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Abstract

We have carried out an extensive population synthesis study of the ensemble properties of the
present-day population of cataclysmic variables (PDCVs) for a wide range of population parameters.
Using an interpolation grid, we are able to incorporate the evolution of ∼ 106 zero-age CVs for each
set of parameters analyzed. Unlike previous studies, our analysis also takes into account the nuclear
evolution of high-mass donors close to the bifurcation and dynamical instability limits. Adopting the
interrupted magnetic braking paradigm, we confirm many of the general features associated with the
observed CV population and find enormous diversity in their secular properties. For long-period CVs
(> 4 hr), we find that the range of observed spectral types is well-matched by our syntheses. We predict
that nearly half of the non-magnetic CVs with Porb ≥ 6 hours are at least mildly evolved (i.e., > 50% of
their MS turn-off age), and that this fraction increases monotonically with increasing period. Some of
these systems evolve into, or through, the period gap between 2 - 3 hr. When combined with systems
born in the gap, their (relative) numbers produce a gap that is not dissimilar to what is observed. We
also see an enhancement by up to a factor of two in the probability of detecting CVs at the ‘minimum
period’. This spike is quite narrow (≈ 5 minutes) and is attenuated because of the spectrum of WD
masses and partly by the chemical evolution of the donors. Below the classical minimum period, our
syntheses imply that there should be a very rapid decline in the number of ultracompact (UC) CVs,
such as AM CVns (Porb < 60 minutes), with decreasing orbital period. Depending on the assumed
population parameters, anywhere from ∼ 0:05 to 1% of the intrinsic population of PDCVs could be
UCs. Due to the extremely small volume of initial conditions (primordial binary) in phase space
needed to produce UCs, it is difficult to make a definitive quantitative statement, but it is likely
that the CV channel probably does not contribute significantly to the observed population of UCs
(certainly for Porb . 30 minutes) unless selection effects are a dominant consideration. Finally, a very
preliminary analysis of our results suggests that WDs in PDCVs experience a net gain in mass of
. 0:1M� as a result of high mass-transfer rates early in their evolution.

Subject headings: interacting binaries: cataclysmic variables - stellar evolution - methods: statistical
- population synthesis - Monte Carlo methods

1. INTRODUCTION

Cataclysmic variables (CVs) are a very heterogeneous
class of semi-detached, interacting binaries consisting of
a white dwarf (WD) that is accreting matter from a com-
panion (donor) star that is overflowing its Roche lobe (see
Patterson 1984; Warner 1995; and references therein).
The recent SDSS survey has produced a wealth of new
observational information (see, e.g., Szkody et al. 2011).
According to the conventional model for the formation of
galactic-disk CVs, the progenitors are primordial binaries
for which one star is sufficiently massive and close enough
to its companion star that it can engulf the companion
during the giant phase of its evolution. The time inter-
val over which this happens is governed by the nuclear
timescale of the more massive star (the primary). The
binary then enters a short-lived (dynamical timescale)
common envelope (CE) phase of evolution during which
the companion spirals inside the envelope of the giant
star until it approaches the degenerate core (the nascent
WD). The transfer of energy leads to the envelope being
completely ejected producing a binary that is most likely
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detached (i.e., a post common-envelope binary [PCEB]).
The donor (secondary) can begin to transfer mass if
the binary separation is reduced on a sufficiently short
timescale through orbital angular momentum loss (AML)
or if the secondary expands sufficiently due to its own
nuclear evolution. Once mass transfer from the donor to
the WD commences, we refer to the binary as a zero-age
cataclysmic variable (ZACV). The trajectory of the mat-
ter as it undergoes Roche-lobe overflow (RLOF) largely
depends on the strength of the magnetic field of the ac-
creting WD. If the WD is nonmagnetic, an accretion disk
will form around the WD; but if the magnetic field is suf-
ficiently strong, the disk can either be truncated or may
not even form if the magnetic field can entrain the matter
and force it to flow directly onto the WD’s surface.

The subsequent evolution of the CV is either driven
by orbital angular momentum losses or the nuclear evo-
lution of the donor. According to the ‘canonical model’
of CV evolution, donors whose masses exceed approxi-
mately 0.37 M� will experience some form of magnetic
braking (MB). The tidal coupling of the donor ensures
that magnetic braking will efficiently extract angular mo-
mentum from the orbit. It is assumed that MB will be-
come ineffective once the mass of the donor star has been
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decreased so much that its internal structure becomes
completely convective. This has been referred to as the
Interrupted Magnetic Braking (IMB) paradigm (see Rap-
paport et al. 1983 [RVJ]; Spruit & Ritter 1983; Hameury
et al. 1988; Davis et al. 2008). Because the donor
has been driven out of thermal equilibrium as a result
of mass transfer, its radius just before the interruption
of magnetic braking is considerably larger than its ther-
mal equilibrium radius. When MB is switched off, the
relatively high rate of mass transfer can no longer be sus-
tained by AMLs and the donor shrinks beneath its Roche
lobe. This leads to the cessation of mass transfer at or-
bital periods of ≈ 3 hours. At this juncture, the system
becomes detached and only further gravitational radia-
tion (GR) losses can decrease the orbital separation and
drive the system back into a semi-detached state. It nor-
mally takes about 109 years for this to happen at which
point the orbital period is reduced to approximately 2
hours. While mass transfer has temporarily ceased and
the binary has no mass-accretion luminosity, it cannot
be classified as a CV. This leads to a marked decrease
in the number of CVs observed in the period range of
≈ 2 to 3 hours (i.e., the period gap). Once mass transfer
is re-established, the binary evolves to even shorter or-
bital periods until such time as the donor star is driven
so far out of thermal equilibrium that it expands (this is
partly due to the increasing fraction of the pressure sup-
port derived from electron degeneracy). The constraint
imposed by Roche geometry implies that the orbital pe-
riod must attain a minimum value (Pmin ≈ 80 minutes)
before evolving back to higher orbital periods.

It is important to try to infer the evolutionary history
of CVs by comparing the observed ensemble properties
of CVs with theoretically computed population synthe-
ses. Although there are many subclasses of non-magnetic
CVs (e.g., dwarf novae, recurrent novae) whose behaviors
are governed by different physical effects, their evolution-
ary histories share many common features. Cataclysmic
variables are especially well-suited for the application of
population synthesis (PS) techniques because they may
be viewed as “first order” systems relative to other classes
of interacting binaries. Higher order systems would in-
clude, for example, low-mass X-ray binaries (LMXBs),
and double neutron-star binaries. These systems have
extra dimensions of uncertainty complicating the calcu-
lation of their formation probabilities. For example, they
might have undergone two CE phases or experienced na-
tal neutron star kicks, both of which are subject to large
physical uncertainties. Thus it is important to first se-
curely determine the relative probabilities of the various
channels that lead to the formation of CVs. The overall
population of CVs is sufficiently large (& 1000) that sta-
tistically significant inferences can be made if unbiased
samples are available. Unfortunately, selection effects are
the bane of this type of study thereby making it difficult
to reach unbiased conclusions.

The use of PS techniques as a tool for understanding
the formation and evolution of all types of interacting
binaries has been used extensively. Some of the key PS
studies that have made significant contributions to the
CV field include those of de Kool (1992), Kolb (1993),
Politano (1996), Howell et al. (1997), Nelemans et al.
(2001), Howell et al. (2001 [HNR]), Podsiadlowski et
al. (2003), Politano (2004), Kolb and Willems (2005),

and Willems et al. (2005, 2007). However, the relative
complexity of the physical processes and the wide range
of timescales associated with them still pose consider-
able difficulties even with currently available computing
power. The large number of dimensions of parameter
space has often required that many simplifying assump-
tions be implemented in order to make the computations
tractable.

Except for the pioneering study by Podsiadlowski et
al. (2003), previous PS studies have not included the ef-
fects of the internal chemical evolution of the donor star
on the Present Day CV (PDCV) population1. In this
study, we examine the effects that evolved donor stars
have on the properties of the PDCV population. Our
approach is to first compute detailed evolutionary tracks
using a Henyey-type code (with state-of-the-art physics)
in order to generate a grid of models that are repre-
sentative of most types of non-magnetic CV evolution.
We then interpolate this grid to obtain a track corre-
sponding to a specific set of initial conditions describing
a ZACV. Since the interpolation is computationally inex-
pensive (as opposed to the calculation of individual CV
tracks), it is relatively easy to generate large populations
of PDCVs from a previously synthesized group of ZA-
CVs. One of the other advantages is that it is relatively
straightforward to calculate the properties of an ensem-
ble of ZACVs for any dimension of parameter space (e.g.,
CE efficiency).

