Graduate Programs

Overview
The University offers graduate degrees in Education (MA, MEd), Computer Science (MSc), and Physics (MSc) and graduate Certificates in Management, Brewing Science, and a graduate level Micro-program in Climate Change.

Bishop’s University also offers thesis-based, Individualized Masters Programs. Thesis-based Individualized Masters Programs allow students to tailor a Master’s program (M.Sc. or M.A) to specific research goals and explore topics outside of traditional disciplines. Students applying to the Individualized Program must contact a supervisor in a field of research they are interested in and collaborate with them to develop a proposal for a research project. Considering the research project and following a defined structure, they must also propose a program structure and flow using existing courses within the university and at other universities.

The program can involve one or several disciplines. The discipline will be determined by the research projects. It can be one or several disciples attached to a department at the University. The Individualized Master’s Program has 45 credits that are normally completed over 2 years of full time study. The thesis component of the program should represent 30 credits and the coursework component 15 credits. Specific coursework would be defined for each Individualized Program as part of their proposal.

For more information, contact the Graduate Studies Coordinator (jimmy.couturier@ubishops.ca).

Admission Requirements

Master of Education (MEd) and Master of Arts in Education (MA)

General Admission Requirements
• have completed a B.Ed. or related degree at a recognized university with an average of at least 75%;
• normally have at least two years of relevant educational experience (teaching or related professional experience).

Required Supporting Documents
• 2 references using the School of Education Reference Form.
• Proof of English proficiency. All applicants must submit proof of English proficiency. Consult the English Language Proficiency Requirements document to determine what, if any, supplementary documents you must provide.
• Copy of most recent university transcript.
• Letter of intent outlining why you believe you are a good candidate for graduate studies at Bishop’s University.
• Your curriculum vitae

MA applicants only: One-page description of your research interests, including area of interest, initial research questions, approach, possible resources required, and an approximate time line for completing the program.
Copy of personal identification document(s). Consult the Personal Identification Documents page to determine what document(s) you must provide.

Graduate Certificates in Education

General Admission Requirements
• have completed a B.Ed. or relevant degree at a recognized university, normally with an average of at least 75%;
• have at least two years of relevant experience (teaching or related professional experience); such experience will be taken into account as we consider admissions.

Required Supporting Documents
• 1 reference letter of reference addressing academic ability, qualifications and experiences, and how this certificate will benefit your professional learning.
• Proof of English proficiency. All applicants must submit proof of English proficiency. Consult the English Language Proficiency Requirements document to determine what, if any, supplementary documents you must provide.
• Copy of most recent university transcript.
• Personal statement illustrating experience working with students and reason(s) for seeking admission to the program.
• Your curriculum vitae

Master of Science (MSc)

General Admission Requirements
• Completed undergraduate degree in a related field with high academic standing
• Proof of English proficiency. All applicants must submit proof of English proficiency.

Computer Science (Thesis option)
The minimum requirements for admittance to the program are an undergraduate degree with a major in Computer Science or equivalent, and a high upper-second class standing.

Candidates with high academic standing in an undergraduate degree other than computer science, who have some computer science background either academic or professional, may be admitted as graduate preparatory students. Preparatory students will be asked to complete up to one year of undergraduate courses to enhance their background. We may at our discretion replace the requirement of preparatory period with a set of preparatory co-requisites. These co-requisites will consist of undergraduate courses to be taken concurrently with the regular graduate courses. In these circumstances the candidate is admitted directly to the graduate program, but should expect a longer residency in the program.
In addition to academic performance, a combination of factors is taken into consideration in assessing the eligibility of a candidate for admission into graduate programs. One important such a factor is the availability of a faculty member competent and willing to supervise the academic program of studies and research of the candidate; a candidate will not be admitted to the program under any circumstance unless such a faculty member exists. Other factors include the performance of the candidate and the assessment provided by his/her referees as a measure of the likelihood that the candidate can successfully complete the course of studies and research.

Computer Science (Project Option)
The minimum requirements for admittance to the program are an undergraduate degree with a major in Computing Science, Information Technology, Computer Engineering, Electrical Engineering, Mathematics, Physics, or equivalent, as well as a 70% standing. Note however that the admission process is competitive and so meeting the minimum requirements does not guarantee admission.

Candidates with insufficient academic background in Computer Science may be admitted as graduate preparatory students and will be asked to complete up to one year of undergraduate courses to enhance their background. We may at our discretion replace the requirement of qualifying period with a set of preparatory co-requisites. These co-requisites will consist of undergraduate courses to be taken concurrently with the regular graduate courses. In these circumstances the candidate is admitted directly to the graduate program, but should expect a longer residency in the program.

Application procedure
The application procedure for our graduate degrees is the following two-step process:

- A pre-application submitted to the department is mandatory and authoritative, meaning that it will guarantee admission provided that the information submitted is correct and complete. Note that the pre-application forms are different for the two options (thesis and project). Pre-applications are free of charge.
- An official application must then be submitted using the Bishop’s on-line application system (fees apply). Note that the application can be submitted at the same time or even before the pre-application, though in this case the application fees will be charged irrespective of the departmental decision.

Regulations for Graduate Studies in Science (MSc)
The Division of Natural Sciences and Mathematics of Bishop’s University offers a Master of Science degree (M.Sc.) program in the Departments of Chemistry, Computer Science, and Physics. Potential students are referred to the appropriate departmental section of this Calendar for specific program information.

Admission
1. Completed applications will be forwarded to the appropriate department for evaluation. Recommendations for admission to a degree program are made by the department to the Dean. Final approval for admission is made by the Dean.
2. Advanced courses of instruction leading to the Master of Science degree are open to graduates of any university of recognized standing who have obtained at least a Bachelor’s degree with Honours with Class II standing or its equivalent. An applicant who has followed a combined program must have obtained at least a Class II standing in the subject of the Masters degree.
3. Applicants who do not satisfy these requirements may, with the permission of the department concerned and the Dean, be admitted to a qualifying semester(s) or year to bring their standing up to that of an Honours B.Sc. degree.
4. Admission to graduate courses does not in itself imply candidacy for a graduate degree.
5. All information is processed through the Admissions Office.
6. These regulations for admission are minimum requirements. Additional requirements may be specified by departments, with the approval of the Division.

General Regulations
1. Apart from any qualifying semesters, the minimum period of registration for the M.Sc. shall be one academic year of full-time study, including research, or its equivalent in part-time study. This requirement must be met regardless of the amount of graduate work previously completed in any other program or at any other university.
2. The maximum time allowed for the fulfillment of the requirements for graduation shall normally be four years in the case of full-time students, excluding any qualifying or inactive semesters. For part-time students the course-work required for qualifying semesters (if any) and the regular credit requirements of the program must be completed at the rate of no fewer than 6 credits per year.
3. Students may choose to leave the program temporarily for one semester, but only with permission of their supervisor; these students shall be considered inactive for that semester. Such a one-semester leave of absence from the program will not normally be allowed more than twice.
4. Students must obtain a minimum of 65% in each required course. Courses may not be repeated more than once.
5. Each degree candidate will be assigned, by the department in which the thesis is to be submitted, to a supervisor who shall be a faculty member of the department and who will
be responsible for advising the candidate and directing his/her research. Co-supervisors may also be assigned with the department’s approval.

6. The course of study will be arranged by the supervisor. The subject of the thesis also requires approval by the supervisor.

7. The responsibilities of the students include: informing themselves of program requirements and deadlines, working within these deadlines, communicating regularly with their supervisors; and submitting annual progress reports to their supervisors and the Division.

8. Students may receive (limited) financial support from the University in the form of research assistantships, undergraduate marking, tutoring and/or laboratory demonstrating duties. Such support requires approval in writing from both the department and the Dean. Duties and remuneration will be clearly stated and in no case shall duties exceed ten hours per week on average.

9. All students in graduate courses or degree programs enjoy the protection of the University’s policy and procedures on academic review and appeal (see pp. 21–24 of the University Calendar) and on research ethics (see the Vice-Principal for documentation).

10. A passing grade is 65% or better or “P” for pass. A grade less than 65% or “F” is a failure.

11. Full-time status for graduate level studies is defined to be 9 credits or more.

Supervision

1. It is the responsibility of the supervisor to monitor the progress of students throughout the graduate program, to ensure that all conditions of admission and requirements are fulfilled, to provide students with information on their program, and to advise them how to resolve problems which may arise during their program.

2. Thesis supervisors must be tenured or tenure-stream faculty or adjunct faculty. Sessional and contract faculty may co-supervise students with the department’s approval. Emeritus Professors may co-supervise. In all cases, the department must ensure continuity of appropriate supervision of their graduate students.

3. Problems that cannot be resolved by discussion between the student and the supervisor shall be referred to the Dean.

4. Information concerning sources of financial support and policies on obtaining same should be sought from the Dean.

5. Students must receive guidance and constructive criticism concerning their progress on a regular basis through the program, including regular meetings and/or e-mail communication with supervisors, attendance at research seminars, and appropriate responses to the student’s annual progress report.

6. By April 15 of each year, M.Sc. candidates must submit to their supervisors a progress report covering both courses and research programs. This report must include the candidate’s name, program and semester, a list of courses completed and their grades, a list of courses in which the candidate is registered, and a list of courses yet to be taken. A statement concerning the research work must include the title of the thesis (or if this has not yet been decided, a general title of the project), a short outline of the work to its present state, including the amount of work done and the significant findings of the research, plus a statement of the work proposed for the future and a realistic estimate of the time required for its completion.

7. The supervisor will evaluate the annual progress report and grant a grade of “satisfactory” or “unsatisfactory”. Copies of this graded report will go to the department concerned and to the Division. The department may compel a student to withdraw from the M.Sc. degree program in the event of an “unsatisfactory” grade on an annual progress report. Students have the right to have this decision reviewed, first by the Dean and then by the Academic Review Committee.

Thesis Regulations

1. All M.Sc. students must make a satisfactory oral presentation and defense of their thesis before graduating. Three copies of the thesis of a degree candidate must be submitted, with the approval of the supervisor, to the Division at least two months in advance of the marks deadline of the semester in which it is to be defended.

2. The three copies of the thesis delivered to the Division must be accompanied by a letter from the supervisor informing the Division of the names of the two persons who have consented to act as examiners of the thesis (see Regulation 3). The secretary of the Division shall forward one copy of the candidate’s thesis to each examiner with an appropriate covering letter.

3. The thesis shall be orally presented and defended before two examiners other than the supervisor, one of whom shall be an external examiner who is a specialist in the candidate’s field of interest. The examiners shall be selected by the supervisor and department concerned, subject to the approval of the Dean. A thesis will be accepted only following approval of its defense by both examiners. A thesis may be returned to the candidate for revision on the advice of one or both examiners and subsequently re-defended (once only).

4. After the thesis has been defended and accepted, at least three copies shall be properly bound by the University at the candidate’s expense, one for deposit in the Library, one for the retention of the department concerned and one for the supervisor. At the request of the candidate, a fourth copy maybe bound for his/her personal use.

5. Advice concerning the preparation and presentation of theses is to be provided by the supervisor and department concerned.

