Open to final-year honours students by arrangement with the department. A presentation will constitute a portion of the final grade.

MAT 467 Independent Studies II 3-0-0

Open to final-year honours students by arrangement with the department. A presentation will constitute a portion of the final grade.

Note: See MAT 466.

MAT 480 Honours Research Dissertation 6-0-0

Each student is required to carry out an original research project under the supervision of a faculty member. A plan outlining the proposed research must be submitted for approval during the first four weeks of the course. Each student will present his/her results in the form of a seminar and a written dissertation.

MAT 521 Graph Theory 3-3-0

This course provides an introduction to the combinatorial, algorithmic and algebraic aspect of graph theory. There will be a brief refresher of mathematical proof techniques. Topics will include paths and circuits, graph trees, planar graphs, graph colourings, and the Max Floss-Min Cut Theorem. Programming Assignments to implement graph algorithms (in Maple or Octave for example) will be required. An introduction to the combinatorial, algorithmic and algebraic aspects of graph theory.

Note: See CS 571. Credit will be given for only one of MAT 421, MAT 521 and CS 571.

MAT 524 Cryptography 3-3-0

Cryptography is a key technology in electronic security systems. The aim of this course is to explain the basic techniques of modern cryptography and to provide the necessary mathematical background. Topics may include: the classical encryption schemes, perfect secrecy, DES, prime number generation, public-key encryption, factorization, digital signatures, and quantum computing. Programming Assignments to implement certain encryption algorithms (in Maple or Octave, for example) may be required. Credit will be given for only one of MAT 424 and MAT 524.

MAT 529 Discrete Structures and Computational Statistics 3-3-0

Students cannot receive credit for both CS 561 and MAT 529.

Cognate Courses:

The following courses may count as 200-level Mathematics options:

- **EMA 262 Mathematical Economics I**
- **PHY 208 Introduction to Mechanics**

The following courses may count as 300-level Mathematics options:

- **CS 308 Scientific Programming**
- **CS 317 Design and Analysis of Algorithms**
- **CS 455 Theoretical Aspects of Computer Science**
- **EMA 361 Econometrics II**
- **EMA 362 Mathematical Economic II**
- **PHY 318 Advanced Mechanics**

Physics & Astronomy

Faculty

- **Ariel Edery,** B.Sc. (McGill), M.Sc. (Queen’s), Ph.D. (Montréal); Professor
- **Valerio Faraoni,** B.Sc. (University of Pavia, Italy), M.Sc., Ph.D. (International School for Advanced Studies, Italy); Professor
- **Faycal Hammad,** B.Sc., M.Sc., Ph.D. (A. Mira-Bejaia); Adjunct Professor
- **Kelsey Hoffman,** B.Sc. (Alberta), M.Sc. (McGill), Ph.D. (UBC); Adjunct Professor
- **Lorne Nelson,** B.Sc. (McGill), M.Sc., Ph.D. (Queen’s); Professor
- **Jason Rowe,** B.Sc. (Toronto), M.Sc., Ph.D. (UBC); Professor
- **Sylvain Turcotte,** B.Sc., M.Sc., Ph.D. (Montreal); Adjunct Professor
- **Anca Nedelcescu,** B.Sc. (West University of Timisoara), M.Sc., Ph.D. (Sherbrooke); Adjunct Professor

Program Overview

Physics is often regarded as the cornerstone of the Natural Sciences. It encompasses a diverse range of disciplines including astronomy and astrophysics, photonics, electronics, classical and quantum mechanics, statistical mechanics, particle physics, and solid state physics. The BSc Major program provides students with a fundamental understanding of physics. The highest level of specialization at the undergraduate level is the BSc Honours program. It prepares students for direct entry into graduate work in physics (leading to an MSc or PhD degree). Students may be admitted into the Honours program after one year is completed in the Physics Major program.

The Master of Science (MSc) program is designed to give students a much deeper appreciation of physics while at the same time training them to become independent researchers and scientists. Graduate supervision is available in a wide variety of disciplines including astronomy, astrophysics, exoplanetary science, theoretical cosmology and gravitational theory, and particle physics.

First-year Science Core requirements

All Physics students are required to take six course credits of Introductory Physics (PHY 191, PHY 192), six course credits of Introductory Calculus (MAT 191, MAT 192), and six course credits of Introductory Chemistry (CHM 191, CHM 192), normally in their first year. Students with a Québec collegial diploma (DEC)
shall be granted advanced credit for these courses if they have completed the Pure Science program. If any of these equivalent courses were not completed at CEGEP, they must be completed at Bishop’s and advanced credits shall be reduced accordingly. Students with a Québec collegial diploma (DEC) may be exempted from MAT 108 (Matrix Algebra) if they obtained high standing in an equivalent course at CEGEP. Students would have to replace this course if they received an exemption.

