Conception and Text
Darren Bardati, PhD, Full Professor, Department of Environment and Geography, Bishop’s University
Brad Willms, PhD, Associate Professor, Department of Mathematics, Bishop’s University
Jane Morrison, PhD, Assistant Professor, Sustainable Agriculture and Food Systems, Bishop’s University
Jennifer Downing, MEd, PDC, Lecturer, Sustainable Agriculture and Food Systems, Bishop’s University

Bishop’s University
Michael Goldbloom, C.M., Principal and Vice-Chancellor
Isabelle Goyette, Vice-Principal, Finance and Administration
David Lacroix, Manager – Capital Planning and Projects, Buildings and Grounds
Steven Rowe, Manager of Facilities Operations and Maintenance, Buildings and Grounds
Hubert Girard, Project Technician, Buildings and Grounds
Karine Sirois, Graphic Designer, Communications Office
Bruno Courtemanche, Contract Faculty, Department of Environment and Geography

Principal Consultant
Jonathan Pineault, Permaculture Designer, Écomestible Inc.

Consultants
Geneviève Legault, Agronomist, MAPAQ Estrie
Clémence Fortier, Agronomist and Engineer, Club Agroenvironnemental de l’Estrie
Alexandre Guertin, Landscape Architect, Écomestible Inc.

Analysis and Assessment
Sarah-Claude Bergeron Lafontaine, Biologist, Écomestible Inc.

Plan Renderings, Layout and Perspective Views
Delphine d’Alençon, Graphic Designer and Landscape Architect

Drawings
Karine Sirois, Graphic Designer, Communications, Bishop’s University

Editing, Translation and Revision
Stephen Jones, Lyne Lauzon, Barbara Vogt

Limitation of responsibility: plans are not intended for implementation, but only for the purposes of presenting the project and concepts.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>05</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>07</td>
</tr>
<tr>
<td>CONTEXT AND BACKGROUND</td>
<td>09</td>
</tr>
<tr>
<td>Timeline</td>
<td>12</td>
</tr>
<tr>
<td>VISION STATEMENT</td>
<td>17</td>
</tr>
<tr>
<td>MISSION STATEMENT</td>
<td>18</td>
</tr>
<tr>
<td>Education</td>
<td>18</td>
</tr>
<tr>
<td>Research</td>
<td>18</td>
</tr>
<tr>
<td>Community Outreach</td>
<td>18</td>
</tr>
<tr>
<td>AGRICULTURAL VALUES AND APPROACH</td>
<td>19</td>
</tr>
<tr>
<td>MAP OF EDUCATIONAL FARM</td>
<td>21</td>
</tr>
<tr>
<td>DEVELOPMENT PHASES</td>
<td>22</td>
</tr>
<tr>
<td>Phase 1: Diverse Ecological Growing Systems</td>
<td>24</td>
</tr>
<tr>
<td>Phase 2: Orchards and Agroforestry</td>
<td>32</td>
</tr>
<tr>
<td>Phase 3: Small Animals and Silvopasture</td>
<td>34</td>
</tr>
<tr>
<td>Phase 4: Community Outreach</td>
<td>36</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>39</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
</tbody>
</table>
As I write this preface, the world is in the midst of a global coronavirus pandemic and is experiencing the devastating impacts of climate change.

As individuals and institutions we must act to address these crises. We cannot be passive bystanders in the face of these threats to life on our planet.

The creation of an Educational Farm on the Bishop’s University campus and the development of a Sustainable Agriculture and Food Systems curriculum are modest but important initiatives to respond locally to these global challenges.

Bishop’s has three critical attributes which make this such a compelling project:

1. Our location in the rolling hills and fields of Quebec’s Eastern Townships with its rich farming tradition,

2. Our community of students who are interested in learning how best to address the food sustainability challenges that confront us, and

3. Our Faculty who have the knowledge, experience and passion to guide our students in learning about sustainable agricultural practices.

I would like to pay particular tribute to Dr. Darren Bardati of our Department of Environment and Geography and Dr. Brad Willms of our Department of Mathematics, who are true academic entrepreneurs. It is their vision and determination which have brought this project to life.