This paper is organized as follows: In §2 we describe
the stellar code that is used to create the CV evolution
grid, the method of interpolation, and our assumptions
concerning the physics of the population synthesis itself.
In §3, we present the results of the population synthe-
sis study and explore the observable properties of the
ensemble of PDCVs; a discussion of the implications of
these results can be found in §4. In particular, we an-
alyze the importance of evolved donors with respect to
the period gap, the minimum period, and the formation
of ultracompact binaries, and we briefly comment on the
possible increase in the mass of WDs in CVs. Our con-
clusions and plan for future work are summarized in §5.

2. METHODOLOGY

One of the most significant problems in synthesizing
any population of interacting binaries relates to the large
number of dimensions of parameter space that must be
fully explored. Some of the important issues include the
following: What are the individual component masses
and separations of the primordial binaries? What is the
most realistic correlation between the masses of the pri-
mordial binary? At what rates are these systems born
over the history of the Galaxy? How should their abso-
lute numbers be normalized? What role, if any, could
triple (or multiple) systems play? Other very important
issues relate to uncertainties in the detailed physics. For
example, what is the correct physical description of the
common-envelope process and what are the actual mech-
anisms that result in orbital angular momentum losses?
Our lack of a precise understanding of many of these

1 We also refer the reader to the work of Andronov and Pin-
sonneault (2004) who examined how the evolution of chemically
evolved CVs is affected by various descriptions of magnetic stellar
wind braking.
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1998), and will not be discussed here4.
To determine the properties of the PCEB, we use the

same procedure described by HNR. Essentially we as-
sume that the energy needed to unbind the envelope of
the primary is some fraction of the change in the orbital
energy. Thus ∆Ebind = �∆Eorb, where � is the dimen-
sionless CE efficiency factor (normally < 1). Following
HNR, we take

�
GM2

2

(
Mcore

af
− M10

a0

)
=
G (Menv + 3Mcore)Menv

RL;1
(2)

where the primordial orbital separation is a0, the final
orbital separation is af , and RL;1 is the primary’s Roche
lobe radius. Note that the WD mass is taken to be equal
to Mcore, and Menv represents the mass of the primary’s
envelope (= M10−Mcore). This formulation is similar to
one that is commonly used (e.g., Webbink, 1984; Willems
et al., 2005), except that the dimensionless structure pa-
rameter determining the binding energy of the envelope
to the core (commonly referred to as �) has not been ex-
plicitly calculated. Equation (2) does constrain the range
of possible values of � to be between 1/3 and 1; assum-
ing that Menv >> Mcore, this corresponds to a value of
� . 1. Other formulations for energy conversion have
been proposed (see, e.g., Tauris and Dewi 2001; Poli-
tano and Weiler 2007; De Marco et al. 2011) and may
be more useful; but we caution that there are very large
uncertainties in any of these formulations. We plan to
investigate these other possibilities in the future.

2.1.3. Post Common Envelope Evolution

After the CE phase, the separation of the detached bi-
nary is known. If the Roche lobe is found to be located
within the donor’s surface, then it is presumed that a
merger would have been inevitable and the system is re-
jected. If the PCEB is in a detached state, the system
can become a ZACV if the orbital separation decreases
sufficiently due to AMLs and/or the donor expands on
its nuclear timescale and overflows its Roche lobe. If
the PCEB’s orbital separation is quite large, then the
secondary can be significantly evolved by the time the
system reaches the semi-detached state. While systems
with chemically evolved secondaries are technically CVs,
their evolution can differ markedly from the canonical
one described in §1. If the nuclear timescale of the sec-
ondary is less than (or approximately equal to) the mass-
loss timescale, Porb can increase as the secondary turns
off the main sequence (and may even form a degener-
ate core). The dividing line between these two radically
different evolutionary behaviors is known as the bifur-
cation limit (see, e.g., Pylyser & Savonije 1988; Nelson
et al. 2004a [NDM]). For systems above the limit, mass
loss occurs when the donor is in the Hertzsprung gap or
on the red giant branch and thus can form a degenerate
helium core around which hydrogen shell-burning occurs
(i.e., stars above the Schönberg-Chandrasekhar Limit).
The donor expands generally on a nuclear timescale and
contracts rapidly after losing most of its envelope mass

4 It has even been claimed that the CE phase can lead to an ex-
pansion of the orbit when considering angular momentum rather
than energy conservation (see, e.g., Nelemans & Tout 2005, and
references therein). However, this approach has received consider-
able criticism (Woods et al. 2012).

leaving a double-degenerate, detached binary. In this pa-
per, only systems that evolve below the bifurcation limit
are considered (the others are ignored). The rejected sys-
tems would evolve as long-period CVs (Porb & 1 day) and
could potentially form double-degenerates. This possibil-
ity will be examined in a subsequent paper.

When the secondary starts RLOF, the binary could be
subjected to a dynamical instability (see, e.g., Paczyński
1967; Hjellming & Webbink 1987). Dynamical instabil-
ities occur when mass transfer causes the radius of the
Roche lobe to move inwards relative to the surface of the
star on a timescale much shorter than its thermal adjust-
ment timescale (Kelvin-Helmholtz [KH] time). This pre-
cipitates a runaway situation and very often leads to the
merger of the two stars. There are two primary causes:
(i) either the radius of the secondary expands faster than
its Roche lobe (possibly due to the donor’s adiabatic re-
sponse); or, (ii) the Roche lobe shrinks quickly due to
a rapid decrease in the orbital separation (e.g., q � 1).
The implications of these scenarios have been analyzed
extensively by RVJ, Soberman et al. (1997), and others.
Using our grid of evolutionary tracks and by comput-
ing additional tracks for which dynamical instabilities
can occur, we are able to delineate stable from unsta-
ble initial conditions. Systems that were close to being
dynamically unstable are rejected.

Finally the ages of the systems that could ultimately
undergo stable mass transfer are checked. If the time
required for the formation of the ZACV exceeds the age
of the galaxy, taken to be 1010 yr, the system is rejected
(see Section 2.2.4). Once this final check is complete, the
surviving binaries constitute the final set of all incipient
ZACVs for a particular case (i.e., for a specific set of PS
parameters). The cases that we investigate are listed in
Table 1.

2.2. Synthesis of PDCVs

For each of the PS cases, we have a dataset containing
the initial conditions describing the properties of each
member of the ensemble of ZACVs. These properties
include Mdonor(≡M2), MWD, and the age of the system.
These properties constitute the minimal set necessary to
determine all of the other properties of the ZACV. For
example, they determine the evolutionary state of the
donor (denoted by its central hydrogen content, Xc).

We also assume that tidal effects enforce circulariza-
tion of the orbit and synchronization of the donor. An-
gular momentum losses include (when applicable) both
the effects of GR and magnetic stellar wind (MSW) brak-
ing. AML due to GR was calculated using the Landau-
Lifshitz quadrupole formula (1962), while we use the RVJ
parameterization of the Verbunt-Zwaan (1981 [VZ]) mag-

netic braking law (i.e., J̇ ∝ R where  is a dimensionless
number between 2 and 4). For the present investigation,
we set  = 4 since this value reproduces the observed
period gap reasonably well and matches the original VZ
law. We also self-consistently take into account the mo-
ment of inertia of the donor when implementing this for-
mula (see NDM for more details). The interior structure
of the donor is continuously monitored to check whether
it has a radiative core (and convective envelope); when-
ever this condition does not obtain, MB is set equal to
zero.
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We assume that mass transfer is completely non-
conservative. We thus set the mass-capture fraction
(� ≡ ṀWD=|Ṁdonor|) equal to zero, and we assume that
the matter lost from the system carries away a spe-
cific angular momentum equal to that of the WD (fast
Jeans’ mode). We note that this assumption is very well
warranted when CVs experience mass-transfer rates of
. 10−8M�/yr (see, e.g., Prialnik & Kovetz 1995). At
this rate, the matter transferred to the WD is not per-
manently accreted but rather undergoes a series of ther-
monuclear explosions (Classical Novae). It is certainly
possible that the WDs are even eroded during these
events (� < 0). However, during other phases of evo-
lution (e.g., thermal timescale mass transfer) it may be
possible for the mass of the WD to grow (i.e., 0 < � ≤ 1).
These systems would resemble supersoft X-ray sources
(van den Heuvel et al. 1992). Finally, we do not in-
clude the effects of X-ray irradiation on the donor (the
effects are expected to be small for mass transfer rates
of . 10−9M�/yr).