6. It is the responsibility of a supervisor to uphold and to transmit to students the highest professional standards of research and scholarship in the preparation of theses; to provide guidance in all phases of the student’s research; to meet with their students regularly; to provide prompt feedback on submitted work, including drafts of the thesis; and to clarify expectations regarding collaborative work, authorship, publication and conference presentations which may result from the student’s research.
Physics (Thesis-based)
The program is open to graduates of any university of recognized standing who have obtained at least a Bachelor’s degree with honours with a Class II standing (GPA of 3/4 or its equivalent). An applicant who has followed a combined program (e.g., majors in math and physics), must have obtained at least a Class II standing in their physics courses. Applicants who do not satisfy these requirements may, with the permission of the University, be admitted to a qualifying year to bring their standing up to that of an honours degree. Alternatively, the department may require students to do additional courses to those that are considered mandatory to meet the minimum requirements. Even if MSc applicants meet the minimum requirements, the department is not obligated to accept applicants based on the availability of supervisors, financial considerations, ability to offer the necessary courses, or the ranking of more qualified candidates.

Application procedure
The application procedure for our graduate degrees is the following two-step process:

1. Pre-apply by completely filling in the departmental form. Note that the form is different for the two options (course-based and thesis-based). If the form contains all the pertinent information then you will receive from the department a fairly accurate evaluation, which in most cases indicate that your official application will be successful. Pre-applications are free of charge.
2. Once you receive a positive evaluation from the department you must go to the Bishop’s on-line application system and submit an official application (fees apply) in order to be granted official admission by the Admission Office. Note that the two steps above can also be completed at the same time. However, in this case the application fees will be charged irrespective of the departmental decision.

Micro-program in Climate Change
The basic entry requirement will be an undergraduate degree in any field from a recognized university with at least a B standing in the final two years of study. There are no specific pre-requisites, but students will need to be comfortable with basic mathematical and scientific concepts.

Graduate Certificate in Brewing Science
To qualify for enrolment, students must hold a B.Sc. in Biochemistry, Biology, Chemistry, or another discipline relating to one or more of the three (e.g. Chemical or Biological Engineering) and a minimum graduating average of 60% (C+).

This program has a limited enrolment.

Application procedure
The application procedure is the following:

1. Visit the Bishop’s University Online Application page, look under the Winter (January 2022) section and click the “Graduate Winter Application form” link. The letters of reference can be uploaded to the website or emailed directly to: admissions@ubishops.ca.
2. Complete the application form and upload a copy of all of the following:
 a. A statement of interest, no longer than 400 words in length, indicating why you want to be enrolled in the program and what you hope to gain from it
 b. An official copy of all university transcripts
 c. Two letters of reference. The letters of reference can be uploaded to the website or emailed directly to: admissions@ubishops.ca.

Regulations for Graduate Studies in Education

The Degree of Master of Education or Master of Arts
To qualify for the degree of Master of Education or Master of Arts in Education, a candidate must be a graduate of this or another approved university and must complete 45 credits of graduate-level work in Education.

Courses leading to these programs are offered year round, on the Bishop’s campus and possibly at off campus locations, via technology.

General Academic Regulations
1. Applicants may be admitted to one of the following: the Master of Arts in Education or the Master of Education program.
2. M.Ed./M.A. students who receive a grade lower than 70% have failed the course and are not permitted to continue in the program without formal permission of the School of Education’s Admissions Committee.
3. Students enrolled in either the M.Ed. or the M.A. who have not registered for any course during a period of more than 24 months are deemed to have withdrawn. They may reapply for admission to the program, subject to the same procedures and conditions as new applicants.
4. Full-time status for graduate level studies is defined to be 9 credits or more.

Transfer Credit
A candidate for the Master of Arts in Education or the Master of Education degree may, with the permission of the Dean of the School of Education, complete up to three appropriate courses (9 graduate-level credits) at another recognized institution. Candidates should obtain prior approval for such courses. Such courses may not be used to meet the requirements of core courses or projects, monographs, or theses.
M.Ed. and M.A. in Education

Program Overview
Certified teachers, educational administrators and those with a first undergraduate degree may make application to graduate programs leading to Master of Education (M.Ed.) in Educational Studies and Leadership, or a Master of Arts (M.A.) in Educational Studies (thesis).

Students in this program will further their scholarly and professional development as administrators, educational leaders, educators, and researchers, while engaging with the social, historical, cultural, and linguistic dimensions of education. Students will consider issues of power, diversity, gender, and marginalization in education. Studies may be based on sociological, historical, or linguistic foundations; they may draw on a variety of contemporary perspectives including comparative and international education, post-colonial theory and theories of decolonization, applied linguistics, sociolinguistics, discourse analysis, and critical theory.

Underlying each of these themes is the overarching theme of leadership in educational institutions and in other organizational, professional, and community settings where enhancing learning for the social, cultural, digital, and economic needs of the 21st century is at the forefront.

Requirements for entrance into graduate programs in Education at Bishop’s University are as follows.

Applicants for the M.A. and M.Ed. (full and part-time) must:
• have completed a B.Ed. or related degree at a recognized university with an average of at least 75%;
• normally have at least two years of relevant educational experience (teaching or related professional experience).

NOTE: If your mother tongue is not English and you have not studied for at least three full years in English, you must submit TOEFL, IELTS, or other equivalent English language proficiency test results. Minimum scores in the School of Education for graduate studies are:
• TOEFL minimum score of 80 (Internet-based) with at least a score of 20 in each of the four components
• IELTS minimum score of 6.5 with at least a score of 6.5 in each of the four components

Applicants for the graduate certificates should:
• have completed a B.Ed. or relevant degree at a recognized university, normally with an average of at least 75%;
• have at least two years of relevant experience (teaching or related professional experience); such experience will be taken into account as we consider admissions.

NOTE: If your mother tongue is not English and you have not studied for at least three full years in English, you must submit TOEFL, IELTS, or other equivalent English language proficiency test results. Minimum scores in the School of Education for graduate studies are:
• TOEFL minimum score of 80 (Internet-based) with at least a score of 20 in each of the four components
• IELTS minimum score of 6.5 with at least a score of 6.5 in each of the four components

Specific requirements for M.A. and M.Ed.
Applicants to both the M.Ed. and the M.A. must submit two references using the form provided on the Admissions website, a CV and a letter of intent outlining why you believe you are a good candidate for graduate studies at Bishop’s University. Applicants to the M.A. must also submit a two-page description of their research interests, including area of interest, initial research questions, methodological approach (e.g. case study, classroom study), possible resources required (e.g. access to specialized computer technologies, special schools and/or populations), and an approximate time line for completing the program. Students applying to the M.A. also must name one or two professors from the School of Education who they believe will be possible supervisors. Because the resources of the School of Education are limited, potential students should be advised that the School reserves the right to refuse admittance to a student whose research interests do not coincide with those of existing faculty for supervision purposes, or if the resources required are not readily accessible.

It is recommended that students complete the program within six years. After six years all students who have not completed the program will be required to meet with the Dean of the School of Education to reassess their progress.

Full-time M.Ed. students who are registered but inactive for a period of one year will be withdrawn from the program and must reapply. Part-time M.Ed. students who are registered but inactive for a period of three years will be withdrawn from the program and must reapply. M.A. students who have not registered for a course or for their thesis for two years will be withdrawn from the program and must reapply.

Specific requirements for the graduate certificates
Applicants should submit one letter of reference addressing academic ability, qualifications and experiences, and how this certificate will benefit their professional learning. They must also submit a personal statement illustrating experience working with students and reason(s) for seeking admission to the program. This certificate does not lead to teacher certification.

Application information and admission and program criteria for the graduate programs in Education are listed in the Admissions and Registration section of this Calendar.
Programs leading to the Master of Education (M.Ed.) in Educational Studies and Leadership, or the Master of Arts (M.A.) in Educational Studies (thesis)

Graduate courses leading to the M.Ed. and M.A. degrees are normally offered during each of the following four sessions: Fall, Winter, Spring 1, and Spring 2.

Course Offerings
In the M.Ed. and M.A. program, students pursue compulsory courses common to all students, in addition to some specific ones, depending on which program the student has opted for. Students who have completed graduate courses in Education at Bishop’s University may be considered for advanced standing. The Admissions Committee of the School of Education may consider the transfer of credits from one of our existing certificate programs. Such transfer credits will only be considered for courses in which the grade received is at least 75%. Practicum courses are not eligible for such transfers. A maximum of nine credits from another institution may be applied to the M.Ed. and M.A. program. For more details on the Master’s of Arts program, please refer to the M.A. Handbook.

Master of Education in Educational Studies and Leadership (45 credits - without thesis) CONSTL

Research Module
6 compulsory credits
- GSE 510: Academic Reading and Writing
- GSE 516: Educational Research for Practice

Foundations courses
9 compulsory credits, 3 credits from:
- GSE 502: Educational Philosophies
- GSE 506: Globalization and Global Education
- GSE 540: Sociological Perspectives in Schooling

3 credits from:
- GSE 501: Psychology of Teaching and Learning
- GSE 523: Educational Neuroscience: Mind, Brain, and Teaching

3 credits from:
- GSE 503: Curriculum Explorations I
- GSE 574: Understanding Professional Development
- GSE 575: Educational Leadership Theories

Elective Courses 30 credits
More detailed information about specific course choices is available from the School of Education.

Master of Arts in Educational Studies (45 credits - with thesis) CONESD

Research Module
9 compulsory credits
- GSE 510 Academic Reading and Writing
- GSE 516 Educational Research for Practice
- GSE 518 Seminar in Research Methods

Foundations courses
6 compulsory credits, 3 credits each from 2 of the 3 following courses:
- GSE 502 Educational Philosophies
- GSE 501 Psychology of Teaching and Learning
- GSE 503 Curriculum Explorations I

Elective Courses 6 credits
More detailed information about specific course choices is available from the School of Education.

Thesis documents 24 credits
- GSE 705: Thesis Proposal (3 credits)
- GSE 700: Thesis (21 credits)

List of Courses

GSE 500 Selected Topics in Curriculum 3-3-0
This course has been designed to provide the student with the opportunity to examine recent developments in curriculum.

GSE 501 Psychology of Teaching and Learning 3-3-0
This course will examine ways to use the theories and principles of psychology to understand learning and to inform teaching and curriculum processes. Students will compare and contrast the implications of different theories of learning, including how the theories define knowledge and learning. Students are encouraged to explore in depth topics relevant to their practice.

GSE 502 Educational Philosophies 3-3-0
This course will examine the philosophical principles and theories that provide a foundation for education today. Through a critical review of philosophical perspectives, students will develop an understanding of the way in which these perspectives continue to shape current educational thinking and practice.

GSE 503 Curriculum Explorations I 3-3-0
This introductory course will examine curriculum as a socially constructed process. Students in the course will examine the principles and theories relating the various dimensions of the curriculum process: designing, planning, enacting and reflecting.