This Master Plan for the Campus Educational Farm complements Bishop’s Campus Master Plan in its goal of creating a pedestrian-friendly and environmentally sustainable campus which supports teaching, research and community engagement.

A master plan should be a living document which evolves as circumstances change while remaining true to the guiding principles which inspired it.

I am confident that this master plan will form a solid foundation and provide clear direction as we undertake this exciting new chapter in the academic life of Bishop’s.

Michael Goldbloom, C.M.,
Principal and Vice-Chancellor
September 22, 2020
“Agriculture, rather than being a battle between humans and nature, should be a partnership, would we but learn to be aware of the biological intricacies involved and how to nurture them to assure adequate supplies of food and fibre. What better way to make those concepts common knowledge than to give students at school and college the opportunity for practical hands-on observation of the natural processes in action on a farm? The new Sustainable Agriculture and Food Systems programs and Educational Farm at Bishop’s University promise to do just that.”

— Eliot Coleman, author, researcher, educator, and owner of Four Season Farm, Harborside, Maine

“The vision for the Bishop’s Educational Farm and the complementary Sustainable Agriculture and Food Systems curriculum is, in essence, an emergent North Star for creating a regenerative post-COVID society. Not only will the farm and curriculum offer insights and pathways into improving human and ecological health, they will also engage students, faculty, staff, and community members in an iterative collective journey that will inspire everyone to reimagine their own roles and responsibilities in building more just and equitable food systems.”

— Philip Ackerman-Leist, Dean, School of the New American Farmstead, Sterling College, Craftsbury Common, Vermont
Bishop’s University is building a farm.

An Internet search for the word “farm” will produce images of big barns, large tractors, acres of tilled fields, herds of animals — usually cows — and seemingly endless rows of monoculture crops. There is also a widespread perception that only those who farm industrially, and whose families have done so for several generations, are the true farmers. Thankfully, things are changing.

It is well documented that industrial agriculture — the kind we have seen for the better part of the past century — presents unsustainable economic, social, political and environmental challenges. Agriculture is a major contributor to our sustainability crisis, but done correctly, agriculture is also an arena full of potential solutions.

To arrive at these solutions, a place is needed where students, researchers, collaborating farmers and community members can learn and be free to explore and develop new ways of doing things. As an integral component of Bishop’s new Sustainable Agriculture and Food Systems (SAFS) programs, the Educational Farm will cultivate passion, participation, discovery, experimentation, innovation, and — of course — food.

Above all, the farm will be a place to grow students: students who are critically reflective, technically trained, ecologically literate, and economically and socially responsible. Serving as a “living land laboratory,” the farm will include different learning stations to examine diverse ecological farming systems, explore new and heritage crops, and demonstrate the various impacts of growing food on the natural world.

The farm will also provide a place to conduct research and organize outreach activities. These activities on the farm will be centred on examining new practices and innovations within a scientific and participatory agroecological framework, and disseminating this knowledge to the community.

The Educational Farm will be an exciting new site that explores creative solutions to sustainability challenges that benefits students, researchers, and the community not just for now, but for future generations.
In line with society’s agricultural transition

The social context and timing are right for the creation of an Educational Farm at Bishop’s University. Students’ interest in the food they eat, from its origins, production, and environmental impacts, through to its distribution, nutritional value and end-wastes, has never been higher. The challenge of increasing global food production while mitigating the damage caused by the unsustainable practices of modern agriculture is one of the key issues facing humanity. Quebec itself is experiencing an agricultural transition, as evidenced by the emphasis on sustainable agriculture in Quebec’s Biofood Policy of April 2018.

In line with Bishop’s University priorities

In its pastoral setting on the edge of the city of Sherbrooke in the heart of Quebec’s Eastern Townships, Bishop’s University is ideally placed to become a leading institution in this burgeoning field. The region has a vibrant farming community and a robust agricultural economy renowned for agro-tourism and organic, community-supported food production. There is also a growing culture of entrepreneurship, particularly in sustainable agriculture. Further, the 200-hectare campus of Bishop’s includes an undeveloped 57-hectare property — previously referred to as the Mitchell Farm — consisting of beautiful rolling fields, forests, and wetlands.

In its Strategic Framework, Bishop’s University reaffirms its values as being “student-centred,” “community-focused,” aiming for “excellence,” and committed to “sustainability.” The Sustainable Agriculture and Food Systems (SAFS) programs and the Educational Farm embody and promote all four values, and are directly linked to two of the University’s Strategic Priorities:

1.3 Promote innovation through faculty collaboration and the development and implementation of unique initiatives and niche programs across the University.

6.3 Build an educational farm on campus to support the Sustainable Agriculture and Food Systems program that will provide experiential learning opportunities for our students.

This Master Plan for the Educational Farm is separate and complementary to the Bishop’s University Campus Master Plan, completed in 2020, which refers only to the main campus but is similarly focused on sustainability and student experience.

CONTEXT AND BACKGROUND
Bishop’s University Campus. The site of the Educational Farm is in the circle.
CONTEXT AND BACKGROUND

Farmhouse and area where the Phase 1 gardens will be placed. Highway 410 under construction in the background.

View from the Educational Farm to the main campus (top left) and Peter Curry Marsh (top centre) beyond the Highway 410 construction site.

Aerial view of the Educational Farm.

Access driveway to the farmhouse from Glenday Road. Phase 1 gardens will be located to the left of the driveway.

Entrance to the Educational Farm from Glenday Road

Looking east from the farmhouse.
The 8th recommendation of the Task Force to Develop a Long-term Sustainability Model for Bishop’s University calls for the creation of “a new, attractive academic program which is economically relevant locally, and significantly different from current offerings at BU and elsewhere.”

Drs. Darren Bardati and Brad Willms are awarded a VP Innovation Grant to design an innovative undergraduate program in line with the Task Force recommendation.

The Proposal for the Development of B.A. and B.Sc. Programs in Sustainable Agriculture and Food Systems (SAFS) is completed.

Drs. Bardati and Willms present the SAFS proposal, including initial ideas for the Educational Farm, to the Bishop’s University Board of Governors.

Further consultations are carried out with academics and the farming community, with visits to university and college educational farms in Quebec and northeast North America, to refine the SAFS programs and farm proposal.

The new SAFS programs are approved by Bishop’s University Senate.
<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>January</td>
<td>Écomestible Inc. is hired to conduct campus stakeholder consultations and design a Preliminary Concept Plan for the Educational Farm.</td>
</tr>
<tr>
<td>2019</td>
<td>May</td>
<td>The SAFS minor is launched and the first AGR-coded courses are offered. The first part-time faculty member in SAFS is hired.</td>
</tr>
<tr>
<td>2019</td>
<td>October</td>
<td>The Preliminary Concept Plan and Site Preliminary Analysis and Assessment reports are completed. A public event and media attention follow.</td>
</tr>
<tr>
<td>2020</td>
<td>October</td>
<td>The analysis of the farm-site soils and drainage efficiency for agriculture is carried out by Club Agroenvironnemental de l’Estrie.</td>
</tr>
<tr>
<td>2020</td>
<td>January</td>
<td>The first full-time Assistant Professor in SAFS is hired.</td>
</tr>
<tr>
<td>2020</td>
<td>February</td>
<td>Écomestible Inc. is hired to produce a detailed Master Plan for the Educational Farm.</td>
</tr>
<tr>
<td>2020</td>
<td>June</td>
<td>Two websites are created: www.ubishops.ca/safs and www.ubishops.ca/farm.</td>
</tr>
<tr>
<td>2020</td>
<td>June</td>
<td>The SAFS major programs are submitted to the Bureau de coopération inter-universitaire for provincial governmental approval.</td>
</tr>
<tr>
<td>2020</td>
<td>May</td>
<td>Construction begins on a 1.3-kilometre path leading from the Bishop’s main campus to the Educational Farm.</td>
</tr>
<tr>
<td>2020</td>
<td>August</td>
<td>Agricultural field drainage and soil preparation begin at the farm.</td>
</tr>
<tr>
<td>2020</td>
<td>October</td>
<td>The Master Plan for the Educational Farm is completed.</td>
</tr>
</tbody>
</table>
VISION STATEMENT

The Educational Farm is a living land laboratory whose purpose is to instill passion for learning, drive agroecological science forward, and foster transformational change towards resilience and sustainability in our food system.
MISSION STATEMENT

The vision will be achieved through education, research and community outreach, as follows:

Education
The Educational Farm will serve as a laboratory for field teaching, experiential learning, and exploration. Most of the SAFS courses include field components at the farm, as well as required practica. The goal is to train a new generation of students in ecological agriculture, permaculture design, market gardening, organic fruit production, animal husbandry, agroforestry, and other systems, while nurturing a transdisciplinary, systems-thinking perspective. The farm will provide students with a diversity of learning experiences in a multitude of traditional and innovative growing systems and integrated approaches.

Research
The Educational Farm will provide space for exploring and experimenting with solutions to agricultural and food systems challenges. It will serve as a platform for participatory research in order to improve organic crop varieties and ecological farming techniques for cold-climate growing conditions. At the time of writing, the farm is the proposed site of several innovative research projects, including: 1) a nationally funded research project in participatory organic potato breeding; 2) a funded interdisciplinary team project that monitors bio-indicators of environmental change; and 3) innovative crop cultivation trials involving farmers.

Community Outreach
The Educational Farm will be a place for community members of all ages to connect with each other, with nature, and with the food they eat. It will be the site of “Farm Day” events that are open to the public, alumni events, other special events for invited groups, and community workshops on a variety of topics (e.g. seed saving, no-till gardening, soil building, carbon sequestration, role of pollinators, mob grazing of animals, food transformation techniques, etc.). The goal of outreach events will be to showcase the farm’s educational and research activities and to help community members acquire new skills – fostering an increased awareness of, and passion for, regenerative agriculture.
AGRICULTURAL VALUES AND APPROACH

At Bishop’s University, we value agroecology and regenerative agriculture. The farm focuses on building and maintaining living soil, sequestering carbon, utilizing preventative pest and weed management strategies, and fostering the health and resilience of the entire agroecosystem.

We value permaculture design principles. Students will learn how to design food production spaces (e.g. farms, urban lots, schoolyards, hospital grounds, municipal parks, etc.) that mimic the patterns and relationships found in nature, and which are deeply rooted in the place in which they occur.

We value organic growing practices. We commit to avoiding the use of synthetic herbicides, pesticides, and fertilizers. We recognize that healthy soil, integrated weed and pest management techniques, observation, and preventative measures are critical to maintaining efficient production and high yields.

We value biodiversity. This includes organisms both within and surrounding agricultural activities. Rather than focusing on specialized production, we promote polycultures, crop rotations, and diversified production with integrated systems. We commit to supporting pollinators and other wildlife with conservation of natural areas, pollinator gardens, and maintaining native perennials throughout the landscape.

We value the “closed-loop” approach. The farm will strive for self-sufficiency and minimal reliance on external inputs. We aim to produce resource needs internally and eliminate waste. For example, we plan to utilize food scraps from the Bishop’s cafeteria to create our own compost, to incorporate animal manure for soil fertility, and to grow diverse and nutrient-dense pastures to avoid or reduce the need for purchased animal feed and supplements.

We value a human-scale approach. The farm will consist of intensive plantings on only a few acres, avoiding vast fields of monocultures. Students will work with wheelbarrows, hand-operated tools and small two-wheeled walking tractors.

We value appropriate technologies that facilitate sustainable agriculture and reduce the farm’s ecological footprint. For example, we plan to use geothermally heated greenhouses, solar-powered lightweight electric net fencing, drone-driven remote sensing of soil and plant conditions, etc.
MAP OF EDUCATIONAL FARM

- Bike/pedestrian path to the main campus
- Farm manager’s house
- Irrigation pond
- Diversified orchards and research plots
- Infrastructure and gardens for community outreach
- Hiking and cross-country ski trail
- Forest in ecological management
- Silvopasture system
- Biointensive and permaculture gardening systems
The Educational Farm will be developed in four phases:

1. **Diverse Ecological Growing Systems**
 Implementing a mosaic of diverse ecological growing systems and research plots.

2. **Orchards and Agroforestry**
 Expanding learning and research opportunities with fruit and nut orchards, as well as agroforestry.

3. **Small Animals and Silvopasture**
 Introducing small animals and silvopastoralism to the farm.

4. **Community Outreach**
 Employing the farm’s assets for community groups to experience and learn about sustainable agriculture, and enjoy its recreational trails.

While these phases are sequential for ease of planning, there is nothing to prevent the development of some aspects of each phase simultaneously.
Phase 1: Diverse Ecological Growing Systems

The first phase of the project consists of implementing a mosaic of diverse ecological growing systems and research plots that will provide opportunities for extensive learning and exploration.

Students will have an opportunity to learn and practise a number of different sustainable farming approaches:

- biointensive market gardens to teach commercial farming techniques
- edible forests to teach about ecological synergies, integrating tree and crop production, and wild harvesting
- greenhouses, polytunnels, and other strategies to teach season extension techniques for a cold climate
- permaculture gardens to teach how to design different growing spaces that mimic relationships found in nature
- and urban gardening techniques using containers and raised beds.

Gardens and field margins will be reserved for perennial crops (e.g. fruit bushes) for harvest and/or ensuring biodiversity. Spaces will also be reserved for learning specific ecological growing techniques like companion planting or Hügelkultur (raised beds constructed from decaying wood debris and other compostable plant materials). All gardens will be worked with hand-operated tools and small walking tractors, optimizing productivity while maintaining a human-scale approach.

Plots will also be set aside for research projects focused on improving organic crop varieties and ecological farming techniques. Students will have an opportunity to assist in the setup, maintenance, and sampling of agricultural research trials.

A washing station and workshop will provide students with experience in cleaning, storing, preserving (e.g. drying), and transforming (e.g. lactofermentation) produce. A gazebo will provide an outdoor class and meeting space. Before any growing can take place, a fence will be constructed to protect against the deer that are abundant in the region.

In order to irrigate crops, a well will be dug and systems of portable sprinklers and drip lines will be installed. Additionally, an irrigation pond will be constructed to provide water for irrigation while also supporting biodiverse flora and fauna. Beehives will be used to enable apiculture training and other related activities (e.g. research or community workshops). Additional measures (e.g. birdhouses) will be put into place to support beneficial birds and insects that will play a role in pest management.

In order to improve the self-sufficiency of the farm, two different composting systems will be put into place, static thermal composting and vermicomposting, transforming biomass from the farm as well as food scraps from the Bishop’s cafeteria into high quality compost for soil fertility.
Lateral view A-A'

- Biodiversity hedge
- Polytunnel for season extension
- Biodiversity hedge
- Biointensive market gardens
Phase 1: Diverse Ecological Growing Systems

Lateral view B-B’

Static thermal composting system
Lateral view C-C'

- Washing station and seedling greenhouse
- Garage
- Greenhouse
Phase 1: Diverse Ecological Growing Systems

- Greenhouse
- Edible forest and permaculture gardens
- Research plots
Perspective view of the gardens and the outdoor classroom
BISHOP'S UNIVERSITY

Nut tree agroforestry

Fruit and nut orchard

Diversified orchard

Research plots
Phase 2: Orchards and Agroforestry

The second phase consists of establishing fruit and nut orchards in addition to the existing ecological growing systems, expanding the research plots, and designing new agroforestry-based systems.

The orchards will be a place to experiment with diverse species in well-thought-out arrangements. These orchard systems would introduce climate-appropriate fruit trees, such as cherries, pears, plums, and apples, integrated with shade-tolerant fruit shrubs (e.g., blackcurrant) and edible ground plants. This type of innovative system provides an opportunity for students and researchers to learn and explore complex systems in ecological agriculture.

The orchard area will also provide an opportunity to plant emerging crops that are less well known, contributing to the establishment of potential new sectors in Quebec. These emerging crops could include *amelanchier* (also known as serviceberry), native to Quebec, haskap, excellent for processing, and American hazelnut, currently in development in Quebec.

Agroforestry systems are a blend of agriculture, forestry, and conservation. Tree, crop and/or future animal components are managed and evaluated as a single system rather than as separate parts. In this phase, a variety of fruit and nut trees, as well as nitrogen-fixing trees and lumber trees, will be added to the farm in thoughtful locations intended to enhance teaching and research about integrated agroforestry systems. Later, in Phase 3, animals will be integrated into the agroforestry systems.

In this phase the experimental fields will be expanded to enable a growing number of research projects.
Sugar shack
Silvopasture system
Area for mob grazing of small herbivores
Barn and winter shelter for animals
Mobile enclosures for small animals
Farm manager’s house
Sugar shack
The third phase of the project will see the integration of small animals into the farm. These could include small groups of sheep, goats, rabbits, hens, geese, ducks, guinea fowl, and others. Several learning stations associated with each of these animals will be created to introduce students to animal husbandry practices. These animals will provide useful service to the functioning of the farm. For example: manures will be used in the gardens, various fowl (hens and guinea fowl) will keep insect and slug populations under control, and geese can be used to weed the gardens.

We plan to use solar electric net fencing so that mob-grazing herbivores can be moved around the landscape on a daily basis. Moving animals daily allows them to follow their natural grazing habits and keeps pastures healthy. Inspired by traditional systems from Europe, we plan to create a silvopasture system by planting a low-density orchard where the animals will graze.

We will build various portable pasture shelters to house the small animals during the summer. A barn will be constructed to house them in winter. Once the animals have been introduced, a full-time farm manager will reside at the farm. The farm manager will be assisted by paid and volunteer student assistants.

On the site of the sugar maple grove and the derelict sugar shack, we will construct a new sugar shack and incorporate maple-syrup-making activities on the farm. The science of acericulture will be added to the curriculum, and will also serve as an important community outreach activity.
Phase 4: Community Outreach

In the fourth and final phase, we will develop the portion of the property that lies east of Glenday Road. The area will continue its function of producing hay to support grazing animals during the winter, but more features will be introduced aimed at community outreach.

We will salvage a local traditional wooden gambrel barn in order to bring an Eastern Townships heritage aspect into the project. This “Community Barn” will serve both educational and community-outreach purposes. It will be the site of events that are open to the public, alumni, or special invited groups, including community workshops on a variety of agriculture and food preparation topics.

Near the Community Barn, we will also build a wastewater-filtration wetland and a permaculture trail through a flowering meadow whose blooms will attract pollinators. This 500-metre educational trail will contain interpretive signage to demonstrate the ecological functions and relationships along the walking trail, as it winds around various types of vegetation and water features.

We want the local community, including school groups, to visit this place of inspiration and education. Visitors will be invited to walk up the hill to a 30-metre tall Observation Tower that will be built at the highest point on the farm. From the tower, visitors will be able see a large portion of the Eastern Townships, including the Massawippi Valley, and admire the beauty of the region.

Beyond the tower is a 10-hectare tract of forest that will be ecologically managed for wood fibre, recreational enjoyment, and natural animal habitat. A recreational hiking and cross-country ski trail, with interpretative signage, will be created within this forested area, looping back to the Community Barn.
From its inception in 2016 as an idea for creating SAFS programs at Bishop’s University to its completion, this *Master Plan for the Educational Farm* is the result of countless hours of research, discussions, walks in fields and forests, scientific assessment, and design plans.

This is just the beginning. While this master plan is intended to cast a long-term vision for the future of the Mitchell Farm property, it will also guide decisions over the next five to ten years of development at the farm. It will be adjusted and refined as time goes on, according to the needs and limitations that are encountered.

The Educational Farm will have a long future as the heart of vibrant SAFS programs, serving to augment classroom material with experiential learning. It will be the test site for multiple research projects that push the boundaries of our knowledge in sustainable agriculture. The farm will welcome and involve community members as active participants who will learn about fascinating new food growing initiatives.

This master plan will be successful when the farm is being used as envisioned: a hub of activity for instilling passion for learning, for driving innovation in agro-ecological research, and for encouraging community participation, all with the goal of fostering transformational change towards resilience and sustainability in our food system.
REFERENCES

TEXT REFERENCES
i Specialization in Sustainable Agriculture and Food Systems (SAFS): www.ubishops.ca/safs.
ii Bishop’s University Educational Farm: www.ubishops.ca/farm.
iii See the IPCC’s Special Report, Climate Change and Land, August 2019: www.ipcc.ch/srccl/.
iv See the MAPAQ’s Politique Bioalimentaire 2018-2025: www.mapaq.gouv.qc.ca/fr/Ministere/politique/Pages/Politique-bioalimentaire.aspx.
vii The Preliminary Concept Plan for the Educational Farm included the first set of concept images for the farm project, taking into consideration the information in the Site Preliminary Analysis and Assessment.
viii The Site Preliminary Analysis and Assessment included climatic information and detailed maps outlining farm site geology, topography, hydrography, zoning and legal constraints, site access and circulation, vegetation and wildlife, exotic invasive species, microclimates, inventory of existing buildings and other infrastructure, and points of aesthetic interest.

PHOTO CREDITS
p.1 and 12 Aerial photo of the Main Campus by Bishop’s University
p.13 and 14 Aerial photos by Bruno Courtemanche, Bishop’s University
p.13 Farm entrance by Jane Morrison, Bishop’s University
p.14 Drainage and soil-quality consultants by Brad Willms, Bishop’s University
p.15 Field drainage and Bike path by Jonathan Pineault, Écomestible Inc
p.18, 22 and 32 Photos by Jennifer Downing and Darren Bardati, personal work

DEVELOPMENT PHASES MAP
Icons from Noun project: www.thenounproject.com.
Goat by Wahyun-title
Bird by Ana Maria Lora Macias
Tent by Andre Buand
Insect by Vectorstall
Berries by myiconfinder
Cherry by P Thanga Vignesh
Public by priyanka
Grass by Anjo Cerdeña
Strawberries by Shocho
Water by SHAHAREA
Ecology by UNiCORN
Nuts by Patrick Straub
Apple by LUTFI GANI AL ACHMAD
Orange by LUTFI GANI AL ACHMAD
Ecology by BomSymbols

PHOTO CREDITS

PERSPECTIVE VIEW
p.33 Photo references from Dreamstime:
113452169 Wooden gazebo in spring parks.
132014474 Young farmer with work tools.
26546754 Flying birds in blue sky.
173224723 Seagulls birds fly in the blue sky.
137107302 Hardworking young woman pushing a cart in the greenhouse.
132014474 Young farmer with work tools.
84303065 Irish sheep.
185005694 Farmer cultivates a carrot plantation. Cultivating soil. Loosening earth to improve access water and air to roots of plants.
102497399 Young people or students at a team-building.
173020859 Large wooden gazebo in the forest, tourist destination.
105024928 Fruit orchard on a farm.
172251220 Smiling farmer couple watering a broccoli plantation with a sprinkler in an organic field.
191032077 Afro male farmer harvesting tomatoes in greenhouse.
Farmer with carrots.
Raspberry plantation orchard field.
Garden cart in the kitchen garden.
Parked large wheelbarrow loaded with cut grass, gardening equipment.
Farmer family picking organic vegetables in garden.
Young farmer working at his garden in sunny day.
Farmer working in organic farm field raking carrots.
Field worker farmer.
BCS 853 popular tractor unit rototiller working soil dirt on out.
Woman in wheelchair on white background.
Group of gardener workers.
Happy woman harvesting strawberries.
Woman farmer in ripe wheat field.
Group of multiethnic students walking together outdoors in college campus.

Farmer feeding cows.
Farmer checking apples in orchard.
Organic farmer.
Woman in wheelchair on white background.
Farmer walking and carrying a burlap sack.
Group of gardener workers.
Hardworking young woman pushing a cart in the greenhouse.
Woman farmer in ripe wheat field.
Happy woman harvesting strawberries.
Group of multiethnic students walking together outdoors in college campus.
Tree collection isolated on white background.
Single tree with clipping path.