent unsynchronized regular PCGS for this case.

The goal is now to simulate the following rule:

𝐴→ 𝑤1𝐵1𝑤2𝐵2𝑤3. (4.6)

We run into problems because we now have two non-terminals (𝐵1 and 𝐵2) that
must both find their way into one string. Each non-terminal in turn can potentially
expand into more complex structures, and the sequence in which 𝐵1 and 𝐵2 interact
with the terminals becomes critical. For 𝑛 = 2, the regular components in the PCGS
need to simulate not just the production of terminal strings but also the complex
interaction between two non-terminals and their respective expansions. In the
unsynchronized PCGS with regular components, each addition of a 𝑤𝑖 and 𝐵𝑖 pair
requires a new set of regular grammars to represent this structure. However, as
the complexity of the CFG increases (with more 𝐵𝑖’s), the regular components of
PCGS struggle to keep up. They cannot effectively represent the recursive or nested
structures that the non-terminals 𝐵𝑖 in the CFG can generate.
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This limitation becomes more apparent as 𝑛 increases, ultimately highlighting
the fundamental gap in computational power between CFGs and unsynchronized
PCGS with regular components. Thus, the system fails to accurately represent the
CFG production rule for 𝑛 = 2, indicating a fundamental limitation of the PCGS
with regular components.

Formally, we show first that it is not possible to generate two non-terminals in
the same string using regular components in an unsynchronized PCGS:

Lemma 4.1. For any derivation (𝑆1 , 𝑆2 , . . . , 𝑆𝑛) ⇒∗ (𝑤1 , 𝑤2 , . . . , 𝑤𝑛) in an unsynchro-
nized regular PCGS it holds that |𝑤𝑖|(𝑁∪𝐾) ≤ 1 for all 1 ≤ 𝑖 ≤ 𝑛. In other words, in
any component at any time during a derivation there is at most one non-terminal or query
symbol.

Proof. Ignoring communication for the time being, in a regular PCGS, each rule is
of the form 𝐴 → 𝑐𝐵, 𝐴 → 𝑐, 𝐴 → 𝜀, or 𝐴 → 𝐵 where 𝐴, 𝐵 ∈ 𝑁 (non-terminals)
and 𝑎 ∈ 𝑇 (terminals). Therefore, at each step of derivation, a non-terminal can
produce at most one terminal followed by at most one non-terminal. We start with
an initial configuration (𝑆1 , 𝑆2 , . . . , 𝑆𝑛). Initially, each component 𝑆𝑖 is either a single
non-terminal or a query symbol, meaning |𝑆𝑖|(𝑁∪𝐾) = 1. Within any component
grammar 𝐺𝑖 , a derivation step can involve:

1. Replacing a non-terminal with a terminal symbol, which decreases the count
of non-terminals or query symbols in that component (|𝑤𝑖|(𝑁∪𝐾) decreases).

2. Replacing a non-terminal with another non-terminal, keeping the count of
non-terminals or query symbols constant (|𝑤𝑖|(𝑁∪𝐾) remains 1).

Querrying different components does not fare better. We introduce queries using
rules of the form 𝐴 → 𝑐𝑄𝑖 or 𝐴 → 𝑄𝑖 with 𝐴 ∈ 𝑁 , 𝑐 ∈ 𝑇, and 𝑄𝑖 ∈ 𝐾, and so any
query symbol replaces a non-terminal (so overall the number of symbols in 𝑁 ∪ 𝐾
remains the same). Then a query symbol ends up replaced by a string as above,
containing a single non-terminal (that replaces the query symbol), again for no net
gain of symbols in 𝑁 ∪𝐾. This can be easily shown by an induction over the length
of the chain of queries:

The base case (no queries) is established above. We use the induction hypothesis
that at the end of a chain of 𝑛 queries all components hold strings that contain at
most one non-terminal or query symbol. We then go to a chain of 𝑛 + 1 queries
by considering what happens when the component 𝐺 𝑗 queries the string of 𝐺𝑖 .
The string of 𝐺 𝑗 does not contain any non-terminal (by the induction hypothesis,
since it already contains a query symbol). The string of 𝐺 𝑗 contains no query
(since otherwise it cannot be communicated) and at most one non-terminal (by
the induction hypothesis). Therefore after the communication step the string of
𝐺 𝑗 contain no queries (since the existing query symbol gets erased) and at most
one non-terminal (the one coming from 𝐺𝑖). The number of symbols other than
terminals cannot increase, as desired.
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Therefore neither componentwise derivation steps nor communication steps can
increase the number of non-terminals or query symbols in any component string
beyond one. □

As an example consider the PCGS developed in Section 4.1. The first step
rewrites 𝑆1 into 𝑎𝑄2 in 𝐺1 (where 𝑄2 is a query symbol), and 𝑆2 is rewritten as
𝐵𝑏 in 𝐺2 (where 𝐵 is a non-terminal). A communication step involves replacing
the sole query symbol in one component with a string from another component.
This string will always contain at most one non-terminal, due to the limitation that
each component string can only contain one such symbol. In both returning and
non-returning derivations the process involves replacing 𝑄2 with a string from the
second component, which always contains one non-terminal (𝐵 or 𝑆1). During the
derivation process in this PCGS no step can increase the count of non-terminals or
query symbols in any component string beyond one. Therefore, |𝑤𝑖|(𝑁∪𝑄) ≤ 1 for
all 1 ≤ 𝑖 ≤ 𝑛 throughout the derivation.