GSE 504 Curriculum Explorations II 3-3-0
This course is an extension of GSE 503, Curriculum Explorations I. Students will focus on using the knowledge acquired in GSE 503 and new knowledge constructed in GSE 504 to generate a curriculum design and the resources necessary to enact that design.
Prerequisite: GSE 503

GSE 505 Evaluation and Assessment 3-3-0
This course will focus on the role of evaluation and assessment of the learning process and will include an examination of their underlying principles. The practical implications of the school context on the learning process will be explored.
GSE 506 Globalization and Global Education 3-3-0
This course provides an overview and introduction to areas of research that inform the practice of global citizenship education. These include inter-disciplinary studies in globalization and education, transnational studies, postcolonial theory, citizenship education, social justice education, migration studies, and sociological and pedagogical approaches to education for social diversity. Students will engage current debates and implications of these for practice.

GSE 507 Origins of Modern Schooling 3-3-0
This course examines the trends and themes in educational history that have influenced and shaped contemporary school systems. The course will explore how schooling and concepts of education have changed over time, and will critically analyze the successes and failures of educational developments. Students will engage in historical thinking and research in order to understand how the educational past continues to impact education today.

GSE 508 History of Education Policy 3-3-0
This course explores the historical processes that have created current Canadian school systems, with a particular emphasis on Quebec. Through an analysis of public policy case studies, the course will assess the unfolding educational policy environment and how policymaking ideas and debates have impacted the current education landscape.

GSE 510 Academic Reading and Writing 3-3-0
This course has been designed to facilitate students’ ability to (1) read, synthesize and analyze academic articles, books and other primary source texts and (2) express their knowledge and ideas in a scholarly fashion using the conventions defined by academic journals. Different types of research articles will be examined and strategies for reading each type explored.

GSE 511 Educational Statistics 3-3-0
This course is an introduction to statistical analysis methods. Topics to be covered include means, standard deviations, variances, sampling distributions, hypothesis testing z-tests, t-tests, correlation/regression and, if time permits, Chi-squared tests. This course emphasizes a conceptual understanding of statistics and their application in educational research rather than mechanical calculation.

GSE 516 Educational Research for Practice 3-3-0
This course leads participants to consider the relationship between approaches to educational research, knowledge, and practice. Participants explore, in-depth, the epistemological positions and basic principles of action research and the importance of critical reflective practice for transformative education. Individual class projects are carried out, such that students in the M.Ed. Program will adopt an inquiry stance towards their practice, while students in the M.A. Program will deepen their understanding of the foundations of Educational Research.

GSE 518 Seminar in Research Methods 3-3-0
This compulsory course in research in education for M.A. students is designed to help participants to evaluate and conduct research in education. The course includes topics such as the selection of a research topic and generation of research question(s); collection, analysis and interpretation of qualitative and quantitative data; presentation and evaluation of research; and a range of research designs. Prerequisite: GSE 516

GSE 520 Selected Topics in Special and Inclusive Education 3-3-0
This course has been designed to provide the student with the opportunity to examine recent developments in special education.

GSE 521 The Exceptional Learner 3-3-0
This course in special education will examine the characteristics of learners with diverse special needs, including the psychological, medical and sociological aspects of the various exceptionalities and the various ways in which they are educated. The content of this course will be of relevance to administrators and regular classroom teachers as well as to special General educators. Participants in this course will critically examine the many approaches to facilitating learning for individuals with learning disabilities and other exceptionalities.

GSE 522 Special Topics in the Psychology of Learning 3-3-0
This course provides students an opportunity to further explore topics related to the psychology of learning. Prerequisite or Co-requisite: GSE 501

GSE 523 Educational Neuroscience: Mind, Brain, and Teaching 3-3-0
This course will provide students with an introduction to educational neuroscience framed from an interdisciplinary perspective. This course will review recent research from neuroscience, psychology, and education and will provide a balanced perspective about the potential and limits of linking these disciplines. Students will acquire the skills and concepts needed to interpret basic neuroscience research in the context of a meaningful interdisciplinary question. The course will also investigate the different histories, philosophies, and epistemological lenses through which common problems in neuroscience, psychology, and education are approached. Topics such as bilingualism, reading and language, numeracy and arithmetic, cognitive control, emotion, and creativity will be addressed.

GSE 527 Motivation and Teaching/Learning 3-3-0
This course will focus on motivational theories. It will include a rich analysis of how to create motivating learning environments and how to sustain student engagement. It may call on cognitive, constructivist, indigenous, and/or humanist approaches to motivation.

GSE 530 Selected Topics in Media Literacy 3-3-0
This course has been designed to provide the student with the opportunity to examine recent developments in media literacy. It will foster an expanded understanding of media and media technology, including the impact on our society and the shaping of individual and collective values and beliefs.

GSE 534 Selected Topics in Educational Theory 3-3-0
This course is designed to provide the student with opportunities to explore various theories of education. Specific topics will be chosen for each course by the professor.

GSE 535 Policy Analysis for Educators 3-3-0
This course will offer educators the opportunity to analyze public policy and the various settings typically associated with education policy making. Readings will introduce students to education policy debates, including the theoretical and ethical, as well as the political and economic, challenges facing policy makers and those impacted by education policy. Students will be guided through critical analyses of education policy, with a particular emphasis on the policies and related laws guiding the Quebec school system. Students will be given opportunities to consider the ways in which practitioners engage with policy, and how they can play a role in the making and reform of that policy.

GSE 540 Sociological Perspectives in Schooling 3-3-0
This course examines the role of schooling in society based in a comprehensive review of research in the sociology of education. Student will develop a comparative framework to analyze the competing agendas underpinning educational policy, curriculum development and a range of pedagogical practice in order to identify the forces associated with the changing landscape of public education in the 21st century (with particular forces in the forces of globalization and the neoliberal restructuring of the public sector).

GSE 541 Colonialism, Education, and Decolonization 3-3-0
In this course, students will develop a comprehensive understanding of the ongoing history of settler colonialism in Canada and of imperialism and colonialism in the global context. This grounds an examination of the role of education in colonization and in the project of decolonization in a range of national contexts. This course responds directly to the calls for action issued in the 2015 final report of Canada’s historic Truth and Reconciliation Commission on Indian Residential Schools and new curriculum on the history of IRS and treaty education subsequently introduced in every Canadian province.

GSE 550 Selected Topics in Educational Technology 3-3-0
This course has been designed to provide the student with the opportunity to examine recent developments in educational technology.

GSE 552 Technology in Education 3-3-0
This course will focus on motivational theories. It will include a rich analysis of how to create motivating learning environments and how to sustain student engagement. It may call on cognitive, constructivist, indigenous, and/or humanist approaches to motivation.

GSE 553 Technology and the Role of the Educator 3-3-0
This course examines the role of the educator in an increasingly technological world. Modern advances in technology have seen a concomitant change in the role of the teacher from one who passes knowledge to one who mentors students in developing their knowledge. Students become active in their educational activities. This course will examine theoretical perspectives on the role of the educator in a technologically-defined world and the implications for current and future practices. The students in this course will also learn how to create student-centered applications of technology in the classroom, allowing students to make their own products and their own content.
GSE 559 Research Paradigms in Educational Technology 3-3-0
This course introduces students to the field of educational technology, an inter-disciplinary field drawing on psychology, anthropology, communications, and systems analysis amongst others. Educational technology involves systemic and systematic perspectives of educational systems and processes. This is not a course about information technology. The course provides students with the opportunity to focus on an area of interest within the field. They will critically analyze the literature base related to one facet of educational technology and produce a scholarly, written review of that literature. This literature review will culminate in research questions, objectives, or hypotheses that align with the literature reviewed. Students will also write an action plan regarding an innovation based on the literature.

GSE 560 Selected Topics in Literacy 3-3-0
This course allows students to examine research related to current issues in literacy learning and teaching. Specific topics vary from year to year to take advantage of the special expertise of the faculty.

GSE 561 Language and Literacy Studies 3-3-0
Through this course, students examine current trends, issues, theory and research in teaching and learning in the English language arts classroom. Topics include media literacy, critical literacy, multiliteracies, multicultural curricula, and language learning and teaching across the curriculum.

GSE 564 Learning to Write and Writing to Learn 3-3-0
This course is designed for teachers who are interested in exploring many different approaches to learning to write in different genres. Participants should be prepared to engage in a great deal of writing as the philosophy of the course is one that is grounded in the notion that “we learn to write by writing”.

GSE 570 Selected Topics in Educational Leadership and Administration 3-3-0
This course has been designed to provide the student with the opportunity to examine recent developments in educational leadership and issues related to educational administration.

GSE 571 Principles of Educational Leadership 3-3-0
This course, designed for teachers and administrators interested in becoming effective leaders, is an introduction to the study of educational leadership. Participants in this course will be introduced to the theory and research literature on issues of leadership in general and school leadership in particular. Students will explore topics such as school-based management, invitational leadership, flexible leadership, professional collaboration and individual initiative.

GSE 573 Creating and Leading Effective Schools 3-3-0
This course aims to inform practicing and aspiring school leaders about ways to mobilize a school staff toward greater effectiveness in reaching a joint mission. It examines current research and school improvement literature with a view to developing practical strategies for whole school assessment, evaluation and development.

GSE 574 Understanding Professional Development 3-3-0
This course will explore the many ways teachers develop as professionals, both individually and as members of educational organizations. Participants in the course will be involved in reading about and discussing topics such as the following: What knowledge is held by good teachers? What does teacher reflection contribute to development? What can be done by organizations to promote teacher learning and development? How are student learning and teacher learning related? What are the possibilities for designing professional development programs for teachers?

GSE 575 Educational Leadership Theories 3-3-0
This course is designed to provide students the opportunity to examine a set of educational leadership theories that have been or are currently used in school settings. Participants will be encouraged to critically examine the theories that are presented and explore the implication of using them in educational settings.

GSE 576 Teacher Leadership 3-3-0
Participants will explore the changing roles of teacher leaders and perspectives on teacher leadership. Participants will review relevant literature and will examine features of teacher leadership including teacher participation in institutional hierarchies and teacher involvement in shaping institutional cultures and acting as agents of transformation.

GSE 577 Family, School and Community Partnerships 3-3-0
This course is designed to facilitate the development of communication and leadership skills necessary for positive family, school and community interactions. Students will examine contemporary issues from both a theoretical and practical perspective and develop strategies which address a variety of complex situations.

GSE 578 Creating, Implementing and Evaluating Innovations in Education 3-3-0
This course will allow students to develop skills in drawing on the literature to create an innovation in education. They will create an action plan outlining the innovation and how to implement and evaluate it.

GSE 580 Selected Topics in Second Language Learning 3-3-0
This course has been designed to provide the student with the opportunity to examine recent developments in second language learning.

GSE 581 Introduction to Linguistics for Language Teaching 3-3-0
This course is a survey of linguistic theory as it relates to second language teaching. Students are exposed to major themes in linguistics as a basis for the study of second language teaching and learning.

GSE 582 Language Acquisition 3-3-0
The purpose of this course is to examine ways in which theories of language acquisition have implications for the teaching and learning of a second language. The course includes a study of important research in the field of language acquisition and its relevance to second language teaching.

GSE 584 Teaching English Grammar 3-3-0
This course provides an overview of the theoretical background for the teaching of grammar. It includes a review of major grammatical patterns of English, as well as a focus on learner errors and the design of material appropriate to the teaching of grammatical concepts.

GSE 585 Methods in Second Language Teaching I 3-3-0
This first course in methodology introduces the student to classroom practices in teaching English as a second language. It includes a historical overview of approaches to second language teaching. The course focuses on the selection of teaching material and classroom techniques for second language teaching.

