Biological Sciences

Faculty

Patrick Bergeron,
B.Sc. (McGill), Ph.D. (Université de Sherbrooke), Associate Professor

Marylène Boulet,
B.Sc. (Laval), M.Sc. (Laval), Ph.D. (McMaster), Senior Instructor

Estelle Chamoux,
Ph.D. (Sherbrooke); Associate Professor

Kerry Hull,
B.Sc, Ph.D. (Alberta); Professor

Michael Richardson,
B.Sc., M.Sc., Ph.D. (McGill); Associate Professor

Program Overview

The Biology programs educate students about diverse aspects of living organisms, ranging from microbes to human populations to complex ecosystems. Many of our graduates go on to graduate and professional studies in medicine, dentistry, veterinary medicine, the allied health sciences, forestry, wildlife biology, microbiology or biotechnology. A degree in biology also prepares students for direct employment in the biotechnology sector, environmental biology, or some allied health fields.

The Biology program’s best attribute is its teachers. Our faculty members are dedicated to undergraduate teaching and enjoy helping students develop their knowledge and skills both in and out of the classroom.

The Department of Biological Sciences is well equipped for study and student research in zoology, botany, physiology, molecular biology and ecology. Students receive extensive instruction and hands-on experience in our modern laboratory facilities, and are encouraged in every way to develop their capacities for independent work. Bishop’s University is located near a variety of habitats including bogs, lakes, rivers, mountains, marshes, hardwood forests and meadows. This variety means students can be hiking during one lab and canoeing the next. The rural setting of Bishop’s combines the features of a biological field station with those of a well-equipped biology department, providing exceptional opportunities for field study and research in ecology and environmental biology. Those students interested in molecular biology and health sciences will benefit from the proximity of the Université de Sherbrooke. This French-language university provides an active nucleus of researchers in physiology, immunology, nuclear medicine, and microbiology. An ongoing collaboration between the Université de Sherbrooke and Bishop’s provides our students (including unilingual Anglophones) with access to these researchers and their laboratories.

The Biology department offers both Bachelors of Science (B.Sc.) and Bachelors of Arts (B.A.) degrees. Students in either degree program choose between two concentrations: Health Science or Biodiversity and Ecology. Health Science is the best concentration for students interested in medical research, clinical medicine, or the allied health sciences (such as nursing or physiotherapy). Students interested in wildlife biology, plant science, and environmental biology choose the Biodiversity and Ecology concentration. Please note that the courses to be taken within each program are outlined in the nearby tables.

Please refer to the Natural Sciences Division page for information on Divisional Requirements.
Programs

All Biology programs include core Biology courses, courses related to the chosen concentration, and, in the case of B.Sc. programs, basic science courses. All Bachelor degrees require 120 credits; thus, each student takes elective courses in addition to those required for their specific program.

B.Sc. Biology Honours (102 credits)

 Highly motivated students may choose to pursue an honours degree, which requires additional Biology courses and thus fewer electives (see nearby tables). To qualify, students must: (1) maintain a cumulative average of at least 75%; (2) receive a mark lower than 75% in no more than four credits (1 lecture and 1 laboratory course) in any 300 or 400-level Biology or Biochemistry course; and (3) obtain a mark of 75% or higher in each BIO 492 and BIO 493.

B.Sc. Biology Major (90 credits)

 The B.Sc. programs are the best choice for students with a strong grounding in the core sciences (math, physics, and chemistry). Students graduating with a B.Sc. will be ready to enter graduate studies (M.Sc. or Ph.D) or professional schools (e.g. medicine, dentistry, physiotherapy, or veterinary medicine). See the nearby tables for the complete list of courses.

B.A. Biology Major (54 credits)

 The B.A. Biology program is designed for students lacking a strong science background. This program has fewer required courses than the B.Sc. programs, so students may be able to complete the requirements of a second major within their 120-credit degree. It is thus ideal for students interested in pursuing a double major (such as Biology and Psychology, or Biology and Political Science), and provides a solid grounding in the biological sciences. The B.A. Biology degree provides adequate preparation for some, but not all, professional and graduate programs. Students are advised to consult officials of the specific post-graduate institution of interest.

 Please see the nearby Tables for the complete list of courses required to complete this major.

Pre-Medicine Double Major

 Many of our students enrolled in the biology program are interested in going to medical school, and the BSc Biology (Health Sciences) program includes common prerequisites for application to medical schools in both Canada and the US. However, students should be aware that the entrance requirements can vary greatly between medical schools, and often change from year to year, therefore we recommend that students decide on which schools they are hoping to go to and then research what are the particular requirements of that school (the faculty can help you with this search). For those students unsure of where they would like to go and wishing to cover as wide a set of potential requirements as possible, BU also offers an inter-disciplinary Pre-Medicine double major, which specifically addresses these concerns. See the Pre-Medicine Double Major section for more details on how this program can be combined with a B.Sc. or B.A. Biology.