Lemma 4.1 alone seems to suggest that rules of Form 4.6 cannot be simulated by
an unsynchronized regular PCGS. Indeed, we just proved that we cannot introduce
two non-terminals in any current string. However, there is one more way in which
such a rule can be simulated: We first generate the 𝑤1𝐵1 part. Then we proceed
with the rewriting of 𝐵1 to a string of terminals, except that we stop one step short,
when a non-terminal still exists in the string. If we are clever enough to arrange
for that non-terminal to be the last in the string then we can still use the techniques
described at the beginning of this section to rewrite that non-terminal into 𝑤2𝐵2𝑤3.
From here on we use again the techniques from the beginning of this section to
rewrite this string into a terminal string. This is all possible (even trivial) as long
as 𝑤1𝐵1 can always be rewritten into a string that contains a single non-terminal
at the end of the string. That this is not always possible is shown by the following
counterexample:

Lemma 4.2. Let 𝐿𝑏𝑎𝑙 = {𝑎𝑘𝑏𝑘 : 𝑘 ≥ 0} and let Γ𝑏𝑎𝑙 be an unsynchronized regular PCGS
with n components that generates 𝐿𝑏𝑎𝑙 . Let then (𝑆1 , 𝑆2 , . . . , 𝑆𝑛) ⇒∗ (𝑤, 𝑤2 , . . . , 𝑤𝑛)
with 𝑤 a non-empty terminal string. Then it must be the case that (𝑆1 , 𝑆2 , . . . , 𝑆𝑛) ⇒∗

(𝑢1 , 𝑢2 , . . . , 𝑢𝑛) ⇒∗ (𝑤, 𝑤2 , . . . , 𝑤𝑛) with some 𝑢𝑖 = 𝑣1𝐴𝑣2 where 𝐴 is a non-terminal
and neither 𝑣1 nor 𝑣2 are empty.

Proof. We start with the initial configuration of the PCGS, denoted as (𝑆1 , 𝑆2 , . . . , 𝑆𝑛)
where each 𝑆𝑖 represents the start symbol of each component’s grammar. At this
stage, none of the components have produced any terminal strings. As the deriva-
tion processes, the grammars in each component work together to generate parts of
the final string 𝑤. To generate a string that belongs to 𝐿𝑏𝑎𝑙 , there must be a mecha-
nism within at least one of the components to ensure the balance of 𝑎’s and 𝑏’s. This
mechanism is controlled by a non-terminal symbol, denoted as 𝐴. 𝐴 cannot simply
be at the beginning or end of the string within any component because in those po-
sitions, it could only add 𝑎’s and 𝑏’s at one end. However, to balance the 𝑎’s and 𝑏’s,
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𝐴must influence the production of both symbols within the string. Therefore, there
must be an intermediate stage in the derivation process, denoted as (𝑢1 , 𝑢2 , . . . , 𝑢𝑛),
where in at least one component 𝑢𝑖 , the string takes the form 𝑣1𝐴𝑣2. Here, 𝐴 is
a non-terminal symbol, and 𝑣1 and 𝑣2 are non-empty strings. This intermediate
configuration 𝑣1𝐴𝑣2 is crucial because it allows 𝐴 to regulate the production of a
balanced sequence of 𝑎’s followed by 𝑏’s. 𝐴 acts as a pivot point, ensuring that
the correct number of 𝑎’s and 𝑏’s are generated to maintain the balance required
by 𝐿𝑏𝑎𝑙 . From this intermediate configuration, the derivation process continues
until the final string 𝑤 is produced. At each step, the components work together,
guided by the non-terminal 𝐴, to ensure that 𝑤 is a valid string in 𝐿𝑏𝑎𝑙 , reflecting a
balanced number of 𝑎’s and 𝑏’s. Thus, we showed that the derivation process in 𝐿𝑏𝑎𝑙
for generating strings necessarily involves a stage where a non-terminal appears in
the middle of a string in one of the components. This is essential for ensuring the
balanced structure of the final string 𝑤. □

Theorem 4.3. There exists a context-free languages that cannot be generated by any un-
synchronized PCGS with regular components.