GSE 586 Methods in Second Language Teaching II 3-3-0
The second course in methodology extends the content covered in Methods I. Classroom practice and development of curriculum resources are the major topics covered in this course.

GSE 587 Assessment and Evaluation in Second Language Teaching 3-3-0
This course includes an exploration of design strategies for effective assessment and evaluation procedures for second language teaching. It combines the theory of effective assessment with practical applications for the second language classroom.

GSE 588 The Second Language Learner 3-3-0
This course focuses on a learner-centered approach to second language teaching. It emphasizes the importance of individual learner backgrounds, special needs of learners, individual learning styles and strategies, and cultural considerations in the teaching of English as a Second Language.

GSE 589 Observation and Practice Teaching in Second Language Classrooms 6-3-0
This six-credit course involves the observation of experienced second language teachers in their classrooms, as well as peer observation of students in the course. Students will develop and teach lessons under supervision at both the primary and secondary levels. Students may observe and teach in adult classes.

GSE 590 The Creative Process in Education 3-3-0
Students will explore the creative process as it affects and is affected by the relationship between the teacher and the learner. Students will engage in creative projects and monitor their own creative process. Through readings, discussion, and experiences with different media, students will learn to articulate and evaluate learning within a creative process framework.

GSE 591 Studio Inquiry I 3-3-0
GSE 592 Studio Inquiry II 3-3-0
GSE 593 Selected Topics in Art Education 3-3-0
This is a seminar course offering students the opportunity to study various aspects of art education. Specific topics vary from year to year to take advantage of the special expertise of the faculty.

SE 594 Readings in Art Education 3-3-0
This is a seminar course in which students study selected texts to gain insight into formative notions and recurring issues in art education. Assignments include historical research questions arising out of an examination of personal experiences in the teaching and learning of art.
GSE 596 Art and Technology: an on-going dynamic 3-3-0
This course addresses the assumptions that underlie the discourse about art and technology. Technology has and continues to be used as a part of art, in the service of art, and as forms of art. Correspondingly each technological innovation in art raises a new set of practical, theoretical, and aesthetic questions that challenge theoretical underpinnings within art education. A review of some of the types of technology-based art, with examples of work by some prominent artists, establishes the range of difficulties that accompany the introduction of new technologies into art and the effects of these new visual languages on discourses in art and art education.

GSE 599 Transformative Praxis 3-3-0
The intent of this course is to cultivate Action Research based experiences with a specific focus on social justice grounded themes and collaborative interaction with relevant community. Students are expected to work in tandem with and under the supervision of faculty members who are actively engaged in such fieldwork. In addition to spending at least four weeks in the field, students can anticipate completing preparative and culminating academic activities. The result of which is meant to encourage students and community members to creatively expand their own borders of transformative possibilities through the art of praxis.

GSE 630 Independent Study in Education 3-0-0
Students in an existing graduate program may be granted permission to pursue an independent study project under the guidance of a faculty supervisor on a topic in Education significant to their program. Topics must be approved by the Graduate Program Committee of the School of Education.
Pre-requisite: Permission of the Graduate Program Committee

GSE 700 Thesis 21 credits
Under the supervision of the School of Education thesis supervisor, the M.A. student conducts a research study, which is followed by completion of an academic document that must meet the standards of scholarship established by the appropriate research community.
Prerequisite: Successful completion of GSE 705: Thesis Proposal

GSE 701F Monograph 6 credits
This 6-credit monograph, under the supervision of a mentor assigned by the School of Education, permits the student to focus on the final stages of his/her program to use the knowledge acquired to inform the designing and composing of an original piece of scholarly writing. This document can take a variety of forms including a research report, a book, or a critical review of a body of literature. A successful graduate level monograph is an academic document that must meet the standards of scholarship established by the appropriate research community.
Prerequisite: Completion of all course requirements for the Master of Education degree

GSE 705 Thesis Proposal 3-3-0
This 3-credit independent study, done under the supervision of a thesis supervisor, leads to completion of a proposal, which is defended by the M.A. student prior to registration in the thesis. In addition to developing the proposal, the student deepens their understanding of research ethics and policies. Where pertinent to the proposed study, the student prepares ethics submissions.
Prerequisite: Completion of course requirements for the Master of Arts in Educational Studies

GEA 522 The Principal 3-3-0
This course will examine the relationship of the school principal with various constituencies, including students, teachers, the larger educational community and parents. Expectations and skills related to the roles and responsibilities of the school principal will be explored.

GSL 582 Building Oral Competencies 3-3-0
This course provides students with an overview of theory related to the teaching of adults. It focuses on the application of this theory to the teaching of English as a second language to adults: the development of a needs analysis, selection and design of appropriate materials, and the involvement of adult learners in the learning process.

GSL 589F Individual Project in the Teaching of English 3-3-0
This course may be taken with the special permission of the School of Education. It provides an opportunity for a student to pursue an area of special interest in the field of second language teaching.

Graduate Certificates

Graduate Certificates offered at Bishop’s in the School of Education consist of 15 credits. The certificates are intended primarily for in-service teachers, administrators, educational leaders, and other school-based professionals. The Graduate Certificate in Teaching and Learning in an Uncertain World is designed to meet the needs of educational professionals in the K-12, post-secondary, and private sectors.

The Graduate Certificate in Inclusive Education and the Graduate Certificate in Teaching and Learning in an Uncertain World are offered following a cohort model. Students will take two intensive, on-site or online summer courses in their initial session, and a further three courses online -- one in fall, one in winter, and one in spring.

Graduate Certificate in Inclusive Education: Teaching and Learning for All CONIED

This program is intended for in-service teachers, administrators, and other school-based professionals who would like to be better equipped to support students in an inclusive setting. The certificate provides participants with opportunities to review and extend their knowledge of teaching, learning, assessment, and policy in Inclusive Education, while engaging with other practitioners in similar roles. Students enrolled in this certificate will have the opportunity to reflect on their own practice, and to critically engage with current themes, theories, and research in the field of Inclusive Education. The graduate certificate will use a cohort model. Students will take two intensive, on-site or online summer courses in their initial session, and a further three courses online -- one in fall, one in winter, and one in spring. The initial intensive session is intended to help develop community within the cohort.

Please note: This certificate may not be offered every year.

This certificate does not lead to teacher certification.

Students will earn 15 credits by taking 5 of the 6 courses below:

GCI 524 Exceptional Learners in Inclusive Classrooms
GCI 525 School-based Mental Health Practice
GCI 526 Leading for Inclusion
GCI 527 Differentiating Instruction and Assessment
GCI 528 Special and Inclusive Education: History of Policy and Practice
GCI 529 Inclusive Education: Syntheses and Culminating Explorations

GCI 524 Exceptional Learners in Inclusive Classrooms 3-3-0
This course focuses on the teaching of students with exceptionalities in inclusive settings in the school community. It will provide students with the opportunity to examine the characteristics of diverse learners, including the psychological, medical and sociological aspects of various exceptionalities, and to consider how this knowledge informs educational practice. Participants in this course will also critically examine approaches to facilitating learning for individuals with learning differences and other exceptionalities, such as Universal Design for Learning (UDL), and differentiated instruction (DI). Finally, students will consider collaboration with students, families, and other school personnel in the instructional process.
Students will earn 15 credits by taking 5 of the 8 courses below:

GCI 525 School-based Mental Health Practice 3-3-0
This course focuses on school-based mental health practice. Students will develop an understanding of the prevalence and range of mental health concerns that may be present in children and adolescents. They will analyze the educational impact of mental health issues on youth. They will examine various approaches to support students within the home, school and community. Students will explore a range of topics such as the benefits of authentic home/school collaboration, building children’s resiliency, looking at behaviour through a self-regulation lens, and the role of connected relationships with caring educators.

GCI 526 Leading for Inclusion 3-3-0
This course explores student diversity within the context of inclusive education. Current theoretical and conceptual frameworks related to holistic learning, equity integration and a capacity-approach to diverse student learning will be examined. Attention will be given to critique the dominant views of equity and inclusion and how current schooling policies and practices are informed and constructed as a result. Students will reflect upon their agency and roles as leaders to envision and reconstruct more inclusive, student-centered, learning environments.

GCI 527 Differentiating Instruction and Assessment 3-3-0
This course will focus on various ways to differentiate instruction and assessment. Drawing on research-based best practices, specific cases highlighting different approaches will be used as a basis for investigation. Teachers and administrators will engage in an inquiry-based approach drawing on research to develop their own ‘cases’ showcasing plans to differentiate instruction and assessment.

GCI 528 Special and Inclusive Education: History of Policy and Practice 3-3-0
This course examines the origins of special education and the historical development of education policy and law related to students with disabilities. The course will consider historical shifts in the theory and practice of identifying students with special needs, as well as educational debates concerning the type and quality of education that such students ought to receive. The movement for integration and inclusion will be explored through an analysis of major court rulings, legislation, and the growth of school policies related to equality, equity, and diversity.

GCI 529 Inclusive Education: Syntheses and Culminating Explorations 3-3-0
Students in the graduate certificate will have the opportunity to bring learning together through a capstone project related to certificate themes and their own teaching and learning contexts. The capstone course consists largely of independent work undertaken alongside regular check-ins, guidance, and supervision from the course instructor. Capstone projects will be open in terms of focus and format, but are expected to represent a synthesis and/or application of developing understandings.

Graduate Certificate in Teaching and Learning in an Uncertain World

This graduate certificate program will bring together teachers, educational leaders, and other educational professionals in the K-12, post-secondary, and private sectors to consider teaching and learning in an increasingly uncertain world. Through a focus on radical hope (Lear, 2008; Smits & Naqvi, 2015), students will consider how taking educational action in the present might lead to improved outcomes in the future. The program as a whole will explore multiple and interdisciplinary lenses for considering the issues under study. There will also be a strong emphasis on curriculum as a tool for change. The graduate certificate will use a cohort model. Students will take two intensive, on-site or online summer courses in their initial session, and a further three courses online -- one in fall, one in winter, and one in spring. The initial intensive session is intended to help develop community within the cohort. Ideally it would occur face-to-face in order to engage in teaching alongside land.

Please note: This certificate may not be offered every year. This certificate does not lead to teacher certification.
Online technologies have influenced how we live and how we learn. This course will explore the relationships between online communication technologies and our communities, our relationships, and our learning. It will explore challenges associated with the use of online communication technologies including cyberbullying and the role of educational leaders in addressing these issues. It will consider transformational possibilities for life-long learning and community building, examining specific cases in multiple contexts including schools. It will also explore ways technologies can support us navigating uncertain times.

GSE 548 Leading in an uncertain world: Considering the meanings of transformation in education 3-3-0
Through this course students will learn about and critically analyze frameworks for transformational work in educational settings. Taking into account increasing uncertainty, ambiguity and complexity in the world, the course takes up a variety of disciplinary and inter-disciplinary lenses such as educational leadership and systems thinking. The course develops competencies related to leading and engaging in transformational change processes in the context of global uncertainties.