Humanities requirement
(BSc students only)

Students must complete six course credits of humanities studies, normally in their first year at Bishop’s. Students who have a Québec Collegial Diploma (DEC), students admitted as “Mature Students”, and 2nd Bachelor’s degree students are all exempt from this requirement. The two Humanities optional courses (6 credits) can be selected from any Humanities courses. It is recommended that at least one of these courses be a writing intensive course.

Arts and Science requirement
(BSc students only)

In addition to the Humanities requirement above, all students are required to complete at least three credits in either the Division of Humanities or the Division of Social Sciences. Students with program combinations which require more than 72 credits are exempt from this requirement.

Please refer to the Natural Sciences Division page for information on Divisional Requirements.

Laboratory Courses
(BSc students only)

When any lecture course (e.g., PHY 206) also has an associated laboratory course (e.g. PHL 206), both the lecture and laboratory courses should be taken concurrently. Laboratory credits thus obtained are in addition to the total required lecture credits specified below for the program.

Undergraduate Programs

Physics Honours (120 credits)
HONPHY

Entrance Requirements for Honours Program:
A student will normally be admitted to the Honours program after obtaining at least a 70% average on all required second-year (200-level) physics and mathematics courses. In order to complete an Honours degree, a student must normally obtain an average of at least 65% in required physics courses in each academic year.

Requirements:
First year Science core requirements as listed above*. The following courses are also required for the Physics Honours:
PHY 101, PHY 206, PHY 207, PHY 208, PHY 270, PHY 315, PHY 316, PHY 317, PHY 318, PHY 319, PHY 320, PHY 321, PHY 325, PHY 361, PHY 371, PHY 462, additional 400-level course, PHY 480; MAT 108, MAT 206, MAT 207, MAT 209, MAT 317; CS 211.

Total: 57 lecture-course credits physics, 15 credits math,

3 credits computer science, 15 elective credits = 90 lecture course credits.

Physics labs: PHL 206, PHL 385, PHL 386,
Computer Science lab : CSL 211
Total of 6 lab-course credits.

*N.B.: When any lecture course (e.g., PHY 206) also has an associated laboratory course (e.g. PHL 206), both the lecture and laboratory courses must be taken concurrently. Laboratory credits thus obtained are in addition to the total required lecture credits specified above for the program.

*Students with a CEGEP DEC or mature students will be granted advanced credits for these courses as appropriate.

Physics Major (120 credits)
MAJPHY

A Physics Major is less intensive than the Honours program and does not require any 400-level physics courses or MAT 317.

Requirements:
First-year Science core requirements as listed above*. The following courses are also required for the Physics Major:

Total: 45 lecture-course credits physics, 12 credits math,
3 credits computer science, 30 elective credits = 90 lecture course credits.

Physics labs: PHL 206, PHL 385, PHL 386,
Computer Science lab : CSL 211
Total of 6 lab-course credits.

*N.B.: When any lecture course (e.g., PHY 206) also has an associated laboratory course (e.g. PHL 206), both the lecture and laboratory courses must be taken concurrently. Laboratory credits thus obtained are in addition to the total required lecture credits specified above for the program.

*Students with a CEGEP DEC or mature students will be granted advanced credits for these courses as appropriate.

Physics Minor (24 credits)
MINPHY

A minor in Physics allows students to gain a solid introduction to the subject.

Requirements:
The following courses are required:
PHY 191, PHY 192, MAT 108, PHY 101, PHY 206, PHY 207, PHY 208 and one other lecture course in Physics selected from 200 and 300 level courses. The total course credit requirement for the minor is 24 lecture-course credits.

*N.B.: When any lecture course (e.g., PHY 206) also has an associated laboratory course (e.g. PHL 206), both the lecture and laboratory courses must be taken concurrently. Laboratory credits thus obtained are in addition to the total required lecture credits specified above for the program.
PHYSICS HONOURS DEGREE