2.2.1. Stellar Evolution Code

Our stellar evolution code has been extensively tested
and used for similar types of mass-loss calculations (see,
e.g., Nelson et al. 1985; Dorman, Nelson & Chau 1989,
and NDM for details). The code is based on the Henyey-
type method for which mass is treated as an independent
(Lagrangian) variable. The equation of state (EOS) was
constructed using the SCVH EOS (Saumon, Chabrier, &
Van Horn 1995) as its core. The independent variables
are Pg (gas pressure) and T (temperature). An addi-
tional data table was generated to complement the SCVH
tables that incorporated radiation pressure, molecular
hydrogen formation, and Coulombic effects (in addition
to arbitrary electron degeneracy). The two sets of ta-
bles were spliced together and then finely interpolated
(Akima algorithm5) to obtain the final set of EOS ta-
bles. They cover a range of 2:1 ≤ log(T ) ≤ 9:0 and
−2:0 ≤ log(Pg) ≤ 26:0 (in cgs units). The contributions
of hydrogen (H), helium (He), and metals (approximated
by a single species, namely carbon) are computed sep-
arately. The EOS for arbitrary mixtures of hydrogen,
helium, and metals is then calculated using the additive-
volume rule. This rule neglects interactions between the
various species. For a detailed description of the SCVH
EOS, the EOS used for the extension of the tables, as
well as the interpolation and consolidation process, see
Maisonneuve (2007). The prescription for mass loss due
to stellar winds is that due to Reimers (1975).

Radiative and conductive energy transfer was cal-
culated using the updated OPAL radiative opacities
(Iglesias & Rogers, 1996) in conjunction with the low-
temperature opacities of Alexander & Ferguson (1994),
and the Hubbard & Lampe (1969) conductive opacities
(including Canuto’s relativistic corrections). The details
of the splicing of these three regimes are discussed in
detail by NDM.

The major change to the code concerns the calculation
of the outer boundary conditions needed by the Henyey
solver to compute the interior structure of the donor star.

5 The Akima (1972) method is a cubic-spline interpolation that
greatly reduces oscillatory overshoot and thus gives the interpola-
tion a more physically faithful representation.

We set the matching point (i.e., the ‘fitting point’) at a
depth enclosing 99% of the total stellar mass. It is at
this point that the envelope integration matches the in-
terior solution. We pre-computed the outer boundary
condition tables for an extremely wide range of (observ-
able) stellar properties. The main assumption is that no
nuclear or gravothermal energy generation occurs in the
envelope. The tables were generated by integrating the
stellar structure equations from the bottom of the at-
mosphere down to the fitting point for a range of values
of the variables L (luminosity) and Teff (effective tem-
perature), as well as the total stellar mass. The initial
conditions for this envelope integration were interpolated
from the results of the atmospheric integrations provided
by the Phoenix library (see, e.g., Allard et al. 1997, Al-
lard, Hauschildt, & Schweitzer 2000). The value of the
(solar) metallicity was taken to be Z = 0:01732. A more
detailed description of the atmospheric and envelope in-
tegrations that produced the outer boundary condition
tables can be found in Maisonneuve (2007).

For the grid of tracks calculated in this paper, we do
not include the effects of rotation and distortion in mod-
eling the donor star. We also ignored the effects of any
WD magnetic fields.

2.2.2. Grid Interpolation

Given the large number (∼ 106) of ZACVs that are
generated for each case considered in the Monte Carlo
analysis (see Table 1), it is numerically expensive to
calculate the evolution of individual CVs with sophis-
ticated codes that incorporate accurate input physics.
The bipolytrope code used by HNR allowed for tens of
thousands of individual systems to be calculated in a rea-
sonable amount of CPU time. However, a single track us-
ing the code described in §2.2.1, could require anywhere
between 1 to more than 20 core-hours of CPU time de-
pending on the phase of the CV’s evolution. Our strategy
is to construct a grid of representative tracks that would
encompass as many combinations of initial conditions for
ZACVs as possible. In this way, we can simulate the evo-
lution of many ZACVs by means of interpolation at only
a small fraction of the cost of computing the full evo-
lutionary tracks. Thus it is possible to generate much
larger and more statistically significant population syn-
theses.

Our grid consists of 6 WD masses (MWD = 0:2M�,
0:4M�, 0:6M�, 1:0M�, 1:4M�), and 31 initial masses
for the secondary (M20 = 0:08M�, 0:09M�, 0:10M�,
0:15M�, 0:20M�, :::; 2:8M�, in increments of 0:1M�).
Each of these tracks was typically run for seven differ-
ent evolutionary ages (t0) corresponding to the amount
of time elapsed before mass loss was initiated. For the
extremely low-mass stars (M2;0 < 0:4M�), the number
of tracks could be as low as three since nuclear evolution
over a Hubble time is not significant. The values of t0
can be thought of as corresponding to different stages of
chemical evolution of the donor and range from ZAMS
up to the bifurcation limit (i.e., tZAMS ≤ t0 ≤ tbif ).
Letting Xc0 denote the hydrogen mass fraction remain-
ing at the donor’s center at the time of first contact
(ZACV), our intervals for the values of t0 typically co-
incide with tZAMS ; t(Xc0 = 0:7); t(Xc0 = 0:6); t(Xc0 =
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TABLE 1
Population Synthesis Parameters

Case CE Eff. dN=dq ∝ qξ BRF ∝ e�t/τ IMF
# � � �

1 1 1=4 ∞ MS
2 1 1 ∞ MS
3 1 uncorr ∞ MS
4 1 1=4 3:0 Gyr MS
5 1=3 1=4 ∞ MS
6 1=3 1 ∞ MS
7 1=3 uncorr ∞ MS
8 0:01 1=4 ∞ MS
9 1 ∞ ∞ MS
10 1 1=4 ∞ Salpeter
11 1 1=4 0 MS

0:5); t(Xc0 = 0:4); t(Xc0 = 0:2); and t(Xc0 = 0:1) 6.
In order to obtain better statistics in regions of very
low probability in Xc0 space, we synthesize many ad-
ditional ZACVs in the region of interest (equivalent to
starting with a much larger value of N) and then nor-
malize the calculated probability densities to match the
original value of N .

The grid is quite coarse in terms of the spacing in
MWD. The reason for this is that the properties of
the CV evolutions are least sensitive to this dimension
of parameter space. This is largely due to the fact
that Roche geometry requires that the orbital period be
nearly independent of the mass of the WD. Many addi-
tional tracks were added to the grid near the bifurcation
limit (t ' tbif ) because of the sensitivity of the evolution
to a relatively small subset of initial conditions. Even
with these improvements, we could not fully sample sys-
tems that were born in this relatively limited volume of
(initial-condition) phase space. Thus we underestimate
the number of CVs that can evolve to ultra-short orbital
periods (defined to be < 60 minutes). In fact, we do not
have any tracks that evolve to periods of less than 25
minutes because of the extreme fine-tuning that would
be required to generate those tracks. Based on our as-
sumed AMLs and other population parameters, we find
that extremely few ZACVs fall into this category.

With respect to dynamical instabilities, we reject any
CVs that experience either an immediate or delayed (la-
tent) dynamical instability (see Podsiadlowski et al. 2003
for more details). We also reject any systems for which

Ṁ exceeds∼ 10−6M�/yr. Although this value is roughly
an order of magnitude lower than the Eddington limit,
it is sufficiently large to cause the WD to enter a red-
giant phase; this is likely to lead to the merger of the
two components. Since we assume mass transfer to be
fully non-conservative, and since this will be increasingly

6 We assumed that all donor stars in the ZACVs had reached the
ZAMS. Since the contraction of protostars on the Hayashi track is
relatively fast, our assumption is justified for all binaries except for
those with the most extreme mass ratio (massive primaries which
quickly become giants and very low-mass stars that might take 108

years to reach the main sequence). Even then, their radii are not
significantly different from the corresponding ZAMS values. For
this reason, we assume that the evolutionary track of a CV with
a pre-ZAMS secondary at the time of contact is reasonably-well
approximated by a system with a ZAMS secondary.

less accurate as Ṁ exceeds 10−8M�/yr, our evolutionary

tracks will be less reliable for phases of high Ṁ . However,
most CVs spend the vast majority of their lives evolving
at rates that don’t exceed this value (see §3).