Proof. Lemma 4.1 shows that we cannot simulate directly most context-free rules
(namely, the ones whose right hand sides contain more than one non-terminal).
Therefore the only way to simulate this kind of rules is piecemeal: We simulate
a prefix of the right hand side of the rule containing a single non-terminal all the
way until the last step that still feature a non-terminal in the current string, and
then we use that non-terminal to start the generation of the rest of the right hand
side. This only works whenever the non-terminal we continue from is the last in
the current string. Lemma 4.2 provides a counterexample showing that this is not
always possible. □

To put Theorem 4.3 in a different way, we note that it is fundamentally chal-
lenging to directly simulate some specific rules of context-free grammars using
unsynchronized regular PCGS, particularly the rules of type 𝐴 → 𝐵𝐶. This dif-
ficulty arises primarily from the fact that within any single component of such a
system there can only ever be one non-terminal or query symbol at any given stage
in the derivation process. The rule 𝐴 → 𝐵𝐶 is crucial in context-free grammars,
since it is the workhorse of the Chomsky normal form, where rules can only have the
forms 𝐴→ 𝐵𝐶, 𝐴→ 𝑎, and 𝐴→ 𝜀. While the last two types are easy to simulate in
a regular PCGS, the 𝐴 → 𝐵𝐶 type poses a significant challenge due to its inherent
need for merging strings from different non-terminals. To illustrate, consider the
context-free rule 𝐴 → 𝑤1𝐵1𝑤2𝐵2𝑤3. In a standard context-free environment, this
rule might be broken down into 𝐴 → 𝐵𝐶, 𝐵 → 𝑤1𝐵1𝑤2, and 𝐶 → 𝐵2𝑤3, allowing
for the gradual construction of the string. However, in an unsynchronized regu-
lar PCGS, this method is not feasible because of the limitation on the number of
non-terminals or query symbols in each component. There is still a possible way
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around 𝐴 → 𝐵𝐶. That rule implements concatenation, so perhaps we can sim-
ulate concatenation of two languages (call them 𝐿1 and 𝐿2) in another way: First
create a PCGS that generates 𝐿1. Then modify it so that instead of generating 𝑤1
it generated 𝑤1𝑄𝑥 , with the component 𝑥 generating 𝐿2. Lemma 4.2 shows that
for a balanced language 𝐿𝑏𝑎𝑙 produced by an unsynchronized regular PCGS, any
non-empty terminal string emerging from the system must have gone through a
stage where a non-terminal is surrounded by non-empty strings, thus making such
a trick impossible.



Chapter 5

Conclusions

Parallel Communicating Grammar Systems (PCGS) represent a fascinating area in
theoretical computer science, particularly in the field of formal language theory.
PCGS is essentially a collection of several grammars that work in parallel and com-
municate with each other under certain rules. An interesting aspect of PCGS lies in
its capacity to model the complex processes of language production, similar to how
different modules in a computer program interact to perform a task. The explo-
ration into the realm of PCGS, specifically focusing on unsynchronized PCGS with
regular components, delves into how these systems can be employed to generate
more complex languages.

We focus in particular on unsynchronized regular PCGS under the hypothesis
that they are powerful enough to generate all the context-free languages. We started
by considering several examples to demonstrate how regular grammars within a
PCGS can simulate certain context-free constructs. This step-by-step approach with
specific examples was meant to build towards a more generalized theory. However,
as we delved deeper into the complexities of context-free grammars, particularly
when dealing with multiple non-terminals and their interactions with terminals, a
significant limitation of unsynchronized PCGS with regular components became
apparent.

Our hypothesis appeared to be an ambitious goal, considering the inherent
limitations of regular grammars in comparison to the richer structural capabilities
of context-free grammars. On the other hand, it seemed reasonable to assume
that the communication facilities are powerful enough to compensate for these
richer capabilities. We approached the task attempting to break down the rules
of a context-free grammar into simpler regular grammars within the PCGS. The
purpose of this method was to show that even with the limitations of grammars,
the collective power of these grammars in PCGS can reproduce the behavior of a
context-free grammar.

However, the challenge quickly became not only to generate the appropriate
strings of terminals but also to accurately represent the interactions and expansion
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of multiple non-terminals in the context-free grammar. The regular components in
the PCGS struggled to emulate these complex structures, especially as the number
of non-terminals in the production rules increased. This limitation was a critical
roadblock.

Therefore, we pursued a more detailed understanding of the capabilities of un-
synchronized PCGS with regular components, leading to Theorem 4.3. This result
acknowledges that while PCGS with regular components provides an attractive
model for language generation, it inherently lacks the computational power to fully
replicate the generative capacity of context-free grammars. This conclusion, while
perhaps initially disappointing, is significant as it defines the boundaries and ca-
pabilities of unsynchronized PCGS in the context of formal language theory. This
illustrates the fact that while PCGS can model a wide array of language structures,
there are intrinsic limitations to what can be achieved with regular components,
especially when compared to the richer, more flexible structures allowed in context-
free grammars.

In all, we showed in this paper that there exist context-free languages that
cannot be generated by unsynchronized PCGS using regular components. It is
very interesting to go the other way around and try to simulate unsynchronized
regular PCGS using context-free grammars. We believe that such a simulation
will succeed, thus establishing an actual hierarchy between languages generated by
unsynchronized regular PCGS and context-free languages. At the same time we
acknowledge the possibility of this not being the case, which will establish that the
two classes are not comparable.
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