GCU 549 Teaching and learning in an uncertain world: Syntheses and culminating explorations 3-3-0
Students in the graduate certificate will have the opportunity to bring learning together through a capstone project related to certificate themes and their own teaching and learning contexts. The capstone course consists largely of independent work undertaken alongside regular check-ins, guidance, and supervision from the course instructor. Capstone projects will be open in terms of focus and format, but are expected to represent a synthesis and/or application of developing understandings.

Graduate Certificate in Culturally and Linguistically Responsive Teaching

The certificate aims to prepare in-service teachers and/or educational personnel who teach and work with linguistically and culturally diverse students in local and international contexts. The program equips participants with the essential knowledge in linguistics, second language acquisition as well as teaching and learning approaches that are linguistically and culturally responsive to the needs of additional language learners in different contexts. The program also highlights a critical understanding of bi/plurilingual learner characteristics and how their complete communicative repertoires in first and additional languages as well as their diverse cultural resources can be leveraged for meaningful language and content learning and intercultural communication.

Please note: This certificate may not be offered every year. This certificate does not lead to teacher certification.

Students will earn 15 credits shown below:

- GSE 581 Introduction to Linguistics for Language Teaching
- GSE 582 Language Acquisition
- GSE 588 The Second Language Learner
- GCL 597 Plurilingualism and Intercultural Education
- GCL 598 Methods in Plurilingual Integrated Teaching and Learning

GSE 581 Introduction to Linguistics for Language Teaching 3-3-0
This course is a survey of linguistic theory as it relates to second language teaching. Students are exposed to major themes in linguistics as a basis for the study of second language teaching and learning.

GSE 582 Language Acquisition 3-3-0
The purpose of this course is to examine ways in which theories of language acquisition have implications for the teaching and learning of a second language. The course includes a study of important research in the field of language acquisition and its relevance to second language teaching.

GSE 588 The Second Language Learner 3-3-0
This course focuses on a learner-centered approach to second language teaching. It emphasizes the importance of individual learner backgrounds, special needs of learners, individual learning styles and strategies, and cultural considerations in the teaching of English as a Second Language.

GCL 597 Plurilingualism and Intercultural Education 3-3-0
This course explores recent changes in language theory, viewing individuals’ language competencies as complex, dynamic and holistic repertoires of communicative resources that language learners/users employ to construct meaning and engage in intercultural communication. Implications for teaching and learning will be examined and discussed, focusing particularly on how plurilingual pedagogies can facilitate multilingual awareness, cross-language connections as well as critical intercultural awareness.

GCL 598 Methods in Plurilingual Integrated Teaching and Learning 3-3-0
This methods course introduces the participants to teaching approaches that support diverse students’ use and development of plural repertoire of linguistic and cultural resources to meet communication needs in academic and/or professional contexts. It includes a specific focus on curricular design, development of curricular materials, as well as teaching and learning practices that foster the development and use of transversal language and literacy skills and strategies to promote effective knowledge construction and communicative performance.

Graduate Certificate in Teaching Intensive English

The Graduate Certificate in Teaching Intensive English is intended for in-service ESL teachers who would like to be better equipped for intensive ESL (IESL) teaching positions. The program provides teachers with opportunities to review and extend their knowledge of language teaching pedagogy while studying in an English-environment.

Please note: This program is not offered every year.

Students will gain 15 credits through the courses below:

- GSL 540 Intensive English: New Trends and Theories
- GSL 541 Teaching and Learning in Intensive English
- GSL 544 Course and Curriculum Design in Intensive English
- GSL 547 Language Learning through Cultures
- GSL 549 Building Oral Competencies
- GSL 540 Intensive English: New Trends and Theories 3-3-0
This course addresses issues related to second language learning and acquisition, particularly those that relate to intensive English. Topics addressed include language learning theories, such as cognitive and sociocultural perspectives; theories of bilingualism and multilingualism; new literacies - multiliteracies, critical literacy; discussion and debate about Intensive English in society; and various models of Intensive English.

- GSL 541 Teaching and Learning in Intensive English 3-3-0
This course discusses both new and familiar learning theories and pedagogy in the context of the Intensive English program. Participants will explore learner-responsive teaching through examining individual differences & multiple intelligences, differentiated instruction, and cooperative learning. They will also look at the ways in which various technologies can contribute to intensive English pedagogy and computer-assisted language learning (CALL).

- GSL 544 Course and Curriculum Design in Intensive English 3-3-0
Participants will examine aspects of course and curriculum design that are relevant to teachers of intensive English. They will learn about and apply interdisciplinary design, backward design, and universal design. They will discuss content-based, task-based, and project-based approaches to language teaching and pedagogical issues related to the teaching of linguistic forms in meaning-focused instruction. The challenges and benefits of making connections with other subject areas and collaborating with other colleagues will be discussed.
Winter Semester

This course will explore the language arts approach to the teaching of ESL. Theories regarding the connection between English-language cultures and language learning will be introduced, and students will be involved in the construction of classroom learning situations based on different cultural forms (e.g., poetry, short stories, films, songs and other media) to promote language learning and a critical appreciation of the English-language cultures.

GSL 549 Building Oral Competencies 3-3-0
This course will address issues related to the development of listening and speaking skills in second language learners, including those related to pronunciation. In addition, it will focus on varieties of oral communication in different contexts and the different levels and ages of learners.

Graduate Certificate in Brewing Science CONBRW
Program Overview
The Graduate Certificate in Brewing Science is a two-semester graduate certificate designed specifically to meet the growing need for well-trained, scientifically educated brewers and/or brewing analysts in the craft and industrial brewing sectors. Students completing this program will be prepared to fill any position relating to the brewing process, the chemical and microbiological analysis of beer and precursor materials (water, malt, hops, yeast, wort, etc.), and research and development.

To qualify for enrolment in the Graduate Certificate in Brewing Science program, students must hold a B.Sc. in Biochemistry, Biology, Chemistry, or another discipline relating to one or more of the three (e.g., Chemical or Biological Engineering) and a minimum graduating average of 60% (C+).

The Graduate Certificate in Brewing Science is comprised of six one-semester classroom courses and a two brewing practicum courses in the University’s teaching brewery, as shown below:

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Winter Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRS 501 – Brewhouse Chemistry</td>
<td>BRS 504 – Microorganisms in the Brewery</td>
</tr>
<tr>
<td>BRS 502 – Malt and Malting</td>
<td>BRS 505 – Chemical Analysis of Beer and its Ingredients</td>
</tr>
<tr>
<td>BRS 503 – Hops</td>
<td>BRS 506 – The Business of Brewing</td>
</tr>
<tr>
<td>BRS 531 – Brewing Practicum I</td>
<td>BRS 532 – Brewing Practicum II</td>
</tr>
</tbody>
</table>

BRS 501 Brewhouse Chemistry 3-3-0
Water, referred to as Hot Liquor in brewing jargon, provides the medium in which all of the chemical and biochemical reactions that are involved in producing beer take place. Additionally, the mineral content of the Hot Liquor is a critical factor in determining many of the final characteristics of the beer, provides many of the essential elements for healthy yeast growth, and contributes enormously to mash pH. This course provides an in-depth, comprehensive look at water, its properties, and how its mineral contents affect all aspects of beer and the brewing process.

BRS 502 Malt and Malting 3-3-0
Malt is produced by the germination of grain (barley, wheat, rye, etc.) followed by application of heat (kilning). It is the heat regimen, together with the type of grain that determines the characteristics of the malt. The malt is the source of the starch that is converted to sugars which the yeast ferments to produce alcohol and it is also primarily responsible for the colour of the beer. Malt is also an important contributor to flavour, aroma, characteristics of the foam (head), mouth feel, and other characteristics of the beer. This course will cover malt from farming and harvesting of the grain, through the transformations of the malting process, to its chemical and biochemical transformations in the brew house.

BRS 503 Hops 3-3-0
Hops is the ingredient that contributes the characteristic bitterness of beer. It is also responsible for much of the flavours and aromas of beer, particularly those observed in heavily hopped beers such as India Pale Ale, American Pale Ale, and even hopper double IPAs. The first section of this course will cover the farming, harvesting and processing of hops. The second section will cover hop chemistry, focusing on the resins (bittering agents) and essential oils (flavour and aroma contributors) of the hop cone and their transformations during the brewing process.

BRS 504 Microorganisms in the Brewery 3-3-0
The role of brewer’s yeast in the brewing process, particularly its fermentation of sugars to produce alcohol, is fairly well known. However, yeast is also responsible for producing dozens, if not hundreds, of chemical compounds as it metabolizes the sugars, amino acids, and other components during fermentation. Many of these compounds contribute significantly to the flavour and aroma of beer. Other microorganisms, such as wild yeast and bacteria, are also potential contributors to the complex chemistry and biochemistry that occurs in the fermenter; sometimes to the benefit of the beer but more often to its detriment. This course will look at all of the microorganisms that are commonly found in the brewery and provide a detailed description of their chemistry and thus their impact on beer flavour and aroma.

BRS 505 Chemical Analysis of Beer and its Ingredients 3-3-0
As a food product, beer is rigorously controlled at both the federal and provincial levels of government. Part of this process is ensuring that a number of analytical parameters are accurately reported (e.g. alcohol by volume). Many other properties of beer are indicators of the efficacy of the brewing process and whether the brewer is producing a quality product. Analysis of the ingredients of beer (water, malt, hops, yeast) is essential to ensure that standards of quality necessary to produce good beer are met. This course will provide students with an in-depth look at the chemical analyses commonly used to analyse beer and its precursors, using the methods database of the American Society of Brewing Chemists. Students will use what they learn to analyse the ingredients and the beer that they use/produce. This course will provide students with the knowledge to participate in the co-requisite practicum in brewing.

BRS 506 The Business of Brewing 3-3-0
There is a great deal of time and hard work that goes into planning, building, equipping, and running even a small microbrewery. When a microbrewery fails, it is generally because the ownership doesn’t have a particular skill set on the business side. This course will provide students an overview of the brewing industry trends and exposure to all important elements of a business plan to set up a microbrewery. The following topics are discussed: Vision, Mission statement, Marketing, Finance, Operations, Regulatory and Legal aspects that are crucial to operate a successful microbrewery.

BRS 531 Practicum in Brewing I 3-3-0
Ultimately, brewing is a hands-on activity. The brewer must pay careful attention at every step of the brewing process in order to ensure that they have the best chance of producing the desired final product. Even then, the beer, although well crafted, may not exhibit the characteristics of flavour, aroma, colour, bitterness, etc. that the brewer was attempting to produce. Recipe development is a wonderful example of the scientific method and this approach to brewing will be the main focus of this course. Upon completion of BRS 531, students will receive more than 90 hours of brewing experience, constantly comparing what they observe in the brewery with what they are learning in their BRS lecture courses. The aim is to produce a brewer who is proficient in the brewery but also understands the complex chemistry and biochemistry that is involved in producing the highest quality beers.