Our grid is composed of over 300 tracks. Tracks are
typically composed of 105 to 106 models. Each track was
carefully examined for convergence problems (e.g., mod-
els with too small of a timestep). Those models were
removed and the properties appropriately averaged. The
interpolations are done linearly in all three dimensions
(MWD; Mdonor, and t0). Other methods were tried (e.g.,
quadratic) but were discarded because, although they
were more accurate for certain phases of the evolution,
they often produced numerical artifacts during phases of
the evolution when Ṁ changed rapidly. Jagged edges in
the grid occur in all of the dimensions and need to be
specially treated. We implemented constant (bi-linear)
extrapolations that allow us to interpolate models at the
edges of the grid. In order to ensure the reliability of
the interpolations, especially for the jagged edges, we
carried out fidelity checks by comparing selected inter-
polated tracks with tracks computed with the full code.
We do not find any significant discrepancies across the
grid, but we note that the accuracy diminished notice-
ably along jagged edges where extrapolations are em-
ployed.

2.2.3. Birth Rate Function

The rate of binary formation throughout the history of
the Galaxy must be established before inferring the pop-
ulation properties of PDCVs in the disk. For simplicity,
we assume that the stellar IMF is constant in time (i.e.,
@N=@m ≡ Φ(m; t) = Φ(m)), and we further assume that
50% of all stars born in the disk are members of binary
systems (this latter fraction can easily be adjusted). In
addition, we assume that the (binary) birthrate function
(BRF) is independent of mass (i.e., Ψ (m; t) = Ψ (t)).

The most physically representative BRFs that we con-
sider are: (i) a constant birthrate, Ψ (t) = C (i.e.,
equal numbers of stars are born in equal intervals of
time); (ii) a “starburst” Dirac-delta function (all stars
are born simultaneously when the Galaxy was formed);
and, (iii) an exponentially decaying birthrate of Ψ(t) =
Ke−t=� with � = 3:0 Gyr. For our standard case (#1),
we assume that the BRF is constant.

To obtain absolute estimates of the number of PDCVs,
we normalize the results to a specific birthrate of WDs in
the disk of the Galaxy. Based on the results of Holberg et
al. (2008) who claim a local WD density of 5×10−3 pc−3,
and Vennes et al. (1997) who find that the density of
DA WDs should be about twice that large (assuming
a constant BRF), we adopt a WD formation rate of 0.4
WD/yr. This choice is also in reasonable accord with the
estimate by Smith (1997), but we caution that the rate
could easily be different by more than a factor of 2. The
CV birthrate can be scaled to accommodate any change
in the WD formation rate. For the other (non-constant)
BRFs that we consider, we normalize the results to yield
the same total number of WDs that would have been
born in the Galaxy.
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the number of PDCVs that would have formed if all of
the primordial binaries evolved so as to produce ZACVs
with the corresponding triple j. The ensemble average
number of PDCVs can be determined by calculating the
expectation value over all primordial binaries used in the
synthesis. Therefore

Qtot =

NZACV∑
j=1

(∑
i

Ψij∆tij

)
N

= NPDCV : (6)

This algorithm is completely general and does not de-
pend on the choice of the BRF. It has been extensively
tested against the “non-optimized” method and the two
methods yield identical results to within statistical fluc-
tuations.

3. POPULATION SYNTHESIS RESULTS

The orbital period and mass-accretion rate are two of
the most important variables because they can often be
observationally inferred (see Patterson 1984). Orbital
periods are typically measured to within a precision of
better than a few minutes. The instantaneous mass-
transfer rate can sometimes be inferred from the accre-
tion luminosity, but it is not necessarily representative
of the long-term secular average rates. Other quantities
that can sometimes be inferred include the spectral type
of the donor (Teff ), the gravitational acceleration at its
surface, its mass, and the mass ratio of the binary com-
ponents, q.

Fig. 1.— Evolution of the mass-transfer rate (Ṁ) with orbital
period (Porb) for representative evolutionary tracks. The initial
values of MWD (in M�), Mdonor (in M�), and Xc0, respectively
are: 0:40; 0:40; 0:7 (dotted [blue] curve); 0:60; 1:20; 0:7 (solid [black]
curve); 1:00; 1:40; 0:7 (dashed [red] curve); 1:00; 1:80; 0:1 (dash-dot
[green] curve). The dashed track illustrates the ‘canonical’ CV
evolution curve with a period gap from 2.8 hr to 2.2 hr. The solid
line illustrates the evolution of a CV that is marginally stable with
mass-transfer rates reaching ≈10�6.5M�/yr. In contrast, the track
of a hydrogen depleted system (dash-dot line) exhibits significantly
lower mass-transfer rates and has no discernable period gap.

Because of the importance of the evolution of Ṁ with

respect to Porb, we have plotted four illustrative tracks
corresponding to four very distinct types of evolutionary
behaviors that CVs can exhibit (see Figure 1):
1) A generic CV evolution curve corresponding to a 1.4
M� donor losing mass to a 1.0 M� WD is illustrated by
the dashed line. At Porb ' 2:8 hr, the donor becomes
completely convective and magnetic braking is switched
off (IMB). Because the donor is bloated relative to its
thermal-equilibrium radius, the decrease in AML (GR
only) causes the cessation of mass transfer and the binary
becomes detached. This corresponds to the upper limit of
the period gap. Mass transfer recommences at the lower
limit of the gap (Porb ' 2:2 hr). The donor eventually
becomes so electron degenerate and has been driven so
far out of thermal equilibrium that it expands as a result
of continued mass loss. During this process the orbital
period attains a minimum value (Pmin) and subsequently
evolves back to higher values of orbital period.
2) The solid line illustrates the evolution of a CV that
is marginally stable. The initial mass of the donor is
1.2 M� and it is losing mass to a 0.6 M� WD. The
mass-transfer rate is driven to extremely high values (≈
10−6:5M�/yr) and the upper limit of the period gap is
increased to ' 3:6 hours.
3) The dash-dot line corresponds to the evolution of an
evolved donor at the onset of mass transfer. The initial
mass of the donor was taken to be 1.8 M� but its central
hydrogen composition, Xc, had been reduced to 0.1. Be-
cause the initial conditions for the system place it close to
the bifurcation limit, the binary can evolve to an ultra-
short orbital period of about 30 minutes. The binary
also continuously transfers mass as it evolves through
the orbital period gap. Other systems containing evolved
donors only become detached at low orbital periods be-
low the gap (and the detached phase leads to a narrower
gap).
4) The dotted line illustrates the evolution of a binary
containing a helium white dwarf (HeWD) accretor (0.4
M�). The donor is sufficiently massive that the system
is very close to being dynamically unstable. The initial
Ṁ is in excess of 10−7M�/yr and this drives the donor
significantly out of thermal equilibrium10. This causes
the period gap to start at approximately 4 hours. This
type of evolution can have a non-negligible effect on the
observed width of the gap. Also, because of the lower
mass of the WD, the mass-transfer rate below the gap
is diminished thereby decreasing the value of Pmin (see,
Knigge et al. 2011, and references therein).

3.1. PDCV 2D Probability Densities

The probability densities of finding a CV with a partic-
ular pair of observables at the current epoch are shown
in Figures 2 - 6. The vertical color bar on the right-
hand side of the plots denotes the probability density on
a logarithmic scale. Thus the color of a specific pixel in
the plots is a relative measure of the probability of the
ensemble’s properties defined by that pixel (the normal-
ization of the color bar is arbitrary). All of these figures
consist of 1000 horizontal cells covering an orbital period
of 12 hours and 1000 vertical cells covering the indicated
range of one of the other specified variables. For each

10 An analysis of thermal timescale mass transfer in CVs is given
by, for example, Schenker and King (2002)
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figure, the PS has been conducted for the parameters
defined by our standard case (i.e., Case 1).

3.1.1. Selection Effects

Observational selection effects are an extremely thorny
problem when it comes to understanding the ensemble
properties of CVs. The underlying problem is associated
with the fact that CVs can be grouped into many dif-
ferent subclasses most of which are discovered using a
variety of different techniques. For example, some are
discovered as a result of their brightness due to high
mass-transfer rates while others are discovered due to
the variation in the properties of their disks. In order
to crudely examine possible observational selection ef-
fects, we have naively assumed that they are primarily
due to a flux-limited optical passband that scales roughly
as Ṁ2=3 (see HNR for more details). This in turn im-
plies a flux-limited detectability that is proportional to
Ṁ . Consequently we adopted a weighting scheme pro-
portional to the mass-transfer rate. We refer to the raw
PS data as the intrinsic population and to the weighted
PS results as the selected population. The bottom panels
of Figures 2 - 6 show the results for the selected popula-
tion. The most significant effect is a strong enhancement
in the probability of detecting CVs with orbital periods
above 3 hours because of the correspondingly high mass-
transfer rates. This increase gives much more statistical
weight to CVs found above the period gap (see the CV
Catalog [V7.18] of Ritter & Kolb 2003).