Biology Minor (24 credits)

 The biology minor consists of eight introductory courses in different areas of Biology. As illustrated in Table 2, seven of these courses are required and one is optional. This minor allows students majoring in a different field to obtain a perspective on modern biology.

 BIO196 Intro. to Cell & Molecular Biology
 BIO201 Cellular & Molecular Biology
 BIO205 Diversity of Life 1
 BIO206 Diversity of Life 2
 BIO207 Intro. to Evolution and Ecology
 BIO208 Genetics

Any 2 additional Biology courses

*Please note that many courses have associated labs, featuring the same course number and the BIL code, as indicated in the individual course descriptions. Lab credits do not count towards the total credit requirements of the program. The associated (co-requisite) lab must be completed to receive credit for the course.

Note: A course can only count under one category. For instance, if you took BIO 338 as a required concentration course, it cannot be counted as one of your concentration options.
Table 1: Health Sciences Concentration

<table>
<thead>
<tr>
<th>B.Sc Biology (Health Sciences) *</th>
<th>MAJBHS</th>
</tr>
</thead>
</table>

1. Y1 Year
(All non-Quebec students; 30 cr)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 196</td>
<td>Introduction to Cell & Molecular Biology</td>
</tr>
<tr>
<td>CHM 191</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>CHM 192</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>PHY 193</td>
<td>Physics for the Life Sciences I</td>
</tr>
<tr>
<td>PHY 194</td>
<td>Physics for the Life Sciences II</td>
</tr>
<tr>
<td>MAT 198</td>
<td>Calculus I for Life Sciences</td>
</tr>
<tr>
<td>MAT 199</td>
<td>Calculus II for Life Sciences</td>
</tr>
<tr>
<td>ENG 116</td>
<td>Effective Writing (or other ENG)</td>
</tr>
<tr>
<td>Humanities option (CLA, ENG, HIS, RSC, PHI or Lib. Arts)</td>
<td></td>
</tr>
</tbody>
</table>

Free elective: students may take any free elective or they may want to consider taking either BIO 207 Introduction to Evolution and Ecology or BIO 233 Human Anatomy. Students who did not do well in BIO 196 should not take the above courses until their second year when they are better prepared.

2. Required Core Courses (21 cr)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 201</td>
<td>Cellular and Molecular Biology</td>
</tr>
<tr>
<td>BIO 205</td>
<td>Diversity of Life 1</td>
</tr>
<tr>
<td>BIO 206</td>
<td>Diversity of Life 2</td>
</tr>
<tr>
<td>BIO 208</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIO 336</td>
<td>Animal Physiology 1</td>
</tr>
<tr>
<td>CHM 111</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>PHY 101</td>
<td>Statistical Methods</td>
</tr>
</tbody>
</table>

3. Required Concentration Courses (15 cr)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH 313</td>
<td>Metabolism</td>
</tr>
<tr>
<td>BIO 337</td>
<td>Animal Physiology 2</td>
</tr>
<tr>
<td>BIO 352</td>
<td>Microbiology</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>BIO 383</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BCH 210</td>
<td>General Biochemistry</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introductory Psychology</td>
</tr>
</tbody>
</table>

4. Concentration Options (21 cr)

Select any 7 courses from the far right column. At least 5 of these courses must be from Biology and at least one of these 7 courses must be either BIO 394 Biology and Cancer, BIO 411 Health Science Seminar, or BIO 428 Advanced Physiology.

5. Science Options (6 cr)

Select any 2 courses from the Division of Natural Sciences and Mathematics (including Biology). All courses must be eligible for science credit by science students (see individual course descriptions). For students interested in medicine, PHY 206 Waves and Optics and CHM 211 Organic Chemistry II may be good choices as they are pre-requisites for some medical schools.

6. Free Options (27 cr)

Choose 9 courses from any division to complete your 120-credit degree. These electives can be used to fulfill the requirements for a minor from a different department.