Two possible sequences are suggested below

<table>
<thead>
<tr>
<th>Year/Semester</th>
<th>SEQUENCE #1</th>
<th>SEQUENCE #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
<td>WINTER</td>
</tr>
<tr>
<td>U1</td>
<td>First-year science core credits OR DEC in Pure or Applied Science</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>PHY 101</td>
<td>PHY 208</td>
</tr>
<tr>
<td></td>
<td>PHY 206 / PHL 206</td>
<td>PHY 207</td>
</tr>
<tr>
<td></td>
<td>PHY 270</td>
<td>MAT 207</td>
</tr>
<tr>
<td></td>
<td>MAT 108</td>
<td>MAT 209</td>
</tr>
<tr>
<td></td>
<td>MAT 206</td>
<td>Option 1*</td>
</tr>
<tr>
<td></td>
<td>PHY 318</td>
<td>PHY 317</td>
</tr>
<tr>
<td></td>
<td>PHY 361</td>
<td>PHY 315</td>
</tr>
<tr>
<td></td>
<td>CS 211 / CSL 211</td>
<td>PHY 462</td>
</tr>
<tr>
<td></td>
<td>Option 2*</td>
<td>Option 3*</td>
</tr>
<tr>
<td></td>
<td>Option 4*</td>
<td>Option 5*…</td>
</tr>
<tr>
<td></td>
<td>Option 6*</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>PHY 318</td>
<td>PHY 321</td>
</tr>
<tr>
<td></td>
<td>PHY 361</td>
<td>PHY 319</td>
</tr>
<tr>
<td></td>
<td>CS 211 / CSL 211</td>
<td>PHY 371</td>
</tr>
<tr>
<td></td>
<td>Option 2*</td>
<td>Option 3*</td>
</tr>
<tr>
<td></td>
<td>Option 4*</td>
<td>Option 5*</td>
</tr>
<tr>
<td></td>
<td>Option 6*</td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>PHY 320</td>
<td>PHY 321</td>
</tr>
<tr>
<td></td>
<td>PHY 316</td>
<td>PHY 319</td>
</tr>
<tr>
<td></td>
<td>PHL 385‡</td>
<td>PHY 371</td>
</tr>
<tr>
<td></td>
<td>Option 7*</td>
<td>PHL 386‡</td>
</tr>
<tr>
<td></td>
<td>Option 8*</td>
<td></td>
</tr>
</tbody>
</table>

* Or one other 400-level course.
‡ One-semester lab course (6 hours per week) worth 2 credits.
* At least 3 credits must be taken in either the Division of Humanities or Social Sciences if a student’s program combinations require less than 75 lecture credits.

PHYSICS MAJOR DEGREE

Two possible sequences are suggested below

<table>
<thead>
<tr>
<th>Year/Semester</th>
<th>SEQUENCE #1</th>
<th>SEQUENCE #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
<td>WINTER</td>
</tr>
<tr>
<td>U1</td>
<td>First-year science core credits OR DEC in Pure or Applied Science</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>PHY 101</td>
<td>PHY 208</td>
</tr>
<tr>
<td></td>
<td>PHY 206 / PHL 206</td>
<td>PHY 207</td>
</tr>
<tr>
<td></td>
<td>PHY 270</td>
<td>MAT 207</td>
</tr>
<tr>
<td></td>
<td>MAT 108</td>
<td>MAT 209</td>
</tr>
<tr>
<td></td>
<td>MAT 206</td>
<td>Option 1*</td>
</tr>
<tr>
<td></td>
<td>PHY 318</td>
<td>PHY 317</td>
</tr>
<tr>
<td></td>
<td>PHY 361</td>
<td>PHY 315</td>
</tr>
<tr>
<td></td>
<td>CS 211 / CSL 211</td>
<td>PHY 462</td>
</tr>
<tr>
<td></td>
<td>Option 2*</td>
<td>Option 3*</td>
</tr>
<tr>
<td></td>
<td>Option 4*</td>
<td>Option 5*…</td>
</tr>
<tr>
<td></td>
<td>Option 6*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 7*</td>
<td>Option 9*</td>
</tr>
<tr>
<td>U4</td>
<td>PHY 320</td>
<td>PHY 321</td>
</tr>
<tr>
<td></td>
<td>PHY 316</td>
<td>PHY 319</td>
</tr>
<tr>
<td></td>
<td>PHL 385‡</td>
<td>PHY 371</td>
</tr>
<tr>
<td></td>
<td>Option 7*</td>
<td>PHL 386‡</td>
</tr>
<tr>
<td></td>
<td>Option 8*</td>
<td></td>
</tr>
</tbody>
</table>

† One-semester lab course (6 hours per week) worth 2 credits.
* At least 3 credits must be taken in either the Division of Humanities or Social Sciences if a student’s program combinations require less than 75 lecture credits.
Elective Courses (Liberal Science Options)

These courses are open to any students with little or no scientific background.

PHY 111 Physics of Everyday Phenomena
PHY 112 Introduction to Holography
PHY 113 Introduction to Astronomy

Physics Major and Honours Courses

These courses typically numbers that start at 100 and extend to 399.

Note that 3rd and 4th year physics students may take 400-level courses if they have the prerequisites.

Physics Honours Courses

Final-year Honours physics courses have numbers that start with 462 and end at 480.

Graduate Courses

All graduate MSc courses have numbers that start with 500 or above.