3.1.2. Porb − _M plane

Figure 2 shows the results of the PS for PDCVs in the
Porb−Ṁ plane. The superposition of the different behav-
iors described above can be clearly identified. To further
understand what differences the inclusion of somewhat
evolved CVs makes to the overall population, we have
divided the results into two subsets (see Figure 3). The
first subset includes CVs whose donors have not reached
an age of 50% of their respective terminal age main se-
quence (TAMS) ages at the onset of mass transfer (i.e.,
the unevolved donors in panel a)). The second subset
includes only donors whose ages exceeded the 50% de-
lineator (i.e., the somewhat evolved donors in panel c)).
Figure 3 a) exhibits many of the features that have al-
ready been noted in previous PS studies (see, de Kool
1992; Kolb 1993; Howell et al. 1997; HNR). For example,
we see a significant drop in the number of CV systems
that should be observed with orbital periods between 2
and 3 hours (the period gap). Also, CVs with periods
above the upper limit have much higher mass-transfer
rates than those below the period gap. Once these sys-
tems enter a detached state, they cannot transfer mass
and are no longer classified as CVs. However, systems
can be born inside the period gap and they contribute to
the number of systems that can be seen in the gap. Be-
low the gap, the mass-transfer rate is significantly lower
and monotonically decreases. The orbital period mini-
mum for unevolved donors is located between ≈ 68 to
74 minutes (depending on MWD). As has been noted by
others, the vast majority of PDCVs located below the pe-
riod gap follow two distinctly different tracks. The upper
track in Figure 2 (or 3 a,b)) consists of the thicker red line
and corresponds to CVs with carbon-oxygen white dwarf

(COWD) accretors while the lower one, that nearly par-
allels it, corresponds to CVs with HeWD accretors. The
higher-mass COWDs enhance the rate of GR dissipation
directly leading to higher mass-transfer rates and longer
minimum periods. For our standard case, no systems
that have evolved past their minimum orbital periods
(i.e., the period bouncers) ever reach an orbital period
exceeding 2 hours because there is not enough time for
them to evolve back into the gap. If some form of supple-
mental AML were to be acting, Pmin could be increased
substantially and CVs would have enough time to evolve
back into the gap. This possibility has been suggested
by Knigge et al. (2011).

Figures 3 c) and d) highlight the effects of the inclu-
sion of nuclear evolution on the population of PDCVs.
Some of the major qualitative differences that become
apparent are: (i) the wider range of mass-transfer rates
that are possible above the period gap; (ii) the much
longer periods that can be attained (> 10 hr); (iii) many
of the evolved CVs continuously transfer mass (i.e., no
gap); and, (iv) the existence of very short-period CVs
that can have high rates of mass transfer. A more quan-
titative analysis for which the data has been folded into
an orbital-period frequency distribution can be found in
§3.2 and a discussion of the implications in §4.

3.1.3. Other Observable Planes

Figures 4 a) and b) show the probability densities for
the mass of the donor as a function of Porb, while Fig-
ures 4 c) and d) show the corresponding probability den-
sities for the radius of the donor. Figure 4 a) implies
that there are relatively few PDCVs whose donors have
masses that are ≥ 1:0M�. We can also see two very
distinctive triangle-like features in the lower-left corner
of panels a) and b) for Porb ≈ 1hr. The upper fea-
ture (masses of approximately 0:09M�) is due to very
low-mass donors that have just come into contact at the
present epoch. These donors are extremely small (in ra-
dius) because they are near the end of the main sequence,
and their orbital periods actually increase while they are
losing mass. The other feature which is associated with
donor masses about one-half as large is due to systems
that contain highly-evolved donors. They tend to evolve
to much shorter minimum orbital periods before evolving
back to longer periods.

Figures 5 a) and b) show the probability densities for
PDCVs in the (donor) luminosity-Porb plane. Figures
5 c) and d) are identical to the previous two (respec-
tively) except that they show the effective temperature
of the donor. It should also be noted that Figure 5 a)
and b) differ significantly from Figure 7 (right panel) of
HNR for Porb ≥ 5 hr. HNR found that the ‘probabilities’
converged towards a single line for long-period systems
whereas we find a wide range of luminosities for a given
Porb. This reflects the fact that some of our donors are
ZAMS stars at the onset of mass loss while other donors
are significantly evolved. With respect to the effective
temperatures, we do see an analogous difference at long
orbital periods. Our donors can have a wide range of ef-
fective temperatures largely because of nuclear evolution.
These results are in excellent agreement with the spectral
types derived by Beuermann et al. (1998). The agree-
ment is also very good for lower orbital periods where it
is seen that the spectral types are later than would be
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Fig. 4.— PS for PDCVs corresponding to our standard case (Case 1, see Table 1) in the Porb −M2 plane (panels a) and b)) and in the
Porb − R2 plane (panels c) and d)). M2 and R2 are the mass and radius of the donor, and Porb is the orbital period of the system. The
probability densities for a given combination of Porb and M2 (or Porb and R2) have been arbitrarily normalized and the vertical color bar
on the right-hand side illustrates that probability on a logarithmic scale. Panels b) and d) show the respective probabilities for the selected
population.

population is relatively unimportant. It is also interest-
ing to note that most PDCVs within the gap itself either
started with low-mass donors or they had initial masses
in the range of ≈ 1:0 to & 1:5M�. This latter result is
not too surprising since it is the chemically evolved CVs
that pass through the gap and their donors must be at
least this massive to have undergone nuclear evolution.

The above analyses have also been applied to all of the
other PS cases that we considered (e.g., different IMFs,
BRFs). We do not show the color density plots for these
cases because the general features described above for our
standard case are repeated for these cases. While they
share common features, the relative probabilities (and
absolute numbers) can exhibit significant differences.
The implications for these cases will be analyzed (§3.3)
by folding the data in the probability density plots into
frequency distributions. Also note that we have divided
the data presented in Figures 4 - 6 into two subsets as was
done for Figure 3 (unevolved and evolved cases). These
additional instructive figures and all high-resolution ver-

sions of the others presented in this paper can be down-
loaded at http://www.star.ubishops.ca/CVsyn.

3.2. Orbital Period Frequency Distributions

The frequency histogram (i.e., cumulative weight Wm)
for all PDCVs as a function of Porb is shown in Figure
7. As was the case for the color density plots, the 0 -
12 hour Porb range is divided into 1000 bins. The up-
per panel (Figure 7 a)) gives the logarithm of the bin
count of PDCVs while the lower panel (Figure 7 b))
has been weighted to depict the selected population (i.e.,

they are weighted with respect to Ṁ). For both pan-
els, the diagonally-hatched histogram bins represent the
entire PDCV population corresponding to our standard
model (Case 1). The cross-hatched histogram bins cor-
respond to the subset of PDCVs for which the donors
have undergone significant chemical evolution before the
onset of mass transfer. Specifically, these systems have
reached an age exceeding 50% of their respective TAMS
ages. The gray-shaded histogram bins correspond to the
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Fig. 6.— PS for PDCVs corresponding to our standard case (Case 1, see Table 1) in the Porb - M2=MWD plane (panels a) and b)) and in
the Porb −M20 plane (panels c) and d)). M2=MWD is the mass ratio q of the donor mass divided by the accretor mass, M20 is the initial
mass of the donor when the system first comes into contact, and Porb is the orbital period of the system. The probability densities for a
given combination of Porb and M2=MWD (or Porb and M20) have been arbitrarily normalized and the vertical color bar on the right-hand
side illustrates that probability on a logarithmic scale. Panels b) and d) show the respective probabilities for the selected population.

and thus some could be considered as supersoft X-ray
sources. If they were excluded, the shape of the distri-
bution between ≈ 4.5 to 5 hours would be much flatter.
Furthermore, Figure 7 reveals that as the orbital period
increases above 6 hr, PDCVs are increasingly more likely
to be comprised of evolved donors. CVs with evolved
donors (as defined previously) are not a significant frac-
tion of systems over any orbital period range except for
the ultracompact CVs (Porb < 1 hr).