BRS 532 Practicum in Brewing II 3-3-0
The brewer must pay careful attention at every step of the brewing process in order to ensure that they have the best chance of producing the desired final product. Even then, the beer, although well crafted, may not exhibit the characteristics of flavour, aroma, colour, bitterness, etc. that the brewer was attempting to produce. Recipe development is a wonderful example of the scientific method and this approach to brewing will be the main focus of this course. Upon completion of BRS 531 and BRS 532, students will receive more than 180 hours of brewing experience, constantly comparing what they observe in the brewery with what they are learning in their BRS lecture courses. The aim is to produce a brewer who is proficient in the brewery but also understands the complex chemistry and biochemistry that is involved in producing the highest quality beers.
Graduate Micro-Program in Climate Change

Faculty
Matthew Peros,
B.Sc. (Toronto), M.Sc. (York), Ph.D. (Toronto); Professor and Director of the Graduate Micro-Program in Climate Change
Elisabeth Levac,
B.Sc., M.Sc. (UQAM), Ph.D. (Dalhousie); Professor
Alexandre Langlois,
B.Sc. (Université de Sherbrooke), M.Sc. (Université de Sherbrooke), Ph.D. (University of Manitoba); Professor
Darren Bardati,
B.A. (Bishop’s), M.A., Ph.D. (McGill); Professor

Program Overview (9 Credits) CONECC

Finding solutions to the problems brought on by climate change requires educating a new generation of global citizens well-versed in the concepts, issues, and challenges associated with such a complex topic. Bishop’s University has responded to this need by developing a largely online graduate-level Micro-Program in Climate Change. The program offers instruction from leading experts on the science of climate change, its impacts, and strategies for its mitigation. At the end of the program, it is expected that students will be able to:

• Take a position and provide evidence to support arguments concerning major issues in climate change science
• Develop an understanding of the causes and effects of climate change on local, regional, and international scales, in major regions of the world (poles, tropics)
• Articulate a range of plausible solution strategies to confront climate change in terms of adaptation and mitigation

Graduates of the Micro-Program will be well positioned to compete for jobs in both government and the private sector. Moreover, the Micro-Program could be used as a springboard for further study, whether it involves graduate school in a climate or environment-related field, or a professional degree such as law school or an MBA. Indeed, the Micro-Program has been designed so that it will provide students with a solid understanding of both the scientific and non-scientific aspects of climate change and thus will be highly applicable to a range of career options.

Admission Requirements
The basic entry requirement will be an undergraduate degree in any field from a recognized university with at least a B standing in the final two years of study. There are no specific pre-requisites, but students will need to be comfortable with basic mathematical and scientific concepts. It is not possible to enroll in the Micro-Program before the completion of all undergraduate degree requirements.

List of Courses
To complete the Micro-Program, students will do three three-credit masters-level courses (for a total of nine credits) from a list of potential courses:

- **ESG 502 Sustainable Agriculture and Climate Change** 3-3-0
 The purpose of this course is to examine the nexus of agriculture and climate change. What are the impacts that climate change is having on agriculture, and what are the impacts that agriculture is having on climate change? We will examine climate change projections, changing agricultural practices, and their impact on food security. We will also learn agriculture’s role in reducing greenhouse gas emissions, and discuss how agroecological and regenerative approaches to agriculture might build resilient systems, and help people adapt to climatic changes. The course will include guest lectures from prominent academics working in this field.

- **ESG 526 Environmental Impacts of Climate Change and Human Activities on the Oceans** 3-3-0
 People living in cities remote from the sea often forget about the role of the oceans in their economy and in the climate system. The course will examine society’s relationship with the oceans, especially in coastal zones. Oceans are the site of many important human activities, and thus are sensitive to pollution and modifications brought by climate change. The goal of the course is to increase students’ awareness of the major environmental issues presently affecting the oceans and the challenges facing decision makers when dealing with the impacts of climate change on the oceans (e.g., sea level rise, saltwater intrusions into aquifers, fisheries, etc.).

- **ESG 550 Global Climate Justice** 3-3-0
 Grounding our conversation in social science, environmental ethics, and movement & community-based knowledge, we will work to understand the problems associated with mounting climate injustices globally and to learn about the transformative visions, mobilizations, and solutions offered by the communities and movements fighting for climate justice in different continents and regions of the world.

- **ESG 561 Arctic and Antarctic Environmental Change** 3-3-0
 The polar environments, especially the Arctic, are undoing change at a rate far faster than most other regions. Change at the poles has happened in the past and will continue to have important consequences for all Earth’s systems. This course will examine the development of these extreme environments and examine what can be expected for the future.

- **ESG 570 Special Topics in Climate and Environmental Change** 3-3-0
 A graduate-level lecture/seminar course offered by regular and visiting faculty on topics related to their research interests in climate and environmental change. Topics are determined by the instructor therefore content of the course varies year by year. The course will be offered on an occasional basis.

- **ESG 573 Energy and the Environment** 3-3-0
 This course introduces the concepts of energy and power and their units and reviews energy sources, fossil fuels, their environmental impacts, and resource consumption. The basics of heat transfer, energy conversion, and its efficiency according to thermodynamics are covered (including the concepts of temperature, specific and latent heat, the first and second law of thermodynamics, heat engines, and thermal systems). Other topics discussed include electromagnetic and blackbody radiation, the greenhouse effect, the Earth’s energy balance, the basics of electromagnetism, and electric power. Radioactivity, nuclear energy, and renewable energy sources are introduced.

- **ESG 575 Tropical Environments and Climate Change** 3-3-0
 This course attempts to provide an overview of the tropics as a unique environment and one that poses special problems to its human occupants. The working assumption in the course is that the tropics comprise a far too complex and heterogeneous environment for simple generalizations to apply. However, by gaining some understanding of how its component systems work, one can be in a better position to identify the appropriate questions to be asked and experiments to be performed, so that site-specific solutions can be developed for management problems in different parts of the tropical world. The course will provide a review of tropical climatology, soils, and biomes, in addition to discussing more applied issues such as forestry and agriculture.
Climate change is expected to affect human health in numerous ways. The most obvious health impacts are those associated with thermal stress and extreme weather events such as floods and hurricanes (premature deaths, infectious diseases; diarrhoeal disease). Global warming will also be associated with a spread of vector-borne diseases (such as malaria, dengue fever, yellow fever, Lyme disease, etc.) and increases in seasonal allergies. The course will examine the overall impact of environmental degradation, displacement and loss of livelihood on the general physical and mental health of populations.

Courses will be offered in the winter semester of each year. Students may take all three courses in one semester, or take courses over a period of several years. The courses will consist of a combination of seminar, lecture, fieldtrip, and laboratory instruction.

Master’s Degree in Computer Science

Master’s Degree Program (45 credits)

I. Thesis Option

Entrance Requirements

The minimum requirements for admittance to the Master’s program are an undergraduate degree with a major in Computing Science or equivalent, and a high upper-second class standing.

Candidates with high graduate academic standing in an undergraduate degree other than computer science, who have some computer science background either graduate academic or professional, may be admitted as graduate preparatory students. Preparatory students will be asked to complete up to one year of undergraduate courses to enhance their background. We may at our discretion replace the requirement of preparatory period with a set of preparatory co-requisites. These co-requisites will consist of undergraduate courses to be taken concurrently with the regular graduate courses. In these circumstances the candidate is admitted directly to the graduate program, but should expect a longer residency in the program.

In addition to graduate academic performance, a combination of factors is taken into consideration in assessing the eligibility of a candidate for admission into graduate programs. One important such a factor is the availability of a faculty member competent and willing to supervise the graduate academic program of studies and research of the candidate; a candidate will not be admitted to the program under any circumstance unless such a faculty member exists.

Other factors are the performance of the candidate and the assessment provided by his/her referees as a measure of the likelihood that the candidate can graduate complete the course of studies and research.
Program Requirements
45 CS credits:
15 credits: five 500-level CS courses
6 credits: Graduate Seminar CS 597
24 credits: Master’s Thesis CS 599

Graduate students should familiarize themselves with the University and divisional calendar and regulations. Some of the information herein is adapted from these regulations, but is not intended as a replacement.

Completing the degree normally requires five one-term 500-level courses, registration and participation in the Graduate Seminar (CS 597), together with a Master’s thesis (CS 599). Courses are chosen by students in consultation with their supervisor. All courses prescribed for a student’s approved program of study are designated as primary. Courses additional to the student’s approved program are designated as secondary. Failure to attain a minimum of 65% in any of the primary courses may result in the student being required to withdraw from the program.

Under certain circumstances, it is permissible for a student admitted to the program to follow an approved graduate-level credit course at another university. All interested students should consult their supervisor and the chair of their department prior to registration in order to obtain further information on procedures and conditions of eligibility.

A thesis proposal should be completed as soon as possible and by the end of the second term in the program at the latest. Students are expected to present their proposal in the Graduate Seminar course and also expected to give more detailed seminars describing their work later.

Thesis topics are chosen after discussion with potential supervisors. The amount of flexibility allowed in pursuing a particular topic will vary according to the supervisor’s needs and interests. Theses are defended before an examining committee consisting of two examiners and one chair. The chair of the examining committee does not have to submit an evaluation of the thesis, but can do so if she/he so wishes. In the event of a difference in opinion between examiners on whether the thesis is acceptable the chair shall have the tie-breaking vote. The supervisor(s) of a candidate cannot be a voting member of that candidate’s examining committee, but is expected to participate in the committee’s deliberations.

Any candidate (full-time or part-time), after initial registration in a thesis must maintain this registration in all successive terms (including the term in which the student is examined) until his/her thesis is completed, with the exception of possible temporary leaves of absence duly approved by their supervisor as specified in the general regulations for graduate studies in science. Completion means submission of a final grade to the Division after modifications, any retyping involved, etc. Students should note that faculty approval to register in the thesis is given on the understanding that the student will be in regular contact with his/her supervisor, and that thesis research will be actively pursued in each term of registration.

Stream change
Students in the thesis stream can switch to the project stream at any time. Any regular graduate courses they already passed will count toward the requirements of their new program. No credits for the graduate seminar or the Master’s thesis can be transferred.

II. Project Option

Entrance Requirements
The minimum requirements for admittance to the Master’s program are an undergraduate degree (minimum of a 70%) with a major in any of the following disciplines: Computing Science, Information Technology, Computer Engineering, Electrical Engineering, Mathematics or Physics. Note however that the admission process is competitive and so meeting the minimum requirements does not guarantee admission.

Candidates with insufficient academic background in Computer Science may be admitted as graduate preparatory students. Preparatory students will be asked to complete up to one year of undergraduate courses to enhance their background. We may at our discretion replace the requirement of preparatory period with a set of preparatory co-requisites. These co-requisites will consist of undergraduate courses to be taken concurrently with the regular graduate courses. In these circumstances the candidate is admitted directly to the graduate program, but should expect a longer residency in the program.

Program Requirements
45 CS credits:
36 credits: twelve 500-level CS courses
9 credits: CS 590 (Master’s Project)

CS Graduate students should familiarize themselves with the University and divisional calendar and regulations. Some of the information herein is adapted from these regulations, but is not intended as a replacement.

Completing the degree normally requires twelve one-term 500-level courses, together with a Master’s project (CS 590). Courses are available during the regular semesters (Fall and Winter), and are chosen by students depending on their interest, their background, and on course availability. The Master’s project is normally available only during the Spring/Summer semester.

Students whose cumulative average falls under 65% will be restricted to 3 course per semester until their average is brought back to 65%. Failure to maintain a minimum of a 65% cumulative average may result in the student being required to withdraw from the program.