List of Courses

PHY 101 Statistical Methods in Experimental Science 3-3-0
This course is specifically designed to meet the needs of students of physics, chemistry, biology, mathematics, and computer science. Topics include: errors of observation, graphical visualization of data; descriptive analysis, elementary probability, permutations and combinations; the binomial, normal and Poisson distributions; random sampling; testing hypotheses, significance levels, confidence limits, large and small sampling methods; regression and correlation; chi-square test; analysis of variance (ANOVA).

Note: In order for students to obtain credit for both PHY 101 and MAT 314, PHY 101 must be taken first or concurrently. Students who are enrolled in, or who have credit for, PMA 260, BMA 141, or EMA 141 may not enrol in this course.

PHY 111 The Physics of Everyday Phenomena 3-3-1
This course is designed to meet the needs of non-science students by providing them with a practical introduction to physics and science as it is applies to everyday life. Students are assumed to have no background in math or science. By allowing students to practice science through practical demonstrations of physical phenomena and engaging in small-group inquiry and discussion, they will learn to think logically when solving problems, enhance their scientific literacy, and develop their physical intuition. Typical questions that will be addressed include: Why is the sky blue? Why purchase a car with an anti-locking brake system (ABS)? Where is lightning most likely to strike and how can you best protect yourself? How do medical scanning procedures such as MRI work? Does a curve ball really curve or is it an optical illusion?

Note: Students enrolled in a program in the Division of Natural Sciences and Mathematics cannot use this course for science credits.

PHY 112 Introduction to Holography 3-3-0
This course is designed to give students an introduction to holography (3-D photography) while at the same time providing them with the opportunity to create holograms in the laboratory. Students are assumed to have no background in mathematics or science. Students will make holograms using single and multiple beam reflection and transmission techniques. Special topics related to the making of rainbow, colour, and other types of holograms will be discussed and attention will be given to the application of this medium as a form of visual expression. In addition students will be able to apply their knowledge to create holograms at home (sandbox holography).

Prerequisite: permission of the instructor.

Note: See FIN 209. Students may not take this course for credit if they have received credit for FIN 209
Students enrolled in a program in the Division of Natural Sciences and Mathematics cannot use this course for science credits.

PHY 113 Introduction to Astronomy 3-3-1
An outline of our knowledge of the size, structure, and possible origin of the Universe. Starting with the primitive speculations of the Greeks, the course ends with the theory of the expanding universe and its origin in the "Big Bang.".

Prerequisite: Students should have a background in high school mathematics.

PHY 191 Introductory Physics I (Mechanics) 3-3-0
This course is designed to give students an introduction to classical mechanics. Topics that will be covered include statics, particle kinematics in one and two dimensions, particle dynamics and Newton’s Laws, conservation of energy and momentum, and rotational kinematics and dynamics.

Prerequisites: MAT 191 and PHL 191 or, PHL 193, or PHY 081, or PHY 083.
This course should be taken concurrently with Physics Lab 191 (PHL 191). This course is for students who lack collegial Physics NYB. Students who have received credit for an equivalent course taken elsewhere may not register for this course.
Credit will be given for only one of PHY 191, PHY 193, or PHY 199F.

PHL 191 Introductory Physics Laboratory I 1-0-3
A series of experiments in General Physics to complement the material covered in PHY 191.
This course must be taken concurrently with PHY 191. May not be taken for credit if credit has been granted for PHL 193.

PHY 192 Introductory Physics II (Electricity and Magnetism) 3-3-0
This course is designed to give students an introduction to electromagnetism and its applications. Topics that will be covered include Coulomb’s Law, electric fields, electric potential, capacitance, direct current circuits, magnetism, electromagnetic induction, alternating current circuits, and electromagnetic waves.

Prerequisite: PHY 191, PHY 193, or the permission of the instructor.
Corequisite: MAT 192 or MAT 199
This course should be taken concurrently with PHL 192. This course is for students who lack collegial Physics NYB. Students who have received credit for an equivalent course taken elsewhere may not register for this course. Credit will be given for only one of PHY 192, PHY 194 or PHY 199F.

PHL 192 Introductory Physics Laboratory II 1-0-3
A series of experiments in general physics to complement the material covered in PHY 192.
This course must be taken concurrently with PHY 192. May not be taken for credit if credit has been granted for PHL 194.

PHY 193 Physics for the Life Sciences I 3-3-0
This course is designed to emphasize topics of particular relevance to the life sciences. Topics that will be covered include: mechanics (statics, kinematics, dynamics, conservation of energy and momentum, rotational motion); fluid dynamics (pressure, elasticity, viscosity, diffusion); and thermodynamics (temperature, heat transport, kinetic theory of gases). Concepts and problem-solving skills are emphasized.

Prerequisites: MAT 191 and PHL 191 or, PHL 193, or PHY 081, or PHY 083.
This course should be taken concurrently with PHL 193. This course is for students who lack collegial Physics NYB.
Students who have received credit for an equivalent course taken elsewhere may not register for this course.
Credit will be given for only one of PHY 191, PHY 193, and PHY 199F.