In Figure 8 we show the numbers of evolved and un-
evolved present-day binaries that were once CVs and are
now detached. These are systems that became detached
as a result of IMB and are evolving across the gap as a
consequence of AML due to GR. The figure strongly con-
firms the statements made above concerning the depen-
dence of the location of the gap on the donor’s composi-
tion. Note that this figure does not include the contribu-
tion from currently detached binaries that might become
future ZACVs.

Figure 9 is identical to Figure 7 a) except that the

range of Porb is more suitable for the analysis of PD-
CVs located below the period gap (including the UCs).
The distribution exhibits a noticeable ‘spike’ at a Porb of
approximately 70 minutes, corresponding to the Pmin of
generally unevolved donors with COWD accretors whose
masses are primarily clustered around 0:6M�. The spike
is attenuated by the spectrum of WD masses and by
the nuclear evolution of the donor. The small lower pe-
riod ‘bump’ at ' 68 minutes corresponds to the Pmin of
systems containing HeWD accretors. The reason that a
distinct spike is not seen is because the contribution from
these systems is overwhelmed by that of CVs containing
COWDs. Below the gap we find that only ' 19% of the
PDCVs contain HeWDs. Because the observational pe-
riods of CVs are typically only determined to within a
precision of minutes, it would be extremely difficult to
distinguish the two spikes that are predicted from our
PS without a large unbiased data sample. This figure
also makes it apparent that there is a reasonably sharp
cut-off at the lower limit of the period gap. It is interest-
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Fig. 7.— Frequency histogram (Wm) for all PDCVs as a function
of the orbital period corresponding to our standard case (Case 1,
see Table 1). Panel a) shows the logarithm of the bin count of

PDCVs while the lower panel (Figure 7 b)) has been weighted by Ṁ
in order to approximately take into account observational selection
effects. In both panels the diagonally-hatched bins contain all CV
systems at the present epoch, while the cross-hatched bins and
the gray-shaded bins only contain systems in which the donor star
had an age of at least 50% and 80% (respectively) of its terminal
age MS lifetime when the system first came into contact. The bin
width is 0.012 hr in both panels.

ing to note that mildly evolved systems (50% of TAMS)
exhibit a maximum count at Porb ' 65 minutes, con-
siderably shorter than that found for largely unevolved
donors with COWD accretors. The donors are somewhat
hydrogen depleted and therefore have a comparatively
smaller radii (implying shorter orbital periods). There
are many fewer highly evolved donors but they are ca-
pable of reaching orbital periods of less than 30 minutes.
Although we cannot fully sample these systems because
of their proximity to the bifurcation limit, it is clear that
UC systems are much less likely to have formed.

3.3. Analysis of the Effects of Different PS Cases

In Table 2 we examine the distribution and absolute
numbers of PDCVs for some of the more interesting PS
cases (both the intrinsic and selected populations that we
have investigated). The third and fourth columns give
the absolute numbers of PDCVs and detached binaries
(in the gap) that are predicted to be in the galactic disk,
respectively. The total number of PDCVs was calculated

Fig. 8.— Present Day (PD) orbital period distribution corre-
sponding to our standard case (Case 1, see Table 1) of systems
that are detached (in the period gap) and do not experience any
mass transfer. The count in each bin represents the logarithm of
the number of PDCVs to be expected in that particular period
interval. The shading key for this figure is the same as for Figure
7. The bin width is 0.012 hr.

Fig. 9.— PDCV orbital period distribution of short-period CVs
corresponding to our standard case (Case 1, see Table 1). The
details for this figure are the same as for Figure 7 except that the
bin width is 0.002 hr.

based on the estimated birth-rate of WDs in the Galaxy.
Based on the analysis presented in §2.2.3, we assumed
that a constant birthrate would produce 0:4 WDs=yr.
According to the cases presented in Table 2, this yields a
CV number density of ≈ 1± 0:5× 10−5 pc−3 at the cur-
rent epoch. This value is in reasonable agreement with
the observations (Pretorius et al. 2007), but could easily
be revised by a factor of two. The next four columns
enumerate the percentages of PDCVs that have orbital
periods above the period gap, in the period gap, below
the gap (but not yet beyond the minimum period), and
past Pmin (i.e., the period bouncers). The last column
indicates the percentage of HeWDs in PDCVs.
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TABLE 2
Properties of PDCVs

Case Present-Day In Gapy P > 2.8 hr P ≤ 2.8 hr P ≤ 2.2 hr P ≥ Pmin Fraction
# CVsy (detached) P ≥2.2 hr P > Pmin (bouncers) of HeWDs

1 intrinsic 4.54E+06 6.56E+05 2.0% 1.7% 54.1% 42.2% 18.9%
selected 74.3% 1.2% 21.3% 3.2% 10.4%

2 intrinsic 2.60E+06 3.99E+05 2.2% 1.4% 52.8% 43.6% 15.6%
selected 77.6% 1.0% 18.5% 2.9% 8.8%

3 intrinsic 5.45E+06 4.81E+05 0.9% 2.8% 57.8% 38.5% 30.3%
selected 50.7% 3.2% 40.6% 5.4% 21.5%

4 intrinsic 6.12E+06 3.07E+05 0.5% 1.2% 38.5% 59.9% 24.6%
selected 45.2% 2.3% 41.4% 11.2% 29.5%

5 intrinsic 4.53E+06 7.93E+05 2.5% 1.8% 54.0% 41.7% 13.0%
selected 76.7% 1.3% 19.3% 2.8% 12.1%

6 intrinsic 3.04E+06 5.68E+05 2.9% 1.5% 53.8% 41.8% 13.1%
selected 79.4% 1.1% 17.0% 2.5% 12.5%

7 intrinsic 4.17E+06 4.73E+05 1.2% 3.1% 54.7% 41.0% 13.4%
selected 57.1% 3.2% 34.8% 4.9% 15.9%

yAbsolute number in the disk normalized to a constant BRF of 0.4 WDs/yr.

As expected, the fraction of systems observed above
the period gap is significantly higher for the selected pop-
ulations. We see that only 2% of Case 1 PDCVs are
found above the gap, 1.7% evolve through the gap, and
the rest reside below the gap. For the selected popula-
tion, it is about three times more likely to detect CVs
above the period gap. The results for Cases 2 to 7 are
also tabulated. The fraction of HeWDs can vary over a
span of about 13% to 30% (intrinsic population) and the
fraction of PDCVs above the gap varies between 0.5%
to 3%. Finally we note that the number of PDCVs that
have evolved beyond the minimum period is always about
40% of the total, regardless of the case. Although this
is a large fraction, they are notoriously difficult to de-
tect because of their faintness (not surprisingly they only
constitute a few percent of our observationally selected
population).

In Figure 10 the frequency distributions with respect
to Porb for Cases 1 through 7 (the same ones as in Ta-
ble 1) are contrasted. Panel a) applies to the intrinsic
populations while panel b) corresponds to the selected
populations. Not unexpectedly, the general shape of the
Porb distributions is very similar for all cases, but the ab-
solute number of CVs can vary significantly depending
on the case. Other features, such as the minimum period
spike, can either be accentuated or diminished depend-
ing upon the physical conditions inherent for each case.
The most striking difference occurs for the exponential
birthrate function (Case 5). Compared to our standard
case (1), the probability of detecting CVs (intrinsic popu-
lation) above the period gap is reduced by nearly a factor
of 4. The reason for this difference can be attributed to
the fact that most CVs for an exponentially declining
BRF are very old, and therefore we would expect to find
fewer CVs evolving through the relatively rapid phase
of mass-transfer evolution for orbital periods above the
gap.

The results for Case 3 are also interesting to analyze
because of the much stronger correlation between the
primordial primary and secondary masses. We would ex-
pect to have many more massive (and evolved) donors at
the onset of mass transfer. Since massive and/or evolved
donors tend to have larger radii this typically implies
longer orbital periods (this is especially true for Case 6).
We would also expect to observe more UC CVs; although
the fraction of these systems is very small (< 1%), we do
see the enhanced contribution of the initially more mas-
sive (and therefore more likely to be evolved) donors at
the onset of mass transfer. However, when the primordial
component masses are uncorrelated, we see the opposite
effect. Less than 0.1% of ZACVs are capable of evolving
into UCs, and most of these will have orbital periods not
much less than 60 minutes.

When � = 0:33, we see relatively little difference in the
distributions with respect to the standard case. This is
especially true for the observationally selected popula-
tion. The value of � is poorly known and thus is a sig-
nificant source of uncertainty. Our results show that the
shape of the distribution seems reasonably robust with
respect to this uncertainty. However, we also note that
Politano and Weiler (2007) found that significant differ-
ences only occur for smaller values of � (which are also
physically possible). However, the CE formulation that
Politano used was also somewhat different from the one
adopted here, and thus a direct comparison is not easily
accomplished.