Stream change
Students in the Project stream can switch to the Thesis stream as long as they meet the following conditions: (a) they have taken and passed at least four graduate courses at Bishop’s, (b) they have an average grade of 75 or better in the graduate courses taken at Bishop’s, and (c) at least one faculty expresses interest in supervising their research toward the Master’s thesis. No more than five graduate courses can be counted toward the requirements of the new program.
List of Graduate Courses

CS 500 Project I 3-3-0
This course can only be taken by M.Sc.-course-based (CONCSP) students. The goal is to pursue a research project under the supervision of a faculty member. The project must be approved in advance by the department. It is also the responsibility of the student to find a faculty member of the department willing to supervise the proposed project. Students will be expected to submit a written report and to make at least one presentation on the project.

Prerequisites: Permission of the department and availability of a supervisor.

CS 501 The Internet of Things 3-3-0
How can companies deal with the vast amount of data coming from a variety of different devices? In the ‘Internet of Things’ there are many different devices, sensors and data logs. How can a computer scientist take this data and turn it into a readable or graphical form (dashboard) for people to make sense of? The course will consist of looking at how devices such as the ‘Fitbit’, smartphones, in house security systems send data over the Internet to a server and how this data can be interpreted into something that large corporations can use.

CS 502 Computational Topology 3-3-0
Computational topology uses topological concepts with efficient algorithms to analyze data and solve problems in many fields, including computer graphics and image analysis, sensor networks, clustering, robotics, and others. This course will present an introductory, self-contained overview of computational topology. This course has no formal prerequisites, but a basic mathematical knowledge in calculus and algebra at the senior undergraduate level and some familiarity with the use of computer packages (e.g., Matlab, R, C++, etc.) are expected. We will cover basic concepts from a number of areas of mathematics, such as abstract algebra, algebraic topology, and optimization. We will also look at algorithms and data structures, and efficient software for analyzing the topology of point sets and shapes – termed topological data analysis, or TDA.

CS 503 Data Visualization 3-3-0
The course explores analytical methods paired with appropriate visualizations for automated and human-assisted analysis for data sets. Several visualization techniques allowing to present data to an observer in a way that yields insight and understanding will be investigated. These big data analysis and visualization techniques are applied to data sets from a wide variety of scientific domains such as biology, physics, engineering, and medicine. The analysis and visualization methods will be illustrated through concrete examples.

CS 504 Programming Languages for Data Analysis 3-3-0
In this course students will be introduced to the most popular languages and software environments used in statistical computing and visualization. The course will involve significant programming projects in SAS, Weka, R and Python.

CS 505 Data Mining 3-3-0
Cross-listed with CS 405. Data is now created faster than humans are able to understand it and use it. There may be patterns hiding within this data with potentially useful information. This course will teach students, how to discover these patterns for the purpose of solving problems, gaining knowledge, and making predictions. Topics covered in this course include data preparation, clustering, classification, association rules for mining and models combination. This course includes assignments and a final project where the students are required to perform mining on real datasets. Students are expected to perform a substantial analysis of the data set, or prepare a research paper.

CS 506 Parallel Models and Algorithms 3-3-0
This course provides an introduction to the design and analysis of parallel algorithms and to the various models of parallel computation. The course will discuss parallel algorithms for problems such as: basic arithmetic, sorting, searching, selection, graph theory, matrix computations, combinatorial enumeration, optimization, computational geometry, and numerical analysis. Parallel computational models and their properties will be presented. Other typical topics include: complexity classes, and the parallel computation thesis.

CS 507 Statistical Learning 3-3-0
Statistical learning is concerned with modelling and understanding vast and complex datasets using methods rooted in statistics. The main objective is for the students to master how and when to apply statistical learning techniques in real world applications. Topics covered include linear regression, classification, linear discriminant analysis, tree based methods, support vector machines, graphical models, random forests and boosting. Projects illustrating how to implement each of the statistical learning methods are carried out using a statistical software package.

CS 508 Project II 3-3-0
This course can only be taken by M.Sc.-course-based (CONCSP) students who have already completed Project I course (CS500). The goal is to further study a project undertaken in Project I (CS500). The project must be approved in advance by the department. It is also the responsibility of the student to find a faculty member of the department willing to supervise the proposed project. Students will be expected to submit a written report and to make at least one presentation on the project.

Prerequisites: CS 500, permission of the department, and availability of a supervisor.

CS 509 Pattern Recognition 3-3-0
This course addresses the fundamental theory and techniques of pattern and feature classification in numerical data. Pattern recognition methods can be useful in diverse real world applications such as medical data processing, data mining, information retrieval, computer vision, handwriting and speech recognition, and more. The course topics include Bayesian decision theory, statistical classification, maximum likelihood estimation, nonparametric techniques, stochastic methods and unsupervised learning.

CS 510 Model-Based Testing of Reactive Systems 3-3-0
The course provides an in-depth exposure to the area of formal methods called model-based testing. Various testing models will be presented, including traces, may- and must-testing, refusals, and failure traces. Relations to related specification and verification techniques such as temporal logic and model checking will also be investigated. Students are expected to participate in the presentation of the lecture material and perform independent research.

CS 511 Computer Games Design 3-3-0
Cross-listed with CS 412. This course will explore the theory and practice of video game design and programming. Students will learn the basic concepts and techniques for the design and development of digital games. The topics covered in this course will include the history and taxonomy of video games, the basic building blocks of a game, computer graphics and programming, user interface and interaction design, and the software architecture for video games. Students are expected to prepare a research paper during the course, or pursue a larger applied project.

CS 515 Concurrent & Real-Time Systems 3-3-0
This course provides an introduction to a process algebra such as CSP. It then uses this language for the specification, analysis, and verification of concurrent and real-time systems. Finally, the course presents the use of such a process algebra as a formal method for concurrency at different stages in the development process.

CS 516 Volumetric Image Analysis & Visualization 3-3-0
Digital volumetric images are stacks of two dimensional image slices produced for instance by tomographic scanner. The goal of this course is to study the different methods and algorithms for the analysis of volumetric images including a discussion about some sources of volumetric images, especially those occurring in medical imaging with different modalities (Radiology, Computed Tomography, Magnetic Resonance Imaging, Nuclear Medicine, Ultrasound, Positron Emission Tomography). The course will also address the different techniques used to display and visualize volumetric images including volume slicing, surface rendering, and volume rendering.

CS 520 Advanced Topics in Software 3-3-0
The course will present topics of current interest or research directions in software and related areas. The course content is expected to vary to reflect the current interests of students and faculty. Students are expected to participate in the presentation of the lecture material and engage in independent research.

CS 526 Computer-Aided Intervention 3-3-0
This course introduces students to the fundamentals of computer-aided intervention (CAI) in medicine. The use of computing technology before, during, and after interventions will be examined. Specifically, this course will teach students about tracking devices, coordinate systems, spatial transformations, rigid and non-rigid registrations (feature-based & intensity-based), calibration, digitization and imaging. Clinical applications will also be discussed. Basic knowledge of either C++, python or matlab is an asset.

Note: Students cannot receive credits for both CS426 and CS526.

CS 550 Big Data Management and Analytics 3-3-0
In this course, students will learn the fundamental theory and techniques of Big Data management and analytics, and to apply them to resolve problems in real-world applications. The principle is to learn the strategic extraction and usage of information from large datasets. In fact, the students will exploit recent concepts and trends to manage and analyze Big Data. For that purpose, recently designed algorithmic approaches and technologies will be covered to help the students to manage and analyze large datasets. For that aim, the covered topics will include, but
will not be limited to streaming algorithms, distributed file-system architecture, resilient distributed datasets, similarity search, recommendation systems, link analysis, edge computing, and federated machine learning. The students will work on large projects to practice the concepts presented in this course. In addition, the students will have to submit a paper on a topic related to their research.

Note: Students may not take this course for credit if they have received credit for CS 450

CS 555 Automata Theory & Computational Complexity 3-3-0
Cross-listed with CS 455. The course will address finite-state machines, context-free languages and pushdown automata, computability. A systematic study of the known relations between the most important resource bounded complexity classes, reductions, separation results and translation techniques is also included. Students are expected to prepare a research paper during the course.

CS 556 Compilers and Interpreters 3-3-0
Cross-listed with CS 406. This course is intended as an introduction to the fundamentals of language translation and compiler construction. Topics will include language theory and syntax; grammars, finite state machines, non-deterministic push-down automata; a thorough treatment of parsing methods covering top-down, bottom-up and precedence parsers; Syntax directed translation; Run-time environments; optimization and error recovery; code generation. Students are expected to implement complex semantic analysis and a complex compiler back-end. In particular they are expected to implement various aspects of machine code optimization.

CS 557 Database Software Design 3-3-0
Cross-listed with CS 457. This course covers how one can implement a Database Management system. Major topics are Storage management, Query processing, and Transaction management. As a basic assumption, data will not all fit in main memory, so algorithms and data structures appropriate for effective disk storage and quick access must be used. For example, one may use index structures such as B-trees or hash tables. We cover parsing of queries and optimizing of query plans. Finally, we cover durability of transactions using logging, and concurrency control for isolation of transactions. Additional topics in distributed databases are also presented. Students are expected to prepare a research paper during the course, or pursue a larger applied project.

CS 560 Software Engineering 3-3-0
Cross-listed with CS 410. Software is an engineered product that requires planning, analysis, design, implementation, testing and maintenance. This course is a presentation of the techniques used in each step of the software product process.

Topics: software requirements analysis and specifications; software design process, object oriented design; testing, reliability and maintenance; automated design tools, programming environments. Students are expected to prepare a research paper during the course, and work on large applied projects.

CS 561 Discrete Structures and Computational Statistics 3-3-0

Students cannot receive credits for both CS 561 and MAT 529

CS 562 Mathematical Models in Image Processing 3-3-0
Cross-listed with CS 462. Image processing is a rapidly growing field. As such, it requires and necessitates a number of mathematical models and domains to achieve efficient processing algorithms. Designing a successful processing technique invariably relies on having a successful model for images themselves. The mathematical techniques needed could range from Partial differential equations, Differential geometry, Morse theory, Topology, Algebraic topology, Wavelets, Statistical techniques, Calculus of variations, Numerical methods, Graph theory, and Optimization. The objective of this course is to discuss in detail a number of selected mathematical topics (and their use in image processing) that are of interest to the students at the moment the course is given.

CS 563 Image Analysis 3-3-0
Cross-listed with CS 463. Image analysis is concerned with the development of machine algorithms in order to mimic the biological organism’s ability to see and understand images and videos. The course content include: camera models and calibration, image enhancement, features extraction and representation, shape from shading, stereo and texture, optical flow, motion analysis, high level vision and case studies.

CS 564 Network Programming and Distributed Algorithms 3-3-0
Cross-listed with CS 464. The course presents computer networks at a functional level, with strong emphasis on programming distributed applications over a network. Discussion will be based on open networking and application standards such as the TCP/IP protocol suite and the Portable Operating System Interface (POSIX). The concept of distributed algorithms together with the associated challenges and examples are then presented. Programming distributed applications (in C or C++) is an integral part of the course. Students are expected to work on a large, distributed, and practically meaningful application as part of the course.