PHL 193 Physics for the Life Sciences Laboratory I 1-0-3
A series of experiments in college physics to complement the material covered in PHY 193.
This course must be taken concurrently with PHY 193. May not be taken for credit if credit has been granted for PHL 194.

PHY 194 Physics for the Life Sciences II 3-3-0
This course is designed to emphasize topics of particular relevance to the life sciences. Topics that will be covered include: vibrations and waves; sound; electrostatics (charges, electric fields and potential); circuits; magnetism (forces, induction, electromagnetic waves); optics (interference, diffraction, instruments); and modern physics (atoms, radioactivity, MRI, CAT).

Prerequisite: PHY 191 or PHY 193 or the permission of the instructor.
Corequisite: MAT 192 or MAT 199.
This course should be taken concurrently with PHL 194. This course is for students who lack collegial Physics NYB.
Students who have received credit for an equivalent course taken elsewhere may not register for this course.
Credit will be given for only one of PHY 192, PHY 194, and PHY 199F.
PHL 194 Physics for the Life Sciences Laboratory II 1-0-3
A series of experiments in college physics to complement the material covered in
PHY 194. This course must be taken concurrently with PHY 194. May not be taken for credit
if credit has been granted for PHY 192.

PHY 199F Introduction to University Physics 6-6-0
An introduction to the fundamentals of classical physics. Concepts and problem-
solving skills are emphasized. Topics in the area of mechanics include: translational,
rotational, and oscillatory motion; Newtonian dynamics; conservation of energy,
linear momentum, and angular momentum; heat and the kinetic theory of gases.
Topics in the area of electricity and magnetism include: electric fields and
potentials; AC and DC circuit theory; magnetism and the properties of magnetic
materials; electromagnetic waves and optics.
Prerequisites: Students must normally have completed upper-level high school
physics and mathematics courses, or must satisfy admission requirements into the B.Sc. degree at Bishop's University. Students taking this course require a
knowledge of basic calculus which may be gained concurrently.
Corequisite: PHY 199.
Students may not have credit for both PHY 199 and other introductory physics
courses (i.e., PHY 191 and PHY 192 or their equivalents).

PHY 199 Introduction to University Physics Laboratory 2-0-6
A series of experiments that complements the lecture material in PHY 199. This
laboratory course includes experiments in measurement and uncertainty, statics,
dynamics, collisions, AC and DC circuit analysis, electrostatics, magnetism optics,
and thermodynamics.
Corequisite: PHY 199
Students may not have credit for both PHY 199 and other introductory physics
laboratory courses (i.e., PHL 191 and 192 or their equivalents).

PHY 206 Waves, Optics, and Modern Physics 3-3-0
Wave phenomena. Wave and photon theories of light. Huygens’ principle and
its applications. Geometrical optics. Interference, diffraction and polarization of
light. Modern physics, including elementary atomic physics, nuclear physics,
and radioactivity.
Prerequisite: PHY 191 or PHY 193.
Corequisite: PHY 206.

PHY 206 Waves, Optics, and Modern Physics Laboratory 1-0-3
Experiments in geometrical and physical optics, wave motion, and modern physics.
This course must be taken concurrently with PHY 206.

PHY 207 Thermal and Fluid Physics 3-3-0
Pressure, hydrostatics, and hydrodynamics. Properties of materials and Young’s
Modulus. Temperature and heat. Kinetic theory of gases. Energy, work, heat. First,
second, and third laws of thermodynamics. Entropy and disorder. Specific heat
of solids, black body radiation, statistical thermodynamics involving different
distributions and their applications.
Prerequisite: PHY 191 (or equivalent).

PHY 208 Introduction to Mechanics 3-3-0
Statics: equilibrium of bodies subject to many forces. Kinematics; rectilinear,
plane, circular, and simple harmonic motion. Dynamics: conservation of
mechanical energy and momentum; plane and circular motions of particles;
rotation of macroscopic bodies. Non-inertial frames.
Prerequisite: PHY 191 or equivalent and PHY 270 (or equivalent), or permission of
the instructor.

PHY 214 Astronomy and Astrophysics 3-3-0
A survey of our understanding of the physical properties of the universe. Topics to
be studied include: observational astronomy, stellar evolution, binary stars, white
dwarfs, neutron stars, black holes, galaxies, quasars, large scale structure of the
universe, and cosmology.
Prerequisite: PHY 191 (or equivalent), MAT 191 (or equivalent), or permission of
the instructor.