4. DISCUSSION

The results of our PS study are in broad agreement
with those of HNR (and the sophisticated analysis by
Podsiadlowski et al., 2003). Most of the prominent fea-
tures are reproduced, but this study is much richer than
that of HNR in terms of the behaviors exhibited by CVs
because of the inclusion of the nuclear evolution of the
donor and our ability to account for high-mass secon-
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Fig. 10.— PDCV orbital period distribution for various cases
(differentiated by color). The Case numbers in the legend corre-
spond to those in Table 1. Panel a) shows the logarithm of the
bin count of PDCVs while the lower panel (Figure 7 b)) has been

weighted by Ṁ in order to approximately take into account ob-
servational selection effects. The bin width is 0.012 hr in both
panels.

daries (donors). In particular, we see that the ranges of
orbital periods, mass-transfer rates, and the properties
of the donor cover a much wider range of values with the
relative probabilities being enumerated (e.g., Porb . 1
day).

Based on the observed fraction of Nova-likes (NLs)

above the period gap, we would expect Ṁ to be &
10−8 M�=yr. Figure 2 certainly supports this claim al-
though there is a population of evolved systems that have
much lower mass-transfer rates (see the dash-dot curve
in Figure 1). The evolved systems might thus account
for the observed fraction of Dwarf Novae. Figure 2 also
shows that some systems can have mass-transfer rates
in excess of 10−7 M�=yr and that they typically have
Porb > 4 hr. These systems should probably be classi-
fied more aptly as supersoft X-ray sources. We do not
attempt to distinguish them from other classes of PD-
CVs. But we also see many CVs that are transferring
mass at rates in excess of 10−8 M�=yr that have orbital
periods between approximately 3 and 4 hours. For these
systems, the donor star typically has a mass very similar
to that of the WD and thus is on the verge of dynami-
cal instability. There is also a large number of CVs with
Porb > 4 hr that contain COWDs which have even higher
mass-transfer rates. Both of these types of systems are

potentially very interesting because they may be related
to the SW Sextantis sub-class of NLs (see, Hoard et al.
2010, and references therein).

As has been noted in previous papers (e.g., Howell et
al. 1997), HeWDs can comprise a significant fraction of
the total number of WDs. For the range of cases that we
examined, the fraction of PDCVs containing HeWDs is
between 13 and 30%. However, there is no observational
evidence for the existence of HeWDs in CVs. For al-
most all of the cases that we analyzed, the masses of the
COWDs were peaked at ≈ 0:65M�. For most cases, the
number of systems with WDs with masses in excess of
1:2M� is negligible. But for certain combinations of the
PS parameters � and �, we find that the WDs in PDCVs
can have masses close to the Chandrasekhar Limit. For
Cases 7 and 5, the fraction of high-mass WDs (> 1:2M�)
can be as large as 0.5 to 1%, respectively. Thus we would
expect to find a larger percentage of Recurrent Novae in
these populations.

4.1. Period Gap

The IMB paradigm is currently the most accepted ex-
planation for the period gap (see, e.g., Kolb et al. 1998),
often quoted as being between 2.2 and 2.8 hours. The
physical reasons for the ineffectiveness of MB when the
donor loses its radiative core are not clear. Even though
low-mass (convective) stars normally exhibit magnetic
phenomena (e.g., starspots), it is assumed that the topol-
ogy of the B-field changes drastically and can no longer
be efficient in transporting angular momentum out to
the corotation radius. While there have been other hy-
potheses put forward to explain the existence of the gap
(Taam et al. 2003), the IMB is still very viable (Kolb et
al., 1998).

The synthesized gap for all of our PS cases is wider
than that observed. The main reason for this is that the
populations contain a significant number of low-mass,
but not yet convective, donors (≥ 0:37M�) that expe-
rience high mass-transfer rates when they initially over-
flow their lobes (Kelvin-Helmholtz mass transfer). This
drives the binaries to higher orbital periods before MB is
switched off (see the dotted curve in Figure 1). The cu-
mulative effect is that the upper limit of the period gap
is raised. In retrospect, we could have easily narrowed
the width of the synthesized gap (and hardly change Porb
at the lower edge) by arbitrarily reducing the magnitude
of the magnetic braking in the VZ law.

Contrary to the results of HNR, we find that there are
many more CVs in the gap (see their Figure 10). The
smallest number of systems according to the PS occurs
at a Porb ' 2:9 hr. Figure 7 shows that for some values
of Porb, (partially) evolved donors can account for nearly
30% of the systems. But the vast majority are CVs that
were born within the gap. This is especially true for pop-
ulations where the secondary mass is uncorrelated with
that of the primary (Cases 3 and 7). These cases al-
lowed for the inclusion of many lower-mass secondaries
as dictated by the MS IMF. As mentioned previously, it
would be hard to distinguish these H-rich systems from
evolved donors because the surface abundances of hydro-
gen will not be that different (except for extreme cases).
Finally we note that magnetic CVs (polars) probably do
not undergo IMB. They would evolve through the gap
and do constitute a substantial fraction of the CVs that
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are observed there.

4.2. Minimum Period ‘Spike’

Kolb & Baraffe (1999) pointed out the fact that the ex-
istence of an orbital period minimum implies that there
should be a ‘spike’ in the number of systems whose or-
bital periods are coincident with that period (Ṗorb = 0⇒
dN=dPorb →∞ with the width of the spike becoming in-
finitesimal). Although the empirical period distribution
is fraught with selection effects, an enhancement in the
number of systems located near the observed minimum
period has been reported (see, e.g., Gänsicke et al. 2010)
based on data obtained using SDSS observations. If one
assumes that all WDs have the same mass and that the
donors are completely unevolved (ZAMS) stars, then the
spike would have to be extremely pronounced11. How-
ever, the fact that WDs can have different masses and
that the donors will have chemical compositions differ-
ent than what would be expected for ZAMS stars, implies
that this spike will be attenuated.

For our standard case, there is a significant enhance-
ment in the probability of discovering CVs near the min-
imum orbital period. Specifically, we find that the prob-
ability density (per unit Porb) of detecting CVs at Pmin
will be at most twice as large as the probability density
for detecting CVs in the period range of ≈ 76 to 106 min
(see Figure 9). For most of the cases that we investi-
gated, we found that the width of the spike at its base
was nearly 5 minutes (see, e.g., Figure 9) and that the
maximum probability density was increased by nearly a
factor of two relative to what would be detected for or-
bital periods extending up to 85 minutes. We also ex-
amined how the minimum periods were affected by the
mass of the WD accretor. We found that the minimum
orbital periods deviated by approximately 1.8 minutes
when comparing a 0:4M� HeWD accretor with a 0:6M�
COWD accretor. If we take the mass of the COWD
accretor to be as large as 1:0M�, the value of the min-
imum orbital periods increases by another 2.2 minutes.
Given the fact that most of our PDCVs contain COWDs
with masses close to the canonical value of 0:6M�, we
conclude that the chemical evolution of the donor has
played a role in attenuating the minimum period spike.

Another interesting feature that becomes apparent in
Figure 2 is the very sharp drop in Ṁ just as systems
evolve through their minimum orbital periods. Above
Pmin, we see that, for most CVs, d log Ṁ=dPorb '
+0:28/hr, while below Pmin we have d log Ṁ=dPorb '
−2:0/hr. The junction between these two regimes is not
characterized by a discontinuous change in the slope. In-
stead we see a region that is about 3 minutes wide (co-
incident with the Pmin spike) where it is very difficult
to distinguish CVs on either side of Pmin. The value of
Ṁ decreases by almost a factor of 1.8 for orbital peri-
ods within ≈ 3 minutes of the minimum orbital period.
If systems were selected largely based on their accretion
luminosity, then we might reasonably expect the bright-
ness to decrease by almost a factor of two over this or-
bital period range. This corresponds to a decrease in

11 We have assumed that the only sink of angular momentum
is due to GR. Thus the rate of AML is fixed by the masses of the
donor and the WD, as well as the orbital period.

brightness of nearly 2/3 of a magnitude which may at-
tribute to the difficulty in making unambiguous detec-
tions of period bouncers (see, e.g., Aviles et al. 2010).
Despite this problem, we are convinced that they must
exist; otherwise the canonical model for the evolution of
CVs requires serious revision. This is an extremely im-
portant issue and needs to be addressed more fully by
future surveys.