**Health Sciences Concentration Options* |

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 207</td>
<td>Introduction to Evolution and Ecology</td>
</tr>
<tr>
<td>BIO 311</td>
<td>Quantitative Methods in Biology</td>
</tr>
<tr>
<td>BIO 315</td>
<td>Frontiers of Biology, From Past to Present</td>
</tr>
<tr>
<td>BIO 320</td>
<td>Programmed Cell Death</td>
</tr>
<tr>
<td>BIO 340</td>
<td>Comparative Anatomy</td>
</tr>
<tr>
<td>BIO 341</td>
<td>Population Genetics and Evolution</td>
</tr>
<tr>
<td>BIO 349</td>
<td>Medical and Forensic Entomology</td>
</tr>
<tr>
<td>BIO 359</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>BIO 365</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIO 391</td>
<td>Experiential Learning in Health Sciences and Biochemistry</td>
</tr>
<tr>
<td>BIO 394</td>
<td>Biology of Cancer</td>
</tr>
<tr>
<td>BIO 411</td>
<td>Seminar in Health Sciences</td>
</tr>
<tr>
<td>BIO 428</td>
<td>Advanced Physiology</td>
</tr>
<tr>
<td>BCH 210</td>
<td>General Biochemistry</td>
</tr>
<tr>
<td>BCH 311</td>
<td>Proteins</td>
</tr>
<tr>
<td>BCH 312</td>
<td>Lipids and Membranes</td>
</tr>
<tr>
<td>BCH 381</td>
<td>Immunology</td>
</tr>
<tr>
<td>BCH 382</td>
<td>Environmental Biochemistry and Toxicology</td>
</tr>
<tr>
<td>BCH 383</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BCH 422</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>CHM 141</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>CHM 211</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>EXS 231</td>
<td>Nutrition for Sports and Exercise</td>
</tr>
<tr>
<td>EXS 317</td>
<td>Biomechanics of Human Movement</td>
</tr>
<tr>
<td>PBI 275</td>
<td>Health Psychology 1</td>
</tr>
<tr>
<td>PBI 288</td>
<td>Brain and Behavior 1</td>
</tr>
<tr>
<td>PBI 379</td>
<td>Neuropsychology</td>
</tr>
<tr>
<td>PBI 380</td>
<td>Psychopharmacology</td>
</tr>
<tr>
<td>PSY 213</td>
<td>Research Methods</td>
</tr>
<tr>
<td>PMA 360</td>
<td>Advanced Psychological Statistics</td>
</tr>
</tbody>
</table>

*Please note that many courses have associated labs, featuring the same course number and the BIL code, as indicated in the individual course descriptions. Lab credits do not count towards the total credit requirements of the program. The associated (co-requisite) lab must be completed to receive credit for the course.
Table 2: The Biodiversity and Ecology Concentration

B.Sc. Biology (Biodiversity and Ecology) *

MAJBDE

1. **Y1 Year**
 (All non-Quebec students; 30 cr)
 - BIO196 Intro. to Cell & Molecular Biology
 - CHM 191 General Chemistry I
 - CHM 192 General Chemistry II
 - PHY 193 Physics for the Life Sciences I
 - PHY 194 Physics for the Life Sciences II
 - MAT 198 Calculus I for Life Sciences
 - MAT 199 Calculus II for Life Sciences
 - ENG 116 Effective Writing
 - Humanities option (CLA, ENG, HIS, RSC, PHI or Lib. Arts)

 Free elective: students may take any free elective or, they may want to consider taking BIO 207 Introduction to Evolution and Ecology. Students who did not do well in BIO 196 should not take the above course until their second year when they are better prepared.

2. **Required Core Courses (21 cr)**
 - BIO 201 Cellular and Molecular Biology
 - BIO 205 Diversity of Life 1
 - BIO 206 Diversity of Life 2
 - BIO 208 Genetics
 - BIO 336 Animal Physiology 1
 - CHM 111 Organic Chemistry
 - PHY 101 Statistical Methods

3. **Required Concentration Courses (15 cr)**
 - BIO 207 Intro. to Evolution and Ecology
 - BIO 327 Advanced Ecology
 - BIO 338 Vertebrate Life 1 or
 - BIO 339 Vertebrate Life 2
 - BIO 329 Invertebrate Biology
 - ESG127 Introduction to Physical Geography

4. **Concentration Options (21 cr)**
 Select any 7 courses from the far right column, including a maximum of 2 non-BIO courses.

5. **Science Options (6 cr)**
 Select any 2 courses from the Division of Natural Sciences and Mathematics (including Biology). All courses must be eligible for Science credit by science students (see individual course descriptions). Students wishing to continue to graduate school may want to consider taking MAT 209 Linear Algebra, or MAT 310 Ordinary Differential Equations, as these will better prepare them for more advanced statistical courses later in their careers.

6. Free Options (27 cr)

Choose 9 courses from any division to complete your 120-credit degree. These electives can be used to fulfill the requirements for a minor from a different department.

B.Sc. Biology Honours (Biodiversity and Ecology)

In addition to requirements 1-5 above, add the following courses and reduce the free options by 12 cr (4 courses).
 - BIO 492 Honours Thesis I
 - BIO 493 Honours Thesis 2
 - BIO 386 Scientific Writing
 - BIO 311 Quantitative Methods in Biology

B.A. Biology (Biodiversity and Ecology) *

1. **Y1 Year**
 (All non-Quebec students; 30 cr)
 - BIO 196 Introduction to Cell & Molecular Biology
 - ENG 116 Effective Writing (or other ENG)
 - Humanities option (CLA, ENG, HIS, RSC, PHI or Lib. Arts)

 7 free options

2. **Required Core Courses (15 cr)**
 - BIO 201 Cellular & Molecular Biology
 - BIO 205 Diversity of Life 1
 - BIO 206 Diversity of Life 2
 - BIO 208 Genetics
 - PHY 101 Statistical Methods

3. **Required Concentration Courses (12 cr)**
 - BIO 207 Intro. to Evolution and Ecology
 - BIO 327 Advanced Ecology
 - BIO 338 Vertebrate Life 1 or
 - BIO 339 Vertebrate Life 2
 - BIO 329 Invertebrate Biology
 - ESG127 Introduction to Physical Geography

4. **Concentration Options (18 cr)**
 Select any 6 courses from the far right column, a minimum of 5 must be from Biology.