PHY 270 Ordinary Differential Equations 3-3-0
Techniques for solving first and second order linear differential equations. Systems
of first order equations. Power series solutions for second order equations including
the method of Frobenius. Various applications of differential equations.
Corequisite: MAT 206.
Note: See MAT 310. Students may not take this course for credit if they have received credit for MAT 310.

PHY 273 Observational Astronomy I 3-3-0
Students will become familiar with modern astronomical techniques through a
combination of theoretical and hands-on experience. Techniques covered include
CCD observations of stars, planets and galaxies, photometry, and spectroscopy.

Students will use the Bishop’s 0.45 m telescope to take observations of various
targets. Student projects may include: determination of the distances and ages of
star clusters; measurements of the variability of stars and quasars; determination
of the orbital periods of binary systems; measurements of the mass of Jupiter and
galaxies; and determination of the Hubble constant.
Prerequisite: Permission of the Instructor.

PHY 315 Special Relativity 3-3-0
Special Relativity. Lorentz Transformations. The geometry of space-time.
Relativistic mechanics of massive and massless particles. Elementary particles.
Corequisite: PHY 208.
Offered alternate years.

PHY 316 Physical and Contemporary Optics 3-3-0
Wave theory, polarization, interference, diffraction. Basics of coherence theory,
lasers, holography. Quantum nature of light.
Prerequisite: PHY 206.
Offered alternate years.

PHY 317 Statistical Mechanics 3-3-0
The statistical definition of entropy and temperature. Statistical Ensembles. The
Planck and Maxwell-Boltzmann distributions. The Fermi and Bose distributions.
Thermodynamic state functions. Applications of Fermi-Dirac and Bose-Einstein
statistics.
Pre or Co-requisite: PHY 207.
Offered alternate years.

PHY 318 Advanced Mechanics 3-3-0
Central forces. Newtonian gravitation: planetary orbits and tides. The Lagrangian
and Hamilton’s Principle. Liouville’s Theorem. Poisson brackets. Hamilton-Jacobi
theory. Theory of vibrations and small oscillations (normal modes). Dynamics of
macroscopic bodies.
Pre or Co-requisites: PHY 208, PHY 270, or permission of the instructor.
Offered alternate years

PHY 319 Electric Circuits and Electronics 3-3-0
Review of D.C. circuits, Kirchoff’s laws, network theorems. Network analysis
for A.C. circuits, phasors. Diode circuits and filters. The physical basis of
semiconductor devices including semiconductor diodes, junction transistors, and
field-effect transistors. The operation of transistor amplifiers, digital electronics,
and integrated circuits will also be covered.
Prerequisite: PHY 192 or NTB or permission of instructor.
Note: See CS 379. Students may not take this course for credit if they have received credit for CS 379.

PHY 320 Electromagnetism I 3-3-0
Review of vector calculus. Electrostatics: fields and potentials of point charges,
dipoles, and distributed charges; Gauss’s theorem; Poisson’s and Laplace’s
equations; dielectrics; capacitance. Current electricity.
Prerequisites: PHY 192, PHY 208, MAT 207.
Offered alternate years.

PHY 321 Electromagnetism II 3-3-0
Magnetic phenomena, magnetic induction, Ampere’s Law, and solenoids.
Magnetic and electric fields: Maxwell’s equations of the electro-magnetic field;
plane electromagnetic radiation in dielectrics and conducting media. Radiation and
antennae.
Prerequisite: PHY 320.
Offered alternate years.

PHY 325 Computational Physics 3-3-0
A broad range of numerical methods that are commonly used to solve problems
in physics will be employed. Examples include ordinary and partial differential
equations, linear systems, numerical integration and stochastic methods. We
will discuss each algorithm within a physical context that includes classical
mechanics, chaotic dynamics, electromagnetism, statistical physics, astrophysics,
and quantum systems. Students will use the Python programming language to
solve the problems.
Co-requisites: CS 211 and CSL 211
Prerequisites: PHY 208 and PHY 270 (or MAT 310).
Offered alternate years

PHY 335 Environmental Physics 3-3-0
This quantitative, calculus-based, course discusses fundamental environmental
problems within a physical context. Topics covered include: the greenhouse effect,
blackbody radiation, the ozone problem, mathematical techniques, heat transfer,
electricity, the transport of pollutants, plumes, and basic groundwater hydrology.
Prerequisite: PHY 207.
PHY 361 Quantum Mechanics I 3-3-0
Topics to be studied include: foundations of quantum mechanics, angular momentum quantization, the Schrödinger equation, central potentials, one-dimensional systems, and the hydrogen atom.
Corequisite: PHY 318, or permission of the instructor.
Offered alternate years.

PHY 365 Data Communications 3-3-0
This course will cover how data flows in communications networks. Topics: hardware, software and basic components of data communications; frequency domain representation, modulation, multiplexing; network configurations.
Prerequisite: CS 211, or permission of the instructor.
Note: See CS 315. Students may not take this course for credit if they have received credit for CS 315.