4.3. Ultracompact Systems

Although the observationally determined orbital pe-
riod distribution of CVs shows a reasonably well de-
fined cutoff at approximately 80 minutes, nearly 30 UC
systems have been discovered (including the AM CVn
stars). This constitutes about 3% of all binaries that
could be broadly classified as CVs. We define ultracom-
pact CVs as those having orbital periods of less than
60 minutes and comprised of at least one WD. UCs have
been extensively investigated by Sienkiewicz (1984), Nel-
son et al. (1986), Podsiadlowski et al. (2002), Bild-
sten (2002), Nelemans et al. (2010), NR (and references
therein). Four different evolutionary channels could lead
to the formation of such systems. These include: (i) a
double degenerate channel that produces two WDs in a
very tight orbit after one or two CE phases (a HeWD is
typically the donor); (ii) a partially degenerate helium-
star that is losing mass to a COWD accretor after several
previous episodes of mass transfer; (iii) a brown dwarf for
which mass transfer is initiated while it is degenerate;
and, (iv) a channel that corresponds to the UC tracks in
our evolutionary grid. According to this latter scenario,
binary systems that have initial conditions that place
them close to the bifurcation limit will have donors that
are already rich in helium in their cores. They contain
such a large fraction of helium that they are consider-
ably smaller than comparable (unevolved) donors and
thus can attain substantially lower minimum periods.

Based on computations that we previously carried out
(NR and NDM), we found that it is possible for CVs to
reach orbital periods as short as 6 minutes. This is suf-
ficiently short to explain the orbital periods of all AM
CVns discovered to date. We found that the systems
with the shortest possible orbital periods will only have
miniscule hydrogen surface abundances (Xs . 10−3),
and other than their somewhat thermally expanded radii,
they are virtually indistinguishable from HeWD donors.
The question is whether the ‘CV channel’ can make any
significant contribution to the observed number of ul-
tracompacts. The problem with this particular channel
is that the initial conditions must be extremely finely
tuned in order to attain these short orbital periods. Un-
fortunately, the extremely limited volume of the phase
space of initial conditions required to model these sys-
tems causes our grid to be too coarse to obtain a sta-
tistically meaningful sample of systems with Porb . 30
minutes. Nonetheless, Figure 9 clearly shows that there
is a very precipitous decline in the number of PDCVs
(intrinsic population) with orbital periods of less than
one hour. This decline is so steep that we can probably
safely claim that the CV channel should make a negligi-
ble contribution to ultracompacts with Porb < 30 min-
utes. In fact, the contribution to UCs for our standard
case is even small for higher orbital periods but it should
be noted that the fraction of UCs is quite sensitive to
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the value of �. If � = 1 (reasonably strong component
correlation), then the absolute numbers of PDCVs drops
(see Table 2) but the fraction of UCs can be as large as
≈ 1%. If the component masses are not correlated, the
fraction of UCs decreases to considerably less than 0.1%.
Thus it is difficult to make any definitive quantitative
statement, but we can say that the CV channel proba-
bly does not contribute significantly to the population of
observed UCs (especially for Porb . 30 minutes) unless
selection effects are a dominant consideration.

4.4. White Dwarf Mass Accretion

The issue of whether or not WDs in CVs actually gain
or lose mass during their evolution can be addressed
by population syntheses. In order to carry out self-
consistent calculations, the amount of mass that is ei-
ther accreted (or eroded) must be incorporated into the
computation of the CV’s evolution. According to the
grid of accreting WD models generated by Prialnik &
Kovetz (1995) and more recently by Yaron et al. (2005),
the amount of mass gain or erosion depends primarily
on Ṁ and to a lesser degree on the mass and internal
temperature of the WD (see also Nelson et al. 2004b).

It is well known that if Ṁ is of the order of 10−6 to
10−7M�/yr then quasi-steady nuclear burning can oc-
cur, as is observed in supersoft X-ray sources (see, e.g.,
Van den Heuvel et al. 1992). The net result is that this
allows COWDs to grow in mass. The magnitude of this
increase and its sustainability clearly have major impli-
cations for the validity of the so-called single degenerate
scenario for Type Ia supernovae. As Ṁ decreases, the
amount of accreted material that remains on the surface
of the white dwarf diminishes. For mass-transfer rates
of less than ∼ 10−10M�/yr, significant erosion starts to
occur.

Ritter & Burkert (1986) concluded that the measured
high mean masses of WDs in CVs (and the absence of
HeWDs) could be explained as a selection effect. A very
careful study of this issue was recently carried out by
Zorotovic et al. (2011) and they conclude that the masses
of COWDs in PDCVs actually increase by . 0:2M� (as-
suming that the natal masses of WDs in CVs are no
different from those observed in the field). Thus they
conclude that WDs are not eroded in mass (on average),
but rather gain mass.

In order to properly address this question, we would
need to recalculate our grid of evolutionary models taking
into account the expected mass gain or loss of the WD
while self-consistently redistributing the orbital angular
momentum. Our PS could then be re-computed and an
inference could be obtained. In order to obtain a rough
estimate of �MWD, we interpolated the models of Yaron
et al. (2005) to infer the value of � as a function of

MWD and Ṁ . Although we could not alter the tracks
in our grid, we know that the general behavior of the
tracks is not greatly altered depending on whether the
mass transfer is partially conservative or partly erosive
(assuming that |�| is not close to unity). Based on our
grid (� = 0), we find that 〈�MWD〉 falls in the range of
≈ 0:05 − 0:10M� (positive mass gain of PDCV WDs).
This range was determined for our standard case but we
allowed the WD to have temperatures of between 10 and
50 million Kelvin. The other cases were also analyzed

and for each one there was a positive mass gain.
As a cautionary check of our analysis, we have re-

computed a few of the ‘canonical’ CV tracks that self
consistently included the effects of mass erosion and mass
gain on the evolution. We conclude that our estimate of
�MWD would have to be somewhat lower. On the other
hand, if we accept the results of Yaron et al. (which ad-
mittedly have their own uncertainties), we believe that
the mass gain could easily be larger because our grid
did not fully sample tracks at high mass-transfer rates.
It is the relatively-short, initial mass-transfer phase that
can lead to very high rates of sustained mass transfer
(especially for higher-mass donors) during which time a
significant fraction of the mass of the donor is actually
accreted by the WD. It is worth noting that below the
period gap, where supposedly significant erosion will oc-
cur, the mass of the donor is so small that even though
it might lose between 0:12 − 0:15M� of its mass, the
WD can only lose a similar amount (or less) of its own
mass. Thus our very preliminary analysis is highly sug-
gestive that WDs in PDCVs may have gained as much
as 0:1M�. We plan to address this issue more fully in a
future paper.

5. CONCLUSIONS

Using a novel approach to population synthesis (see,
e.g., Podsiadlowski et al., 2003), we pre-compute repre-
sentative tracks for the evolution of CVs and then inter-
polate the grid for a specific set of initial conditions corre-
sponding to the properties of a particular ZACV. Since
the interpolations are relatively inexpensive (but must
be treated very carefully near edges), we can use Monte
Carlo methods to generate large datasets of ZACVs for
any assumed set of parameters describing their forma-
tion. This allows us to explore the many dimensions of
parameter space (e.g., CE efficiency, mass correlation)
in an efficient manner. We have also demonstrated the
fidelity of this approach by taking our results (where ap-
plicable) and comparing them with previous studies.

This is the first time that a full CV population synthe-
sis has been carried out for the present-day population
that takes into account the effects of chemical evolution
for all donor masses up to the bifurcation limit and for
the complete spectrum of WD masses. The results show
that the assumption that CV evolution can be approxi-
mated by ZAMS mass-losing donors is generally a valid
one. However, the range of the values of the observ-
ables at a given epoch has been greatly underestimated
relative to other studies. This is especially true for the
relatively rare, long-period CVs (Porb > 6 hr) where we
find good agreement with the range of observed spectral
types. We are also able to populate the entire gap with
non-magnetic CVs and predict the relative numbers that
should be observed on both sides of the gap and in the
gap itself. We find that the relative distribution is not in
contradiction with the observations, and we claim that
a non-negligible fraction of systems in the gap may be
derived from (partially) evolved donors. We show that
there should be a significant enhancement in the number
of CVs observed near Pmin. If GR is the sole mecha-
nism for AML below the period gap, then this increase
in the detection probability should manifest itself in an
4 - 5 minute period range coincident with Pmin. If we
can obtain an unbiased and statistically significant sam-