5. **Free Options (45 cr)**
 Choose 15 courses from any division to complete your 120-credit degree. Consider using these free options (along with the Y1 options, if applicable) to fulfill requirements for a second major.

Biodiversity and Ecology Concentration Options

- BIO 311 Quantitative Methods in Biology
- BIO 315 Frontiers of Biology, From Past to Present
- BIO 327 Advanced Ecology
- BIO 329 Invertebrate Biology
- BIO 331 Freshwater Biology
- BIO 332 Vertebrate Zoology
- BIO 337 Animal Physiology 2
- BIO 341 Population Genetics and Evolution
- BIO 334 Epidemiology
- BIO 338 Vertebrate Life 1
- BIO 339 Vertebrate Life 2
- BIO 340 Comparative Anatomy
- BIO 349 Medical and Forensic Entomology
- BIO 352 Microbiology
- BIO 354 Insect Biodiversity
- BIO 358 Animal Behaviour
- BIO 386 Science Writing
- BIO 392 Experiential Learning in Biodiversity & Ecology
- BIO 412 Seminars in Biodiversity & Ecology
- BCH 313 Metabolism
- ESG 262 Introduction to GIS
- ESG 250 Geomorphology
- ENV 241 Environmental Chemistry I
- ENV 242 Environmental Chemistry II
- ENV 337 Economics of the Environment
- ENV 375 Environmental Physics
- ENV 475 Ecological Economics
List of Courses

PLEASE NOTE: The following list of courses represents those courses which are normally offered by the Department of Biological Sciences. However, some courses alternate and thus are only available every second year. Courses offered on an occasional basis are indicated with an asterisk (*). Students should plan their schedules in advance, in consultation with their Departmental Chair, to ensure that they register for all of the courses required for graduation.

BIO 111 Organic Gardening 3-3-0
This course is an introduction to organic and environment-friendly gardening, combining lectures and a hands-on-practicum. Principles of companionship, growth, water and mineral balance will be discussed. Students will learn how to recognize and treat diseases, pests or common physiological disorders with environmentally natural techniques. At the end of this course, students should be able to set-up and run a garden using environment-friendly techniques and know how to harvest, handle and store crops. Depending on the interests of the group, the course will either cover transformation strategies for year-long storage of vegetables grown in the summer (canning, freezing, fermentation, drying…), or make an introduction to entrepreneurship in organic farming (based on the instructor’s own experience). In addition, several visits will be organized to locally run organic farms to present various models of environment-friendly productions of veggies, fruits and herbs.

Note: This course is open to the general public and may be taken by non-DNS students for science credit. However, students in any of the science majors may only take this course as a free elective, and may not count this course for science credit. It is offered in the spring semester.

BIO 131 The Human Body in Health and Disease 3-3-0
An introduction to human anatomy and physiology. This course will employ problem-based learning, virtual experiments, and traditional lectures to explain the relationship between the structure of the human body and its functions. These concepts will then be applied to the study of representative human diseases. This course is designed for students with minimal biology backgrounds, including arts students, teachers, coaches, and home-care workers. Students will acquire a working knowledge of human biology and the ability to communicate this knowledge to others.

Prerequisites: Secondary school Biology and/or Chemistry recommended. Note: This course cannot be taken for credit by students in Biology or Biochemistry or by students with credit for BIO 233

BIO 194 General Biology for the Social and Human Sciences 3-3-0
This course provides an introduction to biology for students without a strong science background. Topics include: Scientific method, chemistry of life, cell structure, cell metabolism, photosynthesis, origin of life, evolution, genetics, reproduction, diversity of life, ecology, and ecosystems. This course cannot be taken for credit by students in a B.Sc. program of B.A. Biology. It is not a sufficient prerequisite for more advanced Biology courses.

This course cannot be taken for credit by anyone who already has credit for collegial Biology NYA, BIO 191, BIO 193, BIO 196 or BIO 197.

BIO 189 The Science of Covid-19 3-3-0
In 2020 the world experienced unprecedented times with the rapid spread of the first worldwide pandemic. In this course we will look at the Covid-19 pandemic from the very first discover of a new virus to the most recent developments. Using the Sars-Cov-2 as our focus, we will explore concepts in genetics, cell biology, immunology, and human physiology. This will provide a gateway to understanding the scientific method, clinical studies and science publications. Taught at an introductory level for non-science majors, this course should leave students with a good background knowledge of biology and clinical research. This course should also help students to develop the type of critical thinking skills necessary to evaluate the credibility of information concerning medical research and public health.

Note: This course cannot be taken for credit by students in Biology or Biochemistry or by students with credit for BIO 289

BIO 196 Introduction to Cell & Molecular Biology 3-3-0
Topics covered include: chemistry of life; structure and function of biomolecules; structure and organization of cells; structure and function of organelles, genetic replication and expression; gene mutation; cell signaling; regulation of the cell cycle. This course is intended for B.Sc. students and B.A. (Biology) students; other students are encouraged to take BIO 194.

Prerequisite: High School Biology and Chemistry
This course cannot be taken for credit by anyone who already has credit for collegial General Biology 2/00XU, BIO 191, BIO 193 or BIO 194.

Corequisite: BIL 196

BIL 196 Introduction to Cellular and Molecular Biology Laboratory 1-0-3
Practical exercises in microscopy, molecular and cellular biology, and histology.

Prerequisites: High School Biology and Chemistry; Co-requisite: BIO 196

BIO 201 Cellular and Molecular Biology 3-3-0
Topics in modern cell biology. Examines aspects of eukaryotic cell structure and function. Includes, but not restricted to, areas such as intracellular signaling, cell cycling and cancer, cell-matrix interactions, endo/exocytosis, protein targeting and organelle biogenesis.

Prerequisites: BIO 196 or collegial general Biology 2/00XU or BIO 194 with a mark of 75% or better This course may not be taken for credit by anyone who already has credit for Biology 110.

BIO 205 Diversity of Life I 3-3-0
This course offers a thorough exploration of one branch of the tree of life, that occupied by multicellular animals. The course compliments Diversity of Life II, a winter term course with a focus on prokaryotic and non-animal eukaryotic life. The material in both courses is organized according to a modern phylogenetic framework. In this course students will learn about phylogenetic hypotheses and evidence, and they will study how classifications are created, tested, and, where necessary, rejected. Focusing on animals, we will discuss many of the morphological and physiological adaptations that have arisen. The evolutionary implications of some features, such as bilateral symmetry and the notochord, will be discussed more thoroughly. Recent advances as well as current contentious issues in animal classification will also be examined.

Prerequisite: BIO 194 or BIO 196; Co-requisite: BIL 205 Students with credit for BIO 115 cannot also receive credit for BIO 205.

BIL 205 Diversity of Life I Laboratory 1-0-3
The classification, identification, morphology and biology of the animals considered in BIO 205.

Co-requisite: BIL 205 Students with credit for BIL 115 cannot also receive credit for BIL 205.

BIO 206 Diversity of Life II 3-3-0
Like its companion course BIO 205, this course explores the tree of life, but from a less animal-centric view. We study the prokaryotes at the root of the tree, responsible for more than half of the earth’s biomass. Next, we examine the branch that contains all fungi (and lichens). The various protists and those algae that are not related to green plants form other branches, which we will also explore. Finally, we study in more detail the largest group of eukaryotes by biomass, the green plants. The material in this course (and in BIL 205) is organized according to a modern phylogenetic framework. The focus will be on diversity, function and ecological importance. In the case of the green plants, we look at the reasons for the tremendous ecological success of this form of life. We examine photosynthesis, transport, reproduction and life cycles, and evolution, empathizing ecological relevance.

Prerequisite: BIO 194 or BIO 205

BIO 207 Introduction to Evolution and Ecology 3-3-0
This course will start by looking at the development of modern evolutionary theory before exploring natural selection and speciation. This course will then explore some of the basic principles of ecology, including species interactions such as predation and competition, and how these interactions help structure the complex web of life that helps form ecological communities and ecosystems. Although intended for Biology majors, students from other programs may also take this course with the instructor’s permission.

Prerequisite: BIO 205 This course cannot be taken for credit by anyone who already has credit for BIO 197.

BIO 208 Genetics 3-3-0
An introduction to the study of genetically inherited traits from three perspectives.

(i) Mendelian Genetics: the rules of genetic transmission and heredity. (ii) Molecular Genetics: the biochemical and chromosomal basis of heredity. (iii) Population & Evolutionary Genetics: the variation in genes amongst individuals and populations, heritability, and changes in genes over time.