PHY 371 Mathematical Methods of Physics 3-3-0
Prerequisites: MAT 207 and MAT 310 or PHY 270.
Note: See MAT 311. Students may not take this course for credit if they have received credit for PHY 311.

PHY 374 Data Mining for Scientists 4-3-3
Data is now created faster than humans are able to understand it and use it. There may be patterns hiding within this data with potentially useful information. This course will teach students, including Biology and Biochemistry students as well as those from Computer Science, how to discover these patterns for the purpose of solving problems, gaining knowledge, and making predictions. Topics covered in this course include data preparation, clustering, classification, association rules for mining and linear regression. This course includes assignments and a final project where the students are required to perform mining on real datasets drawn from the biological and physical sciences.
Prerequisite: PHY 101 (or equivalent).
Note: See CS 305. Students may not take this course for credit if they have received credit for CS 305.

PHY 375 Numerical Methods 3-3-0
A course introducing those numerical methods best suited to a computer. Error analysis, roots of equations, QR-algorithm, interpolation, numerical approaches to differentiation, integration and solutions of differential equations.
Prerequisites: CS 211, MAT 108, MAT 207.
Note: See MAT 325 and CS 375. Students may not take this course for credit if they have received credit for MAT 325 or CS 375.

PHY 376 Calculus of Variations 3-3-0
Prerequisite: Permission of the Instructor.
Note: See MAT 405. Students may not take this course for credit if they have received credit for MAT 405.

PHY 378 Scientific Programming 3-3-3
This course is designed as an introduction to programming languages and environments suitable for the numerically intensive applications in the natural sciences and mathematics. Examples will be given to illustrate the use of Fortran in numerical calculations. Other examples will be tackled using the Maple language initially developed to handle problems in symbolic computation.
Prerequisite: CS 404, or permission of the Instructor.
Note: See CS 308. Students may not take this course for credit if they have received credit for CS 308.

PHY 380 Experiential Learning in Astronomy 3-3-0
Students will be expected to work in the Observatory as a telescope operator, guide, and/or public speaker. These activities will help fulfill the Observatory’s role as a resource for public outreach in the field of science. Students will be expected to become conversant with the essentials of observational astronomy and to develop their ability to articulate the importance of astronomy and science to the general public through oral and/or written communication. Students must seek out an internal supervisor (a full-time faculty member) who will supervise their activities. Assessment of the student will be based on a mark assigned by the supervisor and will reflect the quality of the work carried out by the student. Students must also submit a journal detailing the actual daily work that was accomplished. Projects may be intensive in nature (i.e., 3 weeks during the summer), or may extend over longer durations (i.e., 6-8 hours per week during the semester).
Note: Students may only take one experiential learning course for credit. Permission of the instructor.

PHY 381 Research Based Experiential Learning 3-0-9
Students will be engaged in modern research in the field of physics and astronomy to gain hands-on experience with research to better connect the student to physics theory and knowledge that has already been learned in the classroom.
Prerequisite: Permission of the instructor.
Note: Students may only take one experiential learning course for credit.

PHL 385 Intermediate Physics Lab I 2-0-6
Introduction to data acquisition and analysis of experiments which serve to measure the fundamental constants or properties of nature (e.g., Planck’s constant, Boltzmann’s constant, speed of light, charge of the electron, Landé g-factor). Data will be collected by using a variety of instruments including oscilloscopes, computer interfaces using A/D converters, and other data sensors.
Offered alternate years.

PHL 386 Intermediate Physics Lab II 2-0-6
Experiments in quantum physics, non-linear dynamics (chaos), thermodynamics, and low-temperature physics will be carried out. Computer interfaces and nuclear counters will be used to collect and analyze data.
Offered alternate years.

PHY 462 Quantum Mechanics II 3-3-0
Theory of angular momentum, matrix mechanics and applications of quantum mechanics to various branches of physics. Perturbation theory, scattering, molecular applications, and Hartree-Fock theory.
Prerequisite: PHY 361.

PHY 463 Nuclear Physics 3-3-0
Nuclear structure and systematics; alpha emission, beta decay, gamma emission, two-body systems and nuclear reactions; neutron physics; sub-nuclear particles.
Prerequisite: PHY 361.

PHY 464 Condensed Matter Physics 3-3-0
Topics to be studied include the one-electron theory of solids, energy bands, lattice vibrations, transport theory, and thermodynamic properties.
Prerequisite: PHY 317, or permission of the department.

PHY 465 Electromagnetic Theory 3-3-0
Static and dynamic electric and magnetic fields; Maxwell’s equations and solutions involving plane waves. Covariant formulation of electromagnetic field theory.
Prerequisite: PHY 321.