CS 565 Advanced Topics in Computer Analysis 3-3-0
The course will present advanced topics of current interest or research directions in Computer Applications. The course content is expected to vary according to the interests of students and faculty. Students are expected to prepare a research paper during the course, or pursue an applied project.

CS 566 Advanced Topics in Artificial Intelligence 3-3-0
The aim of this course is to cover some advanced topics of current interest in artificial intelligence and their practical side. These topics include but are not limited to Bayesian learning approach, predictive analytics, neural networks, deep learning, generative adversarial networks, and reinforcement learning. Students are required to work on large projects based on the concepts presented in this course, and to submit a paper on a topic related to their research.

CS 567 Advanced Topics in Algorithms 3-3-0
Cross-listed with CS 467. The course covers some advanced aspects of algorithms and complexity. It studies the topic of NP- complete problems. Some specialized algorithms in several areas will be discussed, such as Bioinformatics, Computational Geometry and Network Flow.

CS 569 Special Topics in Computer Science 3-3-0
The course will present topics of current interest in Computer Science. The course content varies reflecting the interests of the faculty. Students are expected to participate in the presentation of the lecture material and engage in independent research.

CS 571 Graph Theory and Algorithms 3-3-0
This course provides an introduction to the combinatorial, algorithmic and algebraic aspect of graph theory. There will be a brief refresher of mathematical proof techniques. Topics will include paths and circuits, graph trees, planar graphs, graph colourings, and the Max Floss-Min Cut Theorem. Programming Assignments to implement graph algorithms (in Maple or Octave for example) will be required.

Note: See MAT 421/MAT 521. Students may not take this course for credit if they have received credit for MAT 421 or MAT 521.

CS 590 Master’s Project 9-0-0
The Master’s project asks students to pursue a topic or a set of topics in depth and is therefore a more substantial effort than the usual course work. The topics will be chosen by the department. In addressing the topics students must demonstrate that they have control of the subject of the course, and that they understand and are capable of employing research methods. They must also show evidence of perspective on the topics and must show that appropriate methodology has been understood and applied. The deliverable for the project is a report (with appended code if applicable) that, in addition to the above, should show that the students are capable of writing a professional technical document. This capstone project is mandatory for all students enrolled in the course-based Master’s and cannot be replaced by other internal or external courses or projects. Students cannot take this course in the first or second terms of their program.

CS 596 Research Topics in Computer Science 3-3-0
This course provides an introduction to the primary and secondary sources of information in the computing science literature. Faculty discuss their own research objectives and present an overview of research issues in the major subject areas of Computer Science. Students are required to submit and present a paper on a topic that relates to their research.

CS 597F Graduate Seminar 6-0-0
Students are expected to participate in the departmental seminars and give at a minimum two presentations (one outlining their thesis proposal, and another one about their thesis work). All Master’s students are normally expected to enrol in this course in their first year in the program. Students will not receive credit for both this course and CS 598 at the same time.
MSc in Physics

Program Overview
The Master of Science (MSc) program is designed to give students a much deeper appreciation of physics while at the same time training them to become independent researchers and scientists. Graduate supervision is available in a wide variety of disciplines including astrophysics, exoplanetary science, theoretical cosmology, gravitational theory, field theory and particle physics.

Master’s in Physics

(45 credits)

Students who have completed a BSc degree in physics with at least a B average will be considered for admission into the graduate program. Students who have completed only a major in the subject may be required to take additional courses at the Master’s level. Students who have been admitted will be assigned a supervisor by the Chair of Physics and Astronomy. The student’s research interests will be taken into consideration when a supervisor is assigned. Current areas of research in the department include astrophysics, gravity and cosmology, field theory, particle physics, and theoretical physics.

Course Requirements (MSc):
The MSc degree requires the successful defense of a thesis (15 credits), satisfactory participation in the seminar series (18 credits), and the completion of a minimum of 12 credits in course work. Course selection is determined in consultation with the thesis supervisor and departmental chair. All MSc students must make an oral presentation and defense of their thesis before graduating. The normal period for completion of the M.Sc. degree requirements is two academic years (five semesters). The minimum number of credits required to complete the program is 45.

List of Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 561</td>
<td>Quantum Mechanics I</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 562</td>
<td>Quantum Mechanics II</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 564</td>
<td>Condensed Matter Physics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 565</td>
<td>Electromagnetic Theory</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 566</td>
<td>Theoretical Topics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 567</td>
<td>Advanced Statistical Mechanics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 571</td>
<td>Advanced Quantum Theory</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 572</td>
<td>Particle Physics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 573</td>
<td>Advanced General Relativity</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 574</td>
<td>Cosmology</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 575</td>
<td>Numerical Methods & Simulations</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 576</td>
<td>Stellar Astrophysics I</td>
<td>3-3-0</td>
</tr>
</tbody>
</table>

Students who have received credit for PHY 461 may not enrol in this course.

Students who have received credit for PHY 462 may not enrol in this course.

Students who have received credit for PHY 464 may not enrol in this course.

Students who have received credit for PHY 465 may not enrol in this course.

Students who have received credit for PHY 466 may not enrol in this course.

Students who have received credit for PHY 467 may not enrol in this course.

Students who have received credit for PHY 475 may not enrol in this course.

Students who have received credit for PHY 476 may not enrol in this course.

The Master of Science (MSc) program is designed to give students a much deeper appreciation of physics while at the same time training them to become independent researchers and scientists. Graduate supervision is available in a wide variety of disciplines including astrophysics, exoplanetary science, theoretical cosmology, gravitational theory, field theory and particle physics.

Course Requirements (MSc):
The MSc degree requires the successful defense of a thesis (15 credits), satisfactory participation in the seminar series (18 credits), and the completion of a minimum of 12 credits in course work. Course selection is determined in consultation with the thesis supervisor and departmental chair. All MSc students must make an oral presentation and defense of their thesis before graduating. The normal period for completion of the M.Sc. degree requirements is two academic years (five semesters). The minimum number of credits required to complete the program is 45.

List of Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 561</td>
<td>Quantum Mechanics I</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 562</td>
<td>Quantum Mechanics II</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 564</td>
<td>Condensed Matter Physics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 565</td>
<td>Electromagnetic Theory</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 566</td>
<td>Theoretical Topics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 567</td>
<td>Advanced Statistical Mechanics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 571</td>
<td>Advanced Quantum Theory</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 572</td>
<td>Particle Physics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 573</td>
<td>Advanced General Relativity</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 574</td>
<td>Cosmology</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 575</td>
<td>Numerical Methods & Simulations</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 576</td>
<td>Stellar Astrophysics I</td>
<td>3-3-0</td>
</tr>
</tbody>
</table>

Students who have received credit for PHY 461 may not enrol in this course.

Students who have received credit for PHY 462 may not enrol in this course.

Students who have received credit for PHY 464 may not enrol in this course.

Students who have received credit for PHY 465 may not enrol in this course.

Students who have received credit for PHY 466 may not enrol in this course.

Students who have received credit for PHY 475 may not enrol in this course.

Students who have received credit for PHY 476 may not enrol in this course.

The Master of Science (MSc) program is designed to give students a much deeper appreciation of physics while at the same time training them to become independent researchers and scientists. Graduate supervision is available in a wide variety of disciplines including astrophysics, exoplanetary science, theoretical cosmology, gravitational theory, field theory and particle physics.

Course Requirements (MSc):
The MSc degree requires the successful defense of a thesis (15 credits), satisfactory participation in the seminar series (18 credits), and the completion of a minimum of 12 credits in course work. Course selection is determined in consultation with the thesis supervisor and departmental chair. All MSc students must make an oral presentation and defense of their thesis before graduating. The normal period for completion of the M.Sc. degree requirements is two academic years (five semesters). The minimum number of credits required to complete the program is 45.

List of Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 561</td>
<td>Quantum Mechanics I</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 562</td>
<td>Quantum Mechanics II</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 564</td>
<td>Condensed Matter Physics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 565</td>
<td>Electromagnetic Theory</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 566</td>
<td>Theoretical Topics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 567</td>
<td>Advanced Statistical Mechanics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 571</td>
<td>Advanced Quantum Theory</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 572</td>
<td>Particle Physics</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 573</td>
<td>Advanced General Relativity</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 574</td>
<td>Cosmology</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 575</td>
<td>Numerical Methods & Simulations</td>
<td>3-3-0</td>
</tr>
<tr>
<td>PHY 576</td>
<td>Stellar Astrophysics I</td>
<td>3-3-0</td>
</tr>
</tbody>
</table>

Students who have received credit for PHY 461 may not enrol in this course.

Students who have received credit for PHY 462 may not enrol in this course.

Students who have received credit for PHY 464 may not enrol in this course.

Students who have received credit for PHY 465 may not enrol in this course.

Students who have received credit for PHY 466 may not enrol in this course.

Students who have received credit for PHY 475 may not enrol in this course.

Students who have received credit for PHY 476 may not enrol in this course.

The Master of Science (MSc) program is designed to give students a much deeper appreciation of physics while at the same time training them to become independent researchers and scientists. Graduate supervision is available in a wide variety of disciplines including astrophysics, exoplanetary science, theoretical cosmology, gravitational theory, field theory and particle physics.

Course Requirements (MSc):
The MSc degree requires the successful defense of a thesis (15 credits), satisfactory participation in the seminar series (18 credits), and the completion of a minimum of 12 credits in course work. Course selection is determined in consultation with the thesis supervisor and departmental chair. All MSc students must make an oral presentation and defense of their thesis before graduating. The normal period for completion of the M.Sc. degree requirements is two academic years (five semesters). The minimum number of credits required to complete the program is 45.
PHY 577 Many-Body Quantum Theory in Condensed Matter Systems 3-3-0
The following topics will be studied: Green’s functions at zero and finite temperature; the interacting electron gas; the Hubbard model and strongly correlated systems; electron-phonon interaction; superconductivity and superfluidity.

PHY 578 Selected Topics in Astronomy & Astrophysics 3-3-0
Topics to be determined in consultation with prospective students.

PHY 579 Selected Theoretical Topics 3-3-0
Topics to be determined in consultation with prospective students.

PHY 580F Graduate Seminar I 9-0-0
Students are expected to participate in the departmental seminar series and to make a presentation on either their own work or on a research-related topic. All M.Sc. students are normally expected to enroll in this course at the beginning of their first year of studies.

Offered alternate years with PHY 581.

PHY 581F Graduate Seminar II 9-0-0
Students in the second year of their degree program are expected to participate in the departmental seminar series and to make a presentation on either their own work or on a research-related topic.

Offered alternate years with PHY 580.

PHY 586 Stellar Astrophysics II 3-3-0
A detailed study of the physics that determines the evolution of stars during all of their possible phases. This includes radiative hydrodynamics and atmospheric modeling, specialized equations of state, and the nuclear physics needed to understand the various channels that lead to the creation of the heavy elements. The physics of neutrino production and detection will also be investigated. These topics will form the basis for a study of the evolution of supernovae and other high-energy phenomena in stellar astrophysics.

PHY 600 Thesis Research Dissertation 15-0-0
Each student is required to carry out independent, publishable research that is presented in the form of a thesis. The research is conducted under the supervision of a faculty member. The thesis will be evaluated externally and must be successfully defended in a meeting for which the presentation of the thesis results is open to all members of the academic community.