Prerequisite: BIO 201; Co-requisite: BIL 208 Students with BIO 194 may enroll in this course with permission of the Chair of Students Students with credit for BIO 118 cannot also receive credit for BIO 208.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisites/Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIL 208</td>
<td>Genetics Laboratory</td>
<td>1-0-3</td>
<td>Co-requisite: BIO 208</td>
</tr>
<tr>
<td>BIO 211</td>
<td>Sustainable Organic Agriculture</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 211</td>
<td>Sustainable Organic Agriculture Lab</td>
<td>1-0-3</td>
<td></td>
</tr>
<tr>
<td>BIO 233</td>
<td>Human Anatomy</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 289</td>
<td>Biological Spotlight on Covid-19</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 311</td>
<td>Quantitative Methods in Biology</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 315</td>
<td>Frontiers of Biology, From Past to Present</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 320</td>
<td>Programmed Cell Death</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 327</td>
<td>Advanced Ecology</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 329</td>
<td>Invertebrate Biology</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>BIO 331*</td>
<td>Freshwater Biology</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 334*</td>
<td>Epidemiology</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 336</td>
<td>Animal Physiology I</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 337</td>
<td>Animal Physiology II</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 337*</td>
<td>Freshwater Biology Lab</td>
<td>1-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 331*</td>
<td>Freshwater Biology</td>
<td>1-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 354*</td>
<td>Epidemiology</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 336</td>
<td>Animal Physiology I</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 337</td>
<td>Animal Physiology II</td>
<td>3-3-0</td>
<td></td>
</tr>
<tr>
<td>BIO 337</td>
<td>Animal Physiology II Laboratory</td>
<td>1-0-3</td>
<td></td>
</tr>
</tbody>
</table>

BIO 248 cannot be taken for credit by anyone who already has credit for BIO 228, and BIO 315 cannot receive credit for BIO 211.
BIO 339 Vertebrate Life II: An Introduction to Ornithology and Mammalogy 3-3-0
This course is the second of the series focusing on the evolutionary history and diversity of the vertebrates and will focus on the mammals and birds. From the tiniest humminbird to the mightiest whale, these two vertebrate groups represent separate evolutionary branches from within the amniote family tree. The course will start by looking at the ancestors of each group, before exploring their evolutionary diversification, and how these distantly related groups have solved similar evolutionary problems. Vertebrate Zoology II may be taken without previously taking Vertebrate Zoology I.
Co-requisite: BIL 339
Prerequisites: BIO 205 and BIO 207

BIL 338 Vertebrate Life I Lab 1-0-3
This is the co-requisite lab for BIO 338 Vertebrate Life I and will focus on practical field and laboratory techniques useful to working in Ichthyology and Herpetology.
Co-requisite: BIO 338

BIO 339 Vertebrate Life II Lab 1-0-3
This is the co-requisite lab to the BIO 339 Vertebrate Life II. This course will help students develop basic skills in the identification of most of the common vertebrates in the region. Although focusing primarily on the subject matter of the co-requisite lecture, BIO 339 birds and mammals, all vertebrate groups will be explored including fishes, amphibians, and reptiles.
Co-requisite: BIO 339
Prerequisites: BIO 205 and BIO 207

BIO 340* Comparative Vertebrate Anatomy 3-3-0
This course will use a comparative approach to help students understand vertebrate anatomy. Students will explore the evolution of major organ systems within the vertebrates, using both dissection and preserved material. Students should be prepared to both take lecture notes and dissect specimens every class.
Prerequisites: BIO 205

BIO 341 Population Genetics and Evolution 3-3-0
Understanding the processes by which selection and genetic variation allows species to adapt and evolve is an important aspect of biology. This course uses a wide spectrum of examples from animal and plant populations to outline the general principles in population and quantitative genetics that will then be applied to important issues in health sciences.
Prerequisites: BIO 208 and PHY 101

BIO 349 Medical and Forensic Entomology 3-3-0
As one of the most important group of disease vectors, insects and other arthropods are involved in the transmission of numerous pathogens causing diseases such as the plague, malaria, West Nile fever, scabies, and Lyme disease. This course will introduce students to some of the basic concepts of medical entomology with a focus on selected diseases. Information on the life cycles of insect vectors and the pathogens they carry is presented, as well as symptoms, treatment and geographical distribution of selected arthropod-borne diseases. The relevance of entomological evidence in criminal investigations (such as the use of insects to determine post-mortem interval is also discussed.
Prerequisite: BIO 205

BIO 352 Microbiology 1-0-3
An introduction to prokaryotic microorganisms, eukaryotic microorganisms, and viruses; their ecology, growth characteristics, and host interactions. Examination of the environmental roles of microbes as well as their impact on the human world.
Prerequisite: BIO 201 and BIO 208; Co-requisite: BIL 352

BIL 352 Microbiology Laboratory 1-0-3
An introduction to common microbiological techniques used in medical, biological and biochemical research, including techniques in growth, staining and identification of bacteria and viruses. As well, the diversity of physiological and metabolic requirements of bacteria will be examined.
Co-requisite: BIO 352

BIO 354 Insect Biodiversity 3-3-0
The main goal of this course is to teach the students how to collect, preserve and identify insects, especially those found in eastern North America. In addition to using material housed in the Bishop’s insect collection, material collected in the field by each student will be prepared in a fashion that will make the specimens museum worthy. Through the collecting and identification process, students will learn about insect taxonomy but they will also learn about where different taxa can be found and what their general ecological requirements are. Once they have completed the course, students should be able to identify most commonly encountered insects at least to the family level and recognize those that are beneficial or potentially harmful.
Prerequisite: BIO 205

BIO 358 Animal Behaviour 3-3-0
The study of animal behaviour represents the oldest known form of biological study. Even from our earliest beginnings, humans had an intense interest in understanding how animals behave. This interest is still evident from our almost instinctive need to share our homes with various pets. This course will build on this most basic need to watch and understand animal behaviour, but will do so from a more scientific approach.
Prerequisite: BIO 205, BIO 207, and PHY 101

BIL 358 Animal Behaviour Lab 1-0-3
This course is the co-requisite lab for BIO 358: Animal Behaviour. During the semester students will be expected to design and implement a series of animal behaviour experiments, culminating in a final project that they will then present to their peers in the form of a final scientific paper and oral presentation.
Co-requisite: BIO 358

BIO 359 Human Genetics 3-3-0
Cytogenetics, biochemical genetics, Mendelian genetics, molecular genetics and quantitative genetics of humans; chromosome mapping; genetics and medicine.
Prerequisite: BIO 208

BIO 365 Developmental Biology 3-3-0
Examination of the molecular events involved in the development of vertebrates, invertebrates and plants, emphasizing common strategies used in these three systems. Topics will include establishment of body axes, origin of germ layers, and segmental pattern formation. The role of developmental genes, regulatory gene families, and maternal effect genes will be emphasized. Morphogenesis and early cell differentiation will also be studied.
Prerequisite: BIO 208 and BIO 201

BIO 386 Scientific Writing 3-3-0
Lectures will introduce the scientific method and train students to critically read the scientific literature. Detailed examples of a written paper will then follow with step-by-step instructions. Data analysis, word processing and citation methods will be reviewed. In addition to written manuscripts, poster and oral presentations will be discussed.
Prerequisite: This course is normally open to Y3 or Y4 students by permission of the departmental chair or instructor only.
Students with credit for BIO 272 cannot also receive credit for BIO 386.

BIO 391 Experiential Learning in Health Sciences and Biochemistry 3-3-0
Students in the Health Science or Biochemistry program may receive credit for working under the tutelage of a mentor in a field directly related to their area of study. Students must secure both an internal supervisor (a fulltime faculty member) and a suitable mentor (i.e. external supervisor who will supervise the day to day activities of the student). Students must be actively involved in the daily work and should not be acting as menial labor.
Assessment of the student will be based largely on a mark assigned by the mentor directly responsible for the student and the submission of a journal outlining the daily objectives and actual work itself. Projects may be intensive in nature (i.e. 3 weeks during the summer), or may be more drawn out (i.e. 6-8 hours every week during the semester).
This course is only eligible to students in good standing and if available positions are available. Students may not work for salary and may not work concurrently in an area directly related to their honors project.
Note: Students may only take one experiential learning course for credit (i.e. BIO 391 or BIO 392 or ELP 300).
Coordinator: Professor Savage
BIO 392 Experiential Learning in Biodiversity & Ecology 3-3-0
Students in the Biodiversity & Ecology program may receive credit for working
under the tutelage of a mentor in a field directly related to their area of study.
Students must secure both an internal supervisor (a fulltime faculty member)
and a suitable mentor (i.e. external supervisor who will supervise the day to day
activities of the student). / Students must be actively involved in the daily work and
should not be acting as menial labor.
Assessment of the student will be based largely on a mark assigned by the mentor
directly responsible for the student and the submission of a journal outlining the
daily objectives and actual work itself. Projects may be intensive in nature (i.e. 3
weeks during the summer), or may be more drawn out (i.e. 6-8 hours every week
during the semester).
This course is only eligible to students in good standing and if available positions
are available. Students may not work for salary and may not work concurrently in
an area directly related to their honors project.
Note: Students may only take one experiential learning course for credit (i.e. BIO
391, or BIO 392 or ELP 300).
Coordinator: Professor Savage

BIO 394 Biology of Cancer 3-3-0
This course will review the broad subject of cancer development and treatment.
In particular it will focus on taking concepts seen in cell biology and applying
them to cancer cells. Among the topics reviewed will be: cancer types and staging,
mutation rates and environmental contributions to genetic changes, oncogenes and
tumor suppressors, cell proliferation/death balance, modification of cancer cells
phenotypes and metastases formation, role of the immune system in the prevention
of cancer spreading, strategies of cure, and a review of the body’s physiological
responses to several forms of cancer.
Prerequisites: BIO 336 AND BIO 201
Offered in odd-numbered winters
Students with credit for BIO 224 cannot receive credit for BIO 394

BIO 411 Seminars in Health Sciences 3-3-0
An advanced course discussing current topics in the Health Sciences. Students will
be expected to critically evaluate recent scientific literature, prepare and deliver
oral and written presentations, participate in discussions, and analyze research
questions.
Pre-requisites: BIO 208 AND BIO 336
Restricted to students in year 3 or 4 (i.e. with less than 60 credits remaining of a
B.Sc. Biology degree)

BIO 412* Seminars in Biodiversity & Ecology 3-3-0
This course will discuss recent developments in specific areas of ecology,
conservation, and/or zoology. The course content will vary from year to year,
depending on the instructor’s area of expertise and the students’ interests.
Prerequisite: BIO 205, BIO 207
Students with credit for BIO 362 cannot also receive credit for BIO 412.

BIO 421 Independent Studies in Biology I 3-1-3
This course is intended for final-year students who wish to pursue in-depth study
of a particular area of biology or who have a special need for a biology course that
would otherwise not be available during their final semester of course work. This
course can only be done in close collaboration with a faculty advisor from within
the Department of Biological Sciences, and may not be used as a supplement to a
student’s honours project. Requirements for this course will be agreed upon by a
committee of professors from within the Department of Biological Sciences.
Pre-requisite: Permission of the committee
Students with credit for BIO 371 cannot also receive credit for BIO 421.
Coordinator: Professor Chamoux

BIO 422 Independent Studies in Biology II 3-1-3
This course represents an additional semester of independent work, either a
continuation of or a separate course from BIO 421, meant for final-year students
who wish to pursue in-depth study of a particular area of biology or who have a
special need for a biology course that would otherwise not be available during their
final semester of course work. This course can only be done in close collaboration
with a faculty advisor from within the Department of Biological Sciences, and
may not be used as a supplement to a student’s honours project. Requirements
for this course will be agreed upon by a committee of professors from within the
Department of Biological Sciences.
Pre-requisite: Permission of the committee
Students with credit for BIO 372 cannot also receive credit for BIO 422.
Coordinator: Professor Chamoux

BIO 428 Advanced Physiology 3-3-0
This course will examine how animals adapt to environmental stresses such as
extremes of temperature of altitude, hypoxia, water limitation and dietary changes.
Short-term (acute), medium-term (acclimatory) and chronic (evolutionary)
adaptations will be discussed.
Pre-requisite: BIO 336; Pre-or Co-requisite: BIO 337
Offered in even-numbered winters
Students with credit for BIO 328 cannot also receive credit for BIO 428.

BIO 433 Advanced Exercise Science 3-3-0
This course examines selected topics in Exercise Physiology. Through traditional
lectures, directed readings, seminars, and case studies, students will study
short-term and long-term adaptations to exercise. We will also examine the
scientific principles underlying sports-related topics such as optimizing exercise
performance, injuries, and injury repair.
Prerequisite: BIO 336 or EXS 327
Students with credit for BIO 333 cannot also receive credit for BIO 433.
Note: See Exercise Science 433. Students may not take this course for credit if
they have received credit for EXS 433.

BIO 434 Teaching Assistant Internship in Biology 3-3-0
Students enrolled in BIO 434 will work closely with a faculty member to work
as a teaching assistant in a specific biology course they have already completed.
Students will be expected to devote an average of 6-9 hours a week divided
between deepening their knowledge of a specific field in biology, interacting with
the students enrolled in the course, attending lectures on best practices in teaching
biology, and maintaining a detailed journal of their work. This course should not
be viewed as simply an unpaid TA for credit but rather as an opportunity to expand
their knowledge of a specific biological discipline in their field of interest, and to
learn about how best to help other undergraduates learn this material. Because this
course requires a close working relationship with a teacher, students may only
register by permission of the faculty teaching the course.

BIO 492 Honours Research Project I 3-1-6
An introduction to the planning, execution and reporting of biological research
offered to students matching eligibility criteria. Each student is required to choose
a research problem and, in consultation with a departmentally approved supervisor,
draw up a formal research proposal of work to be undertaken. The final mark in
this course will be based on the research proposal, preliminary research completed
on the stated project, and presentation of a poster during the final week of classes.
Satisfactory completion of BIO 492 with a minimum mark of 75%, with a minimal
score of 70% in each graded component, is required for enrolment in BIO 493.
Prerequisite: Permission of committee
Students with credit for BIO 421 cannot also receive credit for BIO 492.

BIO 493 Honours Research Project II 3-1-6
A continuation of BIO 492 offered to students matching eligibility criteria. The
student will complete all research as outlined in the research proposal. The final
mark in this course will be based on the quality and amount of research completed,
presentation of a departmental seminar during the final week of classes, open to
the public, based on research findings, and submission of a final written honours
thesis. Enrolment in BIO 493 is conditional upon completing BIO 493 with a
minimum mark of 75%. Satisfactory component, is required to complete the
Honours program.
Prerequisite: Permission of committee
Students with credit for BIO 422 cannot also receive credit for BIO 493.