PHY 466 Theoretical Topics 3-3-0
Topics to be studied will be selected from the areas of special and general relativity, classical and quantum mechanics, particle physics, astrophysics, and cosmology. In particular, the covariant nature of physics and various physical symmetries will be investigated.
Prerequisites: PHY 317, PHY 318; or permission of the instructor.

PHY 467 Advanced Statistical Mechanics 3-3-0
Derivation of the laws of thermodynamics from statistical principles. Quantum statistics, arbitrarily degenerate and relativistic perfect gases, transport theory, thermodynamic fluctuations, and low-temperature physics will also be studied.
Prerequisite: PHY 317.

PHY 469 Independent Studies I 3-0-0
Topics to be determined by the instructor based on student’s needs.

PHY 470 Independent Studies II 3-0-0
Topics to be determined by the instructor based on student’s needs.

PHY 471 Independent Studies III 3-0-0
Topics to be determined by the instructor based on student’s needs.

PHY 474 Cosmology 3-0-0
Topics to be studied include: cosmology, inflation, dark energy, compact objects, relativistic fluid dynamics, gravitational lensing, and gravitational waves.
Prerequisite: PHY 214 or PHY 208
Note: See PHY 574. Students who take this course for credit may not receive credit for PHY 574.

PHY 475 Numerical Methods and Simulations 3-3-0
This course will cover selected topics in High Performance Computing including cellular automata, finite element methods, molecular dynamics, Monte Carlo methods, and multigrid methods. Applications of the algorithms to the study of classical fields, fluid dynamics, materials properties, nanostructures, and biomolecules will be addressed depending on the interests of the students.
Note: See PHY 575. Students may not take this course for credit if they have received credit for PHY 575.
PHY 476 Stellar Astrophysics 3-3-0
An introduction to the properties of stellar atmospheres and interiors. The equations of stellar evolution, nuclear energy generation, radiative transport and stellar model building will be studied. Further topics include the formation of stars, and the physics associated with supernovae, white dwarfs, neutron stars, pulsars and black holes.

PHY 480 Honours Research Dissertation 6-1-6
Each student is required to carry out either an experimental or theoretical project under the supervision of a faculty member. A plan outlining the proposed research must be submitted for approval during the first four weeks of the course. Each student will present his/her results in the form of a seminar, an oral thesis defense, and a written dissertation.
Prerequisite: U3 Honours Physics registration or permission of the department.

PHY 487 Honours Research Dissertation 3-3-0
Exoplanets are planets in orbit around distant stars. This course is designed as an introduction to the discovery and characterization of exoplanets. The application of transits, velocimetry, imaging and lensing will be studied. Exoplanet atmospheres, interiors and orbital dynamics will be studied. Further topics include demographics, biosignatures and exploration of our Solar System to understand the origins of life.
Prerequisites: PHY 208, PHY 214
Note: See PHY 587. Students who take this course for credit may not receive credit for PHY 587.

Pre-Medicine Double Major (B.Sc.)

Faculty
Administered by the Program Coordinator

Program Overview
(78 credits)
MAJMED

The Pre-Medicine double major allows students to complete the common pre-requisites necessary to apply to medical schools while at the same time pursuing a liberal arts education. The required and optional courses listed below correspond to the entrance requirements of many Canadian and American medical schools. They also address the requirements of most related professional schools (such as dentistry or physiotherapy).

It is important to note that every professional school has its own specific set of prerequisite courses, and these occasionally change. Up-to-date prerequisites are usually listed on the admissions site for an MD program. A student in the Pre-Medicine major should consult the websites of any schools in which they are interested as they plan their optional courses.

The Pre-Medicine program is a double major program, students registering in the Pre-Medicine major must be registered in a separate primary major. A student can select their primary major from any discipline offered at Bishop’s, including Biology, Biochemistry, Chemistry, Business, Liberal Arts, or Psychology. Courses can be double counted towards both the primary major and the Pre-Medicine major, but in order to graduate with the Pre-Medicine double major, a student must complete a minimum of 24 additional course credits that have not been counted towards the required courses (including required and concentration options) of the primary major. Some programs (e.g. Biology, Biochemistry and Computer Science) include “Free Options” or “Free Electives” in their programs. These courses can be used to fulfill the 24 course credits of the Pre-Medicine Major. Students with a large number of double-counted courses can complete additional “Pre-Medicine Option Courses” in order to obtain the 24 additional credits.

Entrance Requirements
The following criteria apply to entry into the B.Sc. Pre-medicine double major:

- a student must be registered in, and remain in, a primary major at Bishop’s;
- a student must have completed 60 course credits (not including lab credits), including advanced credits, and have an overall average of 75% or greater;
- a student must maintain an overall average of 75% or greater at the end of each academic year to remain in